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SEVERAL NEW CHARACTERIZATIONS OF THE 2-DIMENSIONAL
SPHERE IN E*

KAREL SvoBODA, Brno
(Received February 17, 1978)

Solving the problem of the global characterization of the 2-dimensional sphere
among surfaces in E* we have used, in [1], the property of the mean curvature
vector field of the surface M being pseudoparallel. In the present paper, we give
some new results concerning the global characterization of the sphere in E* and based
again on the pseudoparallelness of the mean curvature vector field of M.

1. Let M be a surface in the 4-dimensional Euclidean space E* and oM its bound-
ary. Let M be covered by open domains U, in such a way that in each U, there is
a field of orthonormal frames {M;uvy, v, v3, v}, vy, v, € T(M), vs,v,€ N(M),
T(M), N(M) being the tangent and the normal bundles of M, respectively. Then

(1) dM = o' + o’v,,
do, = 020y + wiv; + wlv,,
dv, = — iy + 3oy + w3y,
dv; = —ojv; — wjv, + oiv,,
do, = — (v, — O30, — W33 ;

(2 do'=o* Ao, dol=df Ao, of+0j=0 (i,jk=1234),
o} =0*=0.
Differentiating the last equations of (2) and using Cartan’s lemma, we get the existence

of real-valued functions a;, b;, €3 @3, Bis -, 833 Ay, By, ..., E; (i = 1,2) on each U,
such that

(3) o]

of

a,0' + byo?, © = b+ c0?,

a,0' + b,0?, o = bo! + c,0*;

573



4 da; — 2b,0} — a,0% = 0,0 + B0?,
dby + (a; — ¢;) @7 — b0} = 0! + 7,07,
de; + 2b,0} — c,0% = y,0' + 5,0%,
da, — 2b,0} + a,0% = a,0' + f,0?,
db, + (a, — ¢;) @] + byws = 0! + 7,07,
de, + 2b,0} + ¢ 0% = y,0' + 5,07 ;
%) doy; — 3f,0} — w05 = A0 + (B, — b;K — 1ak) 0?,
dB; + (ay — 2y,) wf — Bows = (B; + b;K + 1ak) o' +
+ (Cy + a;K — 1bk) 0*,
dy; + (2B, — ;) @i — 7,0% = (C; + ¢;K + }bk) ' +
+ (Dy + bK — c,k) 0,
dé; + 3y,0 — 8,05 = (D; — b;K + $c,k) 0! + E;0?,
da, — 3,07 + 0,05 = A,0' + (B, — bK + lajk) ?,
dB, + (o — 2y,) @i + Byws = (B, + bK — Ja.k) o' +
+ (C, + a,K + 1bik) 0?,
dy, + (2B, — 8,) 0f + y105 = (C, + ¢,K — 3b,k) o' +
+ (D, + byK + 1cik) 0?,
ds, + 37,0} + 6,05 = (D, — b,K — 3c,k) o' + E,0°
where
(6) K =ajc; — b} + ase, — b}, k=(a, —¢;)b, — (ay — ¢;) by,
K being the Gauss curvature of M. Denote further by
(7 E=(a; +c)vs+ (a; + c3)vg
the mean curvature vector field and by
(8) H = ¢ = (a, + ¢,)* + (a; + ¢,)?

the mean curvature of M.

Let & & 0 on M. Denote by P,(M) the union of T,,(M) and &, for each me M
and by P(M) the corresponding vector bundle over M. The vector field ¢ is said to
be pseudoparallel in P(M), if t£ € P(M) for each vector field t € T(M).

As mentioned in [1], ¢ is pseudoparallel in P(M) if and only if, according to (7),

) (01 + Cl) (“2 + Vz) - (az + Cz) (“1 + ?1) =0,
(as + ¢) (B2 + 85) — (a + ¢3) (By + 6,) = 0.
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Further, & being pseudoparallel in P(M), we have
(10) (o + 1) (B2 + 05) = (By + 81) (22 + 72) = 0
and, by differentiation of (9), when using (4), (5), (10), we obtain k = 0 on M and
(11) (ay + ¢1) (A2 + Cy + ;K) = (a, + ¢3) (A4; + C; + ¢,K) =0,
(a; + ¢;)(By + Dy) — (a, + ¢;) (B, + D;) =0,
(ay + ¢,)(Cy + E; + a3K) — (a; + ¢;)(C; + E; + a,K) = 0.

