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Let G be a graph in the sense of [2] or [5]. We denote by V(G) and E(G) its vertex
set and edge set, respectively. If u € ¥(G), then we denote by degu or deg; u the
degree of u in G. A vertex of degree 0 is called isolated. We denote

V'(G) = {ve V(G); degv + 1};

V*(G) = {ve V(G); there exists exactly one vertex w of degree one such that

vw € E(G)};

V'(G) = V'(G) u V*(G);

N'(w) = {ve V'(G); vwe E(G)}, for every we V(G);

N'(W) = | N'(w), for every W < V(G).

weW

Finally, for every we V*(G), we denote by w the vertex of degree one which is ad-
jacent to w.

Fig. 1.

We say that a spanning subgraph F of G is an n-factor of G (where n is a positive
integer) if F is a regular graph of degree n.
By the square G* of a graph G we mean the graph with V(G*) = ¥(G) and

E(G?) = {uv; u, ve V(G) such that 1 < d(u, v) < 2},

where d(w, w') denotes the distance between vertices w and w’ in G.
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Obviously, if a graph G has a 1-factor, then |V(G)| is even. CHARTRAND, POLIMENI
and STEWART [3], and SUMNER [8] proved that if G is a connected graph of even
order, then G? has a 1-factor.

It is easy to see that the squares of none of the connected graphs in Figs 1 or 2
have a 2-factor. A necessary and sufficient condition for the square of a connected

[
ﬁ’l T

Fig. 2.

graph to have a 2-factor was published in [1]. Unfortunately, the assertion of suf-
ficiency of that condition is false: every connected graph in Figs 1 and 2 can serve
as a counter example. In the present paper another condition will be given.

Obviously, if a graph G has a 2-factor. then G contains no isolated vertex. The
following theorem represents the main result of this paper:

Theorem. Let G be a graph with no isolated vertex. Then G* has a 2-factor if and
only if
(1) |W| < 2IN'(W)| for every W <= V*(G).

To obtain the proof of this theorem we shall prove four lemmas.

Lemma 1. Let G be a graph with no isolated vertex. If G* has a 2-factor, then (1)
holds.

Proof. Assume that G* has a 2-factor, say F, and that (1) does not hold. Then
there exists W < V*(G) such that |W| > 2|N’(W)|. We have that

2| = 3 degyi 5 W] + 2N < 2],

which is a contradiction. Hence the lemma follows.

Let G be a graph with no isolated vertex, and let D be a digraph (we shall denote
by V(D) and A(D) the set of its vertices and the set of its arcs, respectively). We
shall say that D is suitable for G, if the following conditions are fulfilled:

(i) V(D) = v"(G);
(ii) if (u, v) € A(D), then uv e E(G);
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(iii) if ve V*(G), then outdeg v = 1;

(iv) if ve V"(G) — V*(G), then outdeg v = 0;
(v) if ve V'(G), then indeg v < 2;

(vi) if ve V"(G) — V'(G), then indeg v = 0

(the symbols indeg v and outdeg v denote the indegree and outdegree of v in D).

Lemma 2. Let G be a graph with no isolated vertex. If (1) holds, then there exists
a suitable digraph for G.

Proof. Assume that (1) holds. Let G* and G" be disjoint copies of G. If U < V(G)
(or u € ¥(G)), then we denote by U' and U™ (or u' and u™) the corresponding copy
of U(or u) in G" and G", respectively. From (1) it follows that

|w] < |(N(W)) O (N'(W)))"| for every W <= V*(G).

According to P. HALL’s Theorem [4] (see, for example, Theorem 12.3 in [2]), the
collection of sets

(V@) O (V)" we VHG)
has a system of distinct representatives. This means that there exists a mapping f
from V*(G) into (V'(G))' u (V'(G))" such that
(a) if u, ve V*(G) and u # v, then f(u) + f(v);
(b) if we V*(G), then f(w)e (N'(W))' v (N' (W)™

O

D(l) D

Fig. 3.

(1) (3)

)
D

We denote by g the mapping from V*(G) into V’(G) defined as follows: if u € V*(G)
then f(u) € {g(u)', g(«)"}. Finally, we denote by D the digraph with V(D) = V"(G),
and

A(D) = {(u, g(u)); ue V*(G)} .

