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Czechoslovak Mathematical Journal, 29 (104) 1979, Praha

CORRECTION TO MY PAPER ON
STRUCTURE AND IDEAL THEORY OF COMMUTATIVE SEMIGROUPS

M. SATYANARAYANA, Bowling Green

(Received March 1, 1979)

Professor B. PONDEL{CEK has kindly drawn my attention to some errors in my paper
[1}. These errors have crept in because of the neglect of verifying the theorems in
trivial cases. The following are the corrected versions of Theorems 1.6 and 1.7
in [1]. Here we number them in the same way for ready reference.

Theorem 1.6. Let S be a U-semigroup which is not a group. If P is the union of
all its proper prime ideals, then P % [] and S = x U xs for every x € S\ P. The
converse holds if P % S.

Proof. If S does not contain any proper prime ideals, then for every a in S,
J(a v aS) =S, which implies S =a U aS by U-semigroup property. Then S
becomes a group, which is not true by an assumption. Thus P is non-empty. Now,
if xeS\P, S= \/(x U] xS), which implies S = x U xS. Conversely let S be not
a group and let A be an ideal different from S. If xe A\ P, then S = x U xS by
assumption and so 4 = S, which is a contradiction. Therefore A < P we claim now
that \/(4) % S. If possible, let \/(4) = S. Then if xes, x"€ A for some natural
number n and so x" € P, which is a prime ideal and thus x € P. Therefore S = P,
which is a contradiction. Thus S is a U-semigroup.

Theorem 1.7. Let S be a semigroup which is not the union of all its proper prime
ideals but contains maximal ideals. Then the following are equivalent:

i) 5 =52

ii) S contains a unique maximal ideal which is prime.

Proof. (i) = (ii). Let T= {a:\/(aS*) + S}. If T= [J, then for every a€S,
\/(aS') = S and so S contains no proper prime ideals. But maximal ideals are prime

by [2]. Hence this case is inadmissible. If T = S, then T'is the unique maximal ideal.
For, let M be any maximal ideal. Since S = S?, M is a prime ideal and so /(M) = M.
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Nowifae M\T, then S = \/(au aS) £ /(M) = M. Thus M ¢ TandsoM = T.
The only other possibility is T = S. Since S is not the union P of its prime ideals,
we have then for x € S\ P, \/(x U xS) = S, which is not true since T = S.

(ii) = (i) follows by Schwartz’s result [2].
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