2. Consider a real-valued function F on M. We define its covariant derivatives
Fi, F;; = F;;(i,j = 1, 2) with respect to the given field of orthonormal frames over U
by means of the formulas

(12) dF = Fyo' + F,0?,

@

dF, — F,0? = Fj;0' + F,0*, dF, + F 0} = F;,0' + F,,0?.
1 2% 11 2

Thus, for the mean curvature H and the Gauss curvature K of M introduced
by (6), (8), respectively, we have, according to (12) and using (4), (5),

(13) 1H, = (ay + ¢;) (g + 74) + (a2 + ¢3) (22 + 72),
$H, = (ay + ¢1) (By + 8y) + (a2 + ¢3) (B2 + 02)
(14) 1H,, = (a; + ¢;) (4, + Cy + ¢,K + 1b,k) +
+ (ay + ¢2) (Ay + Cy + K — 1b,k) + (g + 71 + (2 + 7).,
1Hy, = (a; + ¢;)(By + Dy) + (ay + ¢;) (B, + D,) +
+ (a4 7)) (By + 8;) + (22 + 72) (B2 + 82).
1H,, = (a; + ¢,) (Cy + E;y + a,K — 1b,k) +
+(ay + €) (Co + Ey + @K + 3bik) + (By + 01 + (B, + 8,);
(15) Ky = (e — 2byBy + ayyy) + (c200 — 20,5, + 927,),
K, = (c1By — 2byyy + a;8;) + (c2By — 2byy, + 9205) 5
(16) Ky = (c;A; — 2byBy + a,Cy) + (c,A;, — 2b,B; T a,C,) +
+ 2oyy; — B3) + 2(ozy, — B3) + 3ayby — b132) k +
+ [(aye; — 2b7) + (azc, — 2b3)]K,
Ky, = (¢;By — 2b,Cy + a,Dy) + (B, — 2b,C; T a,D,) +
+ (2,0y — Biy1) + (2285 — Bay2) —
— [(ay + ¢1) by + (ay + ;) b,] K,
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K,;, = (¢;Cy — 2b,Dy + a4E,) + (c,C, — 2b,D, + a,E,) +
+ 208,86, — 73) + 2(B16, — 73) + 3(bye, — e1by) k +
+ [(ageq — 2b3) + (aze, — 2b3)] K.
To abbreviate the following formulas, let us introduce the functions
(17) #y, = HH — }H}, #,,= HH,, — }HH,,

Hry = HHyp — %H%
and

(18) o =ay(a; + ¢;) + ayas + ¢), % =by(ay + ¢;) + by(a, + ¢;),
% = cy(ay + ¢1) + cy(a, + ¢y).

It is clear that, under this notation,

(19) H=s +%.

In what follows, we are going to prove

Lemma 1. The functions
(20) I = (oA —b)(Hy1 — Hy2) +4BH 1, ,
(21) J=GH 1, —2BH 1, + AH,, — 2H* (K, + K,,)
are invariant on M.

Proof. Consider another field {M; #,, b,, 3, B4} of tangent frames, and denote
all expressions related to these frames by a bar. Let

(22) v, =€ COSQ.D; —SinQ.0,, V3=¢C080.03 —sinoc.i,,
v, =¢€ SinQ.0; +COSQ.0,, Uy =2¢&,8IN0.03+COSO.17,,
2 2 1

& = & =

By easy calculations, see [1], we obtain

(23) &' =g (cosg. @' +sing.w?), @ = —sing.w' +cosg.0’;
(24) o7 = &(de + o})
and further
(25) d; = &(Rycoso + R,sino),
by = —&1&,(S; cos ¢ + S, sino),
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= (T coso + T,sino),

€
d, = —(R;sinc — R, cos o),
b, = &(Sysino — S,cos0),
¢, = —(Tysing — T, cos o)
where
(26) R; = a;cos? ¢ + 2b;sin g cos ¢ + ¢;sin? g,

= a;sin g cos ¢ + by(sin* o — cos? ) — ¢;sing cos ¢,

g
1

T; = a;sin® ¢ — 2b;singcos o + c;cos’ ¢ (i =1,2).
Because of (12) and (23), we get from H = H
(27) Hy = ¢&(H cosg + H,sinp),
H, = —H;sing + H,cosg.

Differentiating these equations and using (24), (27) and the relations of the form
(12) corresponding to H, H, we obtain

(28) H,, = Hy cos’o + 2H ,singcos@ + H,,sin’ g,
H,, = —¢&,(H;; — H,,)singcoso + &Hj,(cos® o — sin? ),
H,, = H, sin®¢ — 2H ,singcