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P. BoLLEY, Nantes, J. CAMuS, Rennes

(Received April 13, 1979)

The purpose of this paper is to give some results about powers and Gevrey
regularity in the interior and up to boundary for a system of differential operators,
which are, in particular, extensions of those of KOTAKE-NARASHIMAN [8] and
NELsoN [11].

I — POWERS AND Gg REGULARITY
First, we recall the definition (or characterization) of the analyticity of a function:

Definition I-1. A function u, C* in an open set of R", is analytic in Q if, for every
compact set K of Q, there exists a constant L = Ly > 0 such that, for every a € N",
we have:

| Dy = 27 ([a]t)
where we write, for o = (ay, ..., ®,),
olel

lo| =a; + ...+, and D* =il — —.
0x"* ... 0x,™

We denote by a(€) the space of analytic functions in Q.
In [8], Kotake and Narashiman characterize the analyticity with the help of
powers of an elliptic operator in the following manner:

Theorem 0. Let P be an elliptic differential operator of order m = 1 with analytic
coefficients in an open set Q of R". Then the following two propositions are equiv-
alent:

(i) u € a(Q);

This paper was presented by the second of the authors as a lecture on the Spring School
““Nonlinear Analysis, Function Spaces and Applications’’ held at Horni Bradlo, Czechoslovakia,
in May 1978.
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(ii) u € C™(Q) and, for every compact set K of Q, there exists a constant L = Ly > 0
such that, for every ke N, we have:

|P*u]| gy < LHH((mk)Y) -

In [11], Nelson characterizes the analyticity with the help of powers of n real
vector fields linearly independent in the following manner:

Theorem 0'. Let P, ..., P, be real vector fields with analytic coefficients and
linearly independent at every point of an open set Q of R". Then the following two
propositions are equivalent:

(i) uea(Q);
(i) u € C*(Q) and, for every compact set K of Q, there exists a constant L = Ly > 0
such that, for every 1 £ i; < n,1 £j < kand k = 1, we have:

[P - Pik“”LZ(K) S LK.

The purpose of this paper is to extend these results concerning more general
operators and Gevrey’s classes of order s = 1 in the interior and also up to the
boundary.

We recall the definition of Gevrey’s classes:,

Definition 2. Let K be a compact set in R” and S a real number =1. By Gevrey’s
class of order S in K we mean the space G(K) of the restrictions over K of C® func-
tions u in a neighbourhood of K such that there exists a constant L > 0 such that,
for every a € N", we have:

D] 2y < D1 2(|o] 1)

Let Q be an open set of R"; by Gevrey’s class of order S in Q we mean the space Gg(2)
of functions which are in Gg(K) for every compact subset K of Q.

If K is “smooth enough”, we can replace the [*(K)-norm by the L*(K)-norm.
For S = 1, we get of course analytic functions.

Let Q be an open set in R” with boundary Q and P; = Pj(x; D), j =1,..., N,
differential operators of order m; e N. Let the principal part of order m; of P; be
denoted by P; = Pj(x; D); we introduce the following two conditions:

(A) for every x € , the polynomials Pj(x; &) for 1 < j < N have no common non
trivial real zero; .

(B) for every x € 69, the polynomials Pj(x; &) for 1 < j < N have no common non
trivial complex zero.
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First of all, we have the following theorem on powers in Gevrey’s classes GS(Q),
which generalizes the Kotaké-Narashiman and Nelson’s theorems:

‘Theorem 1. If the operators P;, j =1,...,N, have coefficients in Gg(Q) and
satisfy the condition (A), then the following two propositions are equivalent:

(i) ue Gy(Q);

(ii) ue C*(Q)and for every compact subset K of Q, there exists a constant L= Lg >
> 0 such that, for every 1 £i; < N,1 =j < kand k 2 1, we have:

k
IPi, - Pout]| oy < L"“((j;m,.j)!)s :

We have also the following result which is a result on powers in Gevrey’s classes
Gs(Q):