Clearly, D is suitable for G, which completes the proof of the lemma.
Let G be a graph with no isolated vertex. We say that a digraph D is very suitable

for G if D is suitable for G and every nontrivial weak component of D is isomorphic
to one of the weakly connected digraphs DV, . D™ in Fig. 3.
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Lemma 3. Let G be a graph with no isolated vertex. If there exists a suitable
digraph for G, then there exists a very suitable digraph for G.

Proof. If D is a digraph, then we denote by i(D) the maximum number of vertices
of a weak component of D, and by j(D) the number of weak components C of D
such that IV(C)I = i(D). Let D, and D, be digraphs such that ¥(D,) = V(D,); we
shall write D; > D, if either (a) i(D,) = i(D,) and j(D;) > j(D,) or (b) i(D,) >
> i(D,).

Let D be a suitable digraph for G. First, let i(D) < 3. Assume that D is not very
suitable. Let Cy, ..., C, be the nontrivia] weak components of D which are not iso-

morphic to any of the digraphs D™, . D™, Then there exist distinct vertices
Ug, Dy, Wiy oy Uy, U,y W, such that V(C,) = {uy, vy, w1}, ..., V(C,) = {u,, v,, w,} and
UyVy, VW1, ...y UyUy, UW, € A(D). Itis clear that D — vyw; — ... — 0w, + vyt + ...

... + vu, is very suitable for G.

We now assume that i(D) = 4, and that if there exists a suitable digraph D, for G
such that D > D,, then there exists a very suitable digraph for G. Let C be an arbi-
trary component of D such that [V(C)| = i(D). Hence, |V(C)I > 4. We distinguish
two cases:

1. There exist u, v, w € V(C) such that (u, v), (v, w) € A(D), indeg u = 0, and C —
— (v, w) is not weakly connected. Then D — (v, w) + (v, u) is suitable for G and
D> D — (v,w) + (v, u).

2. For every u, v, w e V(C) such that (u, v), (v, w) € A(D) and indeg u = 0 it holds
that C — (v, w) is weakly connected. Then C contains exactly one directed cycle,
say C’, and every arc in C is incident with a vertex in C’. Since |V(C)| = 4, there
exist ug, u, uy, v, v, v; € V(C) such that (u,, u), (u, uy), (v, v) and (v, v,) are distinct
arcs in C, (u, u,) and (v, v;) belong to C’, indeg u, < 1, and indeg v, < 1. Then
(u, uo), (v, v0) ¢ A(D), D — (u, uy) — (v, v,) + (u, ug) + (v, vo) is suitable for G,
and D > D — (u, uy) — (v, v;) + (u, uo) + (v, vo).

From the induction assumption the assertion of the lemma follows.

Lemma 4. If G is a graph with no isolated vertex such that there exists a very
suitable digraph for G, then G? has a 2-factor.

Proof. Assume that the lemma is false. Then there exists a graph G such that the
lemma is false for G but it is true for every proper spanning subgraph of G. Since the
lemma is false for G, we have that G is a graph with no isolated vertex, there exists
a very suitable digraph for G, say a digraph D, and G? has no 2-factor. This means
that the square of no spanning subgraph of G has a 2-factor. Since for every proper
spanning subgraph of G the lemma is true, we have that for every e e E(G), either
G — e contains an isolated vertex or there exists no very suitable digraph for G — e.

From the definition of a suitable digraph it follows that every component of G
contains at least three vertices.
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First, let every component of G be homeomorphic to a star (note that a path is also
homeomorphic to a star). From the existence of D it follows that there exists A <
< E(G) such that every component of G — 4 is a tree with at least three vertices
which contains no subgraph isomorphic to the subdivision graph S(K(1, 3)) of the
star K(1, 3). According to a result due to F. NEUMAN [7], every component of
(G - A)2 is hamiltonian, and therefore G has a 2-factor, which is a contradiction.

We now assume that there exists a component G, of G which is not homeomorphic
to a star. We shall prove that there exists e € E(G,) such that G — e contains no iso-
lated vertex and there exists a very suitable digraph for G — e, which will be a contra-
diction. We shall distinguish a number of cases:

1. There exists no nontrivial weak component of D whose vertices belong to G,.
Then V*(G,) = 0.

1.1. G, is a tree. Since G, is not homeomorphic to a star, we have that there exists
e € E(G,) such that every component of G, — e contains at least three vertices. It is
easy to see that there exists a very suitable digraph for G; — e, and therefore there
exists a very suitable digraph for G — e.

1.2. G, is not a tree. Then there exists e € E(G,) such that G, — e is connected.
Clearly, there exists a very suitable digraph for G — e.

2. There exists a nontrivial weak component of D whose vertices belong to G,.
Since G, is not homeomorphic to a star, Fig. 3 implies that there exist adjacent verti-
ces u and v of G, such that (a) u belongs to a nontrivial weak component of D,
say Dy, (b) (u,v), (v, u) ¢ A(D), (c) every component of G, — uv contains at least
three vertices. Clearly, deg v > 2.

2.1. degv > 2. If degu > 2, then D is very suitable for G — uv. Let degu = 2.
Then D, is isomorphic to D, indeg u = 1, and outdeg u = 0. Clearly, the vertex
of D, different from u, say u,, belongs to V*(G). This means that D — (uy, u) is a very
suitable digraph for G — uw.

2.2. degv = 2. Let w denote the vertex different from u and adjacent to v. Since
every component of G, — uv contains at least three vertices, we have that w e V'(G).
Hence, v ¢ V*(G).

2.2.1. v belongs to a nontrivial weak component of D, say D,. Since (u, v) ¢ A(D),
D, is isomorphic to D). Hence, (w, v) € A(D). If deg u > 2, then D — (w, v) is very
suitable for G — uv. Let degu = 2. Then D — (uy, u) — (w, v) is very suitable for
G — uv, where u, is the same as in Case 2.1.

2.2.2. v belongs to no nontrivial weak component of D. From the fact that we
€ V'(G) it follows that every component of G, — vw contains at least three vertices.
If ue V*(G), then there exists a vertex u’ such that (u, u’)e A(D). If u ¢ V*(G),
then outdeg u = 0 and there exists a vertex u” such that (u”, u) € A(D).

2.2.2.1. degw > 2. Then either D — (u,u’) (if ue V*(G)) or D + (u,u”) (if
u ¢ V*(G)) is very suitable for G — vw.
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2.2.2.2. degw = 2. Let x denote the vertex different from v and adjacent. to w.
Since every component of G — vw contains at least three vertices, we have that
x € V'(G). Hence, w ¢ V*(G).

2.2.2.2.1. w belongs to a nontrivial weak component of D, say D;. Since (v, w),
(w, v) ¢ A(D), we have that Dj is isomorphic to D). It is easy to see that either
D — (u,u') — (x,w) or D + (u, u") — (x, w) is very suitable for G — vw.

2.2.2.2.2. w belongs to no nontrivial weak component of D.

2.2.2.2.2.1. x belongs to a nontrivial weak component of D. If x € V*(G), then
there exists a vertex x” such that (x, x’) € A(D). If x ¢ V*(G), then outdeg x = 0 and
there exists a vertex x” such that (x”, x) € A(D). If u = x, then either D or D — (x, x')
is very suitable for G — vw. If u % x, then one of the following digraphs is very
suitable for G — vw: D — (u,u’) — (x,x'), D — (u,u’) + (x,x"), D + (u,u") —
= (x,x"), D+ (u,u") + (x, x").

2.2.2.2.2.2. x belongs to no nontrivial component of D. If degu > 2, then D +
+ (w, x) is very suitable for G — uv. If degu = 2, then D + (w, x) — (u’, u) is very
suitable for G — uv, where u' is the same as in Case 1.

Hence the lemma follows.

Thus the proof of the theorem is complete.

Corollary 1 (A. Hosss [6]). If G is a nontrivial connected graph with no vertex
of degree one, then G* has a 2-factor.

Since for every nontrivial graph G, the total graph of G si isomorphic to the square
of the subdivision graph of G, we have the following corollary, which was stated

in [1]:

Corollary 2. Let G be a nontrivial connected graph. Then the total graph of G
has a 2-factor if and only if every vertex of G is adjacent to at most two vertices of
degree one.
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CHARTRAND (Western Michigan University) for inspiring comments concerning the
subject of this paper.
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