Theorem 2. If Q is a bounded open set in R" with Lipschitzian boundary, if the
operators P; for 1 < j £ N have coefficients in Gs(Q) and satisfy the conditions
(A) and (B), then the following two propositions are equivalent:

(i) ueGy(Q);

ii) u € C*(Q) and there exists a constant L > O such that, for every 1 < i; £ N,
yl=1=
1<j<kandk =1, we have:

k
|Ps, - Pif 2oy < Lk“((j;mij)!)s-

We recall that an open set Q in R" with Lipschitzian boundary 0Q is an open set
such that, for every point x, € 02, there exists a real number r > 0, a system of local
coordinates (xy, ..., x,) and a Lipschitzian function h = h(x,, ..., x,_) such that

QN B(xo, ) = {(X15 0 X,)5 X, > h(xy, ..o X, 1)} O B(xg, 7)

where B(x,, r) is a ball with center x, and radius r.

The implications (i) = (ii) are always true and easy to prove. The method used
to prove the implication (ii) = (i) in Theorem 2 (as well as in Theorem 1) is an adap-
tation of that of Kotaké-Narashiman [8] using the tools of MORREY-NIRENBERG [10].

First, we may consider only operators with the same order m. In fact, for
j=1,..,N, we put m; = [[ m; and Q; = P}’. The operators Q; = Q,(x; D) for

iFj

N
1 <j £ N have the order m = [| m; and satisfy the conditions (A) and (B) if and
j=1 :

only if the operators P, for j = 1, ..., N satisfy the conditions (A) and (B). Moreover,
ifue C°°(Q) and if there exists a constant L > 0 such that, for every 1 < i; < N,
1 <j<kandk =1, we have:

k
”Pix Pik“”u(m = L"“((j;lmi,)!)s >
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then we have also:
19s, - Qi 2@y = L**H((km)1)*
with L = (max (L, 1))".
Thus, in the following we assume that all the operators P; have the same order m.
The starting point of the proof is a global a priori estimate which is given in
ARONSZAIN [2], SmiTH [12] (cf. also Bolley-Camus [3]):

Proposition I-1. Under the assumptions of Theorem 2, for every k = 1 there
exists a constant L > 0 such that, for every u e C*(Q), we have:

N
[#lavar = € X [Prale-may + ]2} -
By localization, we are going to deduce two other a priori estimates.

Proposition I-2. Under the assumptions of Theorem 2, for every x € Q, for every
open neighbourhoods W and W’ of x in Q, W’ being relatively compact in W, there
exists a constant A > 0 such that, for every u e C°°(W), we have:

N
el mewry < 4. {,;1 |1Pjulzacwy + uelcaom} -

Proof, By Proposition I-1, there exists a constant C > 0 such that, for every
ueC*(W)and 1 £ k < m, we have:

N
lulxemy = €. {j; [Py + [t zawy} -
We are going to deduce Proposition I-2 from this estimate by proving by induction

on p, for 1 < p < m, that there exists a constant C, > 0 and a function &, € Cg(W)
equal to 1 on W’ such that, for every function u € C*(W), we have:

@ llawors = G- (X 1Pilison + Julison + [ @tlanrar)

For p = 1, we consider a function ®, € C§'(W) equal to 1 on W’; then, if u € C*(W),
the preceding estimate written with k = m implies

Ju

IIA

N
oy S [ Pott[mewy = C {,-;“P {(Pou)| 2wy + || Pou| 2wy} -

However, P(®ou) = @oPju — [P}, ®y] ®,u where &, € C3(W) is equal to 1 on the
support of @, and [P;, $,] means the commutator of P; and &,. Hence,

[P @) zamy = € {[Pju] oy + |11t sm-sm))
for 1 <j < N; then we get (1).
Suppose (p) is true and show (p + Difp+1<m.

652



From the preceding estimate written with k = m — p, we get for every u € C*(W):

N
” P,u ||H"--P(W) =C. {j;”P j(‘pp“)“trv(W) + ||<P,,u||,_z(w)} .
Writing Pj(®,u) = ®,Pu + [P, ®,] ®,,,u where &,,, e CP(W) is equal to 1
on the support of @,. Hence,
|PA@) sy < Cpas - {IPstt]azom + [ @y stt]am- o+ 0m}

for 1 < j £ N, which yields (p + 1).

In particular, the inequality (m) is exactly the inequality of Proposition I-2.

In the second step, we establish an other a priori estimate localized for some par-
ticular open sets W and W’. To this end, we need some notations: let x be a point
inQ 0<0<R<Ry;

W = Qn B(x; Ry), W = Qn B(x; Ry),
W,=QnB(x;R—-0), W,=2nB(x;R-yg).
Then we have the following refined a priori estimate:
Proposition I1-3. Under the assumptions of Theorem 2, for every x € Q and 0 <

< R < Ry there exists a constant C > 0 such that, for every u e C*(W), for every
o e N" with ]oc| < m, g and ¢’ > 0 with ¢ + ¢’ < R and ¢ £ 1, we have:

N
Qm“ Dau”Lz(WeHz') =C. {sz “PJ"“LZ(Ww + ¥ 9“"” Dﬂ””Lz(We')} .
i=1 1BlSm—1

Proof. We consider a function ¢ € C3’(W,) such that0 < ¢ < 1, ¢ = 1 on W, .,
|D*¢ | Lwwsy S Coo™1*! where C, is a constant which depends on o and not on x, ¢
and o'.

We apply Proposition I-1 to the tunction ou for u e C*(W):

[ D(ou)| 2oy < A - {ji 1P (ou)]2gwer + [|#]2ower}

for ]cxl < m.
On the other hand, if we put
PJ = P_,(x; D) = aj;'(x) Dl,
[ATZm
we have
Pou) — oPju = Y aj (l> D* fphy .
fiz

However, there exist constants C; ; ; > 0, independent of g, such that

aj (g) D* Fg

< Cj,;,,,gg_l)'“m .

L>(Wo)
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Then

N
Do) 2wy < A" A Y |Pjullawy + X 07 DU 2y}
=1 181 <121

|4 <m

and, since ¢ < 1, we have

N
“Du(‘P")uLZ(Wo) s4 . Z_”PJ“HL’(We') + e
1) lff)!<|'/'1'l

1=

Dol 2} »

which yields the inequality of Proposition I-3.

We now use induction on this inequality to obtain an estimate of one derivative
of u in terms of some powers of P;u:

Proposition 1-4. Under the assumptions of Theorem 2, for every xe ©,0 < R <
< R there exists a constant A 2 1 such that, for every ¢ with 0 < ¢ < min (1, R),
every u e C°°(W), every a € N" with lal < km and k = 1, we have:

1Dy 440500 5 P, Py

veon + [ 2om} -

II/\IIA

1‘5

Proof. The coefficients a;, of the operators P; being in the class G4(2), there
exists a constant B > 0 such that, for every « € N", we have:

"D aJl“L"’(Wo) < Bl ()

j=1 lll<
then
ul —la|S
j=z1 IAlsmHDaaﬂ“L”(Wo) < B (al)s oIS,
We put
k
Sk(“) = Sk(“; Q) = ZQ(V_I)MS 2 "Pil oo Pitt| 2wy + Nu“LZ(W) .

Then we have

N
_Zlé’ms Su(Pju) £ Sis1(u)
=
and
Su(u) < Ssa(u) -

We now prove the inequality in Proposition I-4 by induction on k. First, the inequality
from Proposition I-2 gives

N
|0t 2wy < 4. {J_; 1P| 2oy + (] z20m}

for |o| < m.
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We can choose A = 1 and since ¢ £ 1, we have the inequality from Proposition
I-4 for k = 1.

Let « € N" be such that km < |a] < (k + 1) m and assume the inequality from
Proposition I-4 to be proved for every e N" such that || < || — 1. We put
o = oy + o with |oo| = m. We use the inequality of Proposition I-3 with (lof = De
instead of ¢, a, instead of « and D* u instead of u, which yields

N
"D 2w < € {QMS,ZI |PAD% )| 2w - 10> +
i=
+ Z Q]als~m+lﬁlll Dﬂ—”‘"u“LZ(W“ﬂ_l)a)} .

|Bl<m—1
However, we have

N 3
Y D% 7 as ] agwangy < BT = 01 (mko) ™ T
/=1

and —
O\ (@ =D (@ =Y < (T
y) mid= =15 = \\y J(mk)=") — \mk -
since [oc’[ = |oz| —m £ km.
Hence,
Dal(Piu) - Pj(Da,u)”LZ(W(lal—ne) = Z Z Blz"‘lngvla,_Y|S{IDv+AuI|L2(W(|a|—x)e)

|Alsm y<a”

and thus, for km < |a| £ (k + 1) m, we have:
N ’
") D7 2y, < C - {Qmsj;l | D% Pjul| 2wy +

L P
18[<m
+ Z E Q‘m+|7|)s3la"7|+1HDHlu”U(W(muw)a)} :
[A=m y<a’

We can now apply the induction assumption to estimate each term on the right hand

side of this inequality; the first term is
N ,
< QmSAla'Hl Z Sk(Pju) < Al* |+lsk:}-1(u) s
j=1

the second term is
< A|ﬁ+a'|+1sk+l(u)’

1Blsm

and the third term is .
< gl 141 gm0 S ()

|A|Sm y<a’
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Then we have

glalslluau[|Lz(WW, S A, L (w){ca ™+ C Y At +

1Bl <m

+ z ZBla’—leA“Ia'—ﬂ} .

|[A|E=m y<a’

However,
CY YB= g Wl < Ccom"B247Y Y (BATY)L,
18120

[Alsm y<a’

We can choose A4 large enough, independent of « and g, in order to make the term
between the brackets <1, which completes the proof of Proposition I-4.
Now we can present the result about the powers “locally up to the boundary”:

Proposition 1-5. Under the assumptions of Theorem 2, if x € @ and ue C*(Q) n
N B(x; R,) is such that, for every open neighbourhood U of x in @ with U relatively
compact in @ 0 B(x; R,), there exists a constant L = Ly > 0 such that, for every
1<i;sN,1=j=skandk =1, we have:

nPi, PikuI|L2(U) < I (km!)S,
then u e G5(Q n B(x; R,)).

Proof. We fix R" < R, and put U’ = Q n B(x; R,). We want to show that u e
€ G5(U’). We choose R; and R such that R’ < R; < R, and keeping the notation
used in Proposition I-4, we have

“Pu Piku”Ll(W) = Lk+1(km!)s s
hence

k
Su) £ T o UmSNYL A ((vm)1) + L
v=1

for every ¢ such that 0 < ¢ < Min (1, R).
We choose ¢ = (R — R’)[km, R — R’ being small enough; then we get
((vm)!)s Q(v—l)mS é (km)mS
for v £ k.
Therefore, there exists a constant B; > 0 such that

k
Si(u) < Y N LY (km)"S + L< BY*!
v=1

for k = 1.
By Proposition I-4, there exists a constant B, > 0 such that, for a'e N" with
Iocl < kmand k = 1, we have:
[ D] Low -y = BST1KES.

&
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In particular, if we apply this formula for |oz| = k, we get, for every a € N":

|0y < BEV |15,

which yields u € G4(U").
Theorem 2, the assertion (ii) = (i), is proved.

Remark I-1. In the case when Q is a C® compact manifold with boundary, the
condition (B) can be replaced, in Theorem 2, by the following condition:
(B") for every x € 0Q, the polynomials Pj(x; &) for 1 < j < N have no common non
trivial complex zero with imaginary part orthogonal to 0Q in x.

Remark I-2. By the same method, the inequalities of coerciveness given in AGMON
[1] allow to obtain some similar results about powers in the classes Gs(@2) for bound-
ary value problems associated with some systems (Pl, cews Py3 By, ooy B‘,) where P;
are differential operators and B; are differential operators at the boundary; the case
when the system of P; is reduced to a single operator is that which was studied by
LioNs-MAGENEs [9] while the case when the system of B; is empty is the case that we
have studied here.

Il — G-REGULARITY

The following corollary about the Gg(&)-regularity is a consequence of Theorem 1:

Corollary II-1. Under the assumptions of Theorem 1, the following two proposi-
tions are equivalent:

(i) ue G4(Q);
(ii) ue C*(Q) and Pjue G4Q) for 1 <j < N.
From Theorem 2 we get the following corollary about the Gg(Q)-regularity:

Corollary I1-2. Under the assumptions of Theorem 2, the following two proposi-
tions are equivalent:

(i) u e Gs(Q);
(ii) ue C*(Q) and Pjue G4Q) for 1 <j < N.
Remark II-1. Using the results on regularity given by Smita [11] (cf. also

Bolley-Camus [3]), we can replace u € C*(2) by u € 2'(Q) in Corollary II-2. In the
same way, we can replace u € C °°(Q) byue @’(Q) in Corollary I-1, using the ellipticity
N

of the operator y P;P;in Q.
j=1

It is easy to see that neither the condition (A) for Corollary II-1 nor the conditions
(A) and (B) (or (B')) for Corollary 1I-2 are necessary.
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When the operators P; = Pj(D) have constant coefficients, we introduce the fol-
lowing condition:
(C) The set of complex common roots ¢ of the polynomials Pj(é), for1 <j <N,
is finite.

Then we have the following necessary and sufficient condition of Gs(Q)-regularity:

Theorem I1-1. Let Q be a bounded open set in R" with Lipschitzian boundary,
and let P; be operators with constant coefficients, 1 < j < N; then the following
two propositions are equivalent:

(i) The space {ue 2'(Q); Pjue G4(2), 1 £ j < N} is the space G5(Q);
(ii) the operators'P;, 1 < j £ N, satisfy the condition (C).

The proof given in the case of the space C*() in Bolley-Camus [3] can be applied
to the space G4(Q). We recall it here.

Proof. We assume that (i) is true. We introduce the space
Y(Q) = {ue'(Q); Pu=0,1<j<N}.

We denote by Y%(Q) and Y'(Q) the space Y() equipped with the I*(Q)-norm and
H'(Q)-norm, respectively. The identity map from Y*(Q) into Y°(Q) being continuous
and these spaces being Banach spaces, the two norms, I*(Q2)-norm and H'(2)-norm,
are equivalent on Y(Q) Thus, there exists a constant C > 0 such that, for every u €
€ Y(Q), we have:

lulmie = € Ju] 2 -

The unit ball of Y°(Q) is then compact and therefore Y(2) is of finite dimension.

But if ¢ € C" satisfies Pj(¢) = 0 for 1 < j < N, the function u(x) = "™’ satisfies
Pju = 0for 1 = j < N. Then, necessarily, the set of complex common roots of the
polynomials is finite.

We now assume that (ii) is true. Let &, ..., & be the complex common roots of
the polynomials P; for 1 < j < N. For each 1 < j < n, we consider the polynomial

0,6) = 1 - &)

where we have put & = (&5, ..., &,).

Then we have Qj(éi) = 0 for 1 < i < v; that is, the polynomials Q;, 1 =j < n,
vanish on the set of complex common roots of the polynomials P;, 1 <j < N.
From the “Nullstellensatz” (see e.g. VAN DER WARDEN [13]), there exists an integer
@ = 1 such that the polynomials Q5 for 1 < j < n belong to the ideal spanned by
the polynomials P, 1 £ I < N; that is, there exist polynomials A4;, such that

0 = S A0 PAE), 155,

&
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The polynomials Q¢ are polynomials of order vo the principal part of which is
equal to &}¢; these principal parts have only 0 as a complex common root, that is,
they satisfy the conditions (A) and (B). Hence, if u € 2'(Q) and P,u € G4() for 1 <
j £ N, then Q% € G4(Q) for 1 £ j < n. By Smith [12], Bolley-Camus [3] we find
u e C*(2) and Corollary II-2 yields u € G5(Q).

Theorem II-1, in particular, implies the following sufficient condition of Gg(2)-
regularity:

Corollary I1I-3. Let P; be differential operators, 1 < j < N, with constant coef-
ficients and satisfying the condition (C); then the following two propositions are
equivalent:

(i) ue Gs(Q);
(ii) ue C*(Q) and Pjue Gy(Q) for 1 £j < N.

Remark II-2. It follows from the preceding theorems that, if the polynomials
P; = Pj(¢), 1 £j < N (with constant coefficients), have principal parts without
complex common roots different from 0, that is they satisfy the condition (B), then
they have only a finite number of complex common roots, that is they satisfy the
condition (C): this is a “classical” result in algebraic geometry.

III — “REDUCED POWERS” AND Gs-REGULARITY

In [5], Damlakhi gives a refinement of Nelson’s theorem (Theorem 0') in the
following sense:

Theorem [5]. Let P, ..., P, be real vector fields with analytic coefficients and lin-
early independent at each point of an open set Q; then the following two propositions
are equivalent:

(i) u € a(Q);
(ii) u e C*(Q) and, for every subset K of Q, there exists a constant L= Ly > 0
such that, for every k 2 1 and 1 £ i < n, we have:

|Psul| 2y < LH(KY).

In a similar way and in accordance with the preceding Chapters I and H, we are
going to put forward the following two conjectures:

Conjecture 1. Under the assumptions of Theorem 1, the following two propositions
are equivalent:

(i) u e Gs(Q);
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(i) u € C*(Q) and, for every compact subset K of Q, there exists a constant L =
= Lg > O such that, for every k 21 and 1 £ i £ N, we have:

[Psu oy = EH2((kmy)1)S .

Conjecture 2. Under the assumptions of Theorem 2, the following two propositions
are equivalent:

(i) ue Gs(Q);
(i) u e C*(Q) and there exists a constant L> 0 such that, for every k = 1 and
1 £i £ N, we have:

“P’icu“u(n) < EF Y ((kmy)1)S.

An affirmative answer is given in a particular case by DAMLAKHI [5] who uses to
this end the notion of the analytic wave front set of a hyperfunction and the funda-
mental theorem of Sato, and also the idea of adding another variable ¢ (in R) and of
considering the evolution operators P; = 8[0t — iP;, 1 < j < N.

Conjecture 1 is true also in the case of operators P; of order 1, with complex and
constant coefficients. The proof of this result is based on the following proposi-
tion:

Proposition III-1. Let P; = P,(¢) be polynomials, j = 1,...,N, of order 1 with
complex and constant coefficients; we assume that their principal parts have no
real common roots different from 0. Then, for every compact sets K, and K, in R",
K, being included in the interior K> of K,, there exists a constant C > 0 such
that, for every u € C*(K,) and o € N", we have:

“Dau”LZ(Kl) é C[a|+1 i Z lalilﬂlclﬂllaluﬂ |(x|! .
i=1 |p|Zlal j=0 (|| = |B] = )1t B!

. “P?I_IM_J-“HU(&) .

This proposition is obtained by using, in particular, the special function of truncation
given in HGRMANDER [7].

Another affirmative answer to Conjecture 2 has been given for s = 1, Q =
= (]—1, +1[)* and for the canonical system of the first partial derivatives by
Damlakhi [5], via the spectral theory of Legendre’s operator in n variables.

+ Conjecture 2 is also true “locally” in the half-space R, = {(x, t); ¢ = 0} for the
case of a transversal operator P, of order 1 with constant and real coefficients and
tangential operators P,, ..., Py with complex and constant coefficients. The proof

&
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is based on the following a priori estimate: there exists a constant C > 0 such that,
for all u e CF(R".), u(x,t) = 0fort = 1, k = 1 and ae N""*, we have:

”Df‘,P’{u[|L2(R,.+) < Cla+kta {“Prlﬂﬂu”LZ(Rﬁ) +

+ i |a|+zk:+1 l IIPI'aHkJrl“lu“ }
i=2 1=0 <Ioz| +k+1 ! LYR™)( *

We can prove such an inequality by using the inequalities given in CARTAN [4] and
HARDY-LITTLEWOOD-POLYA [6].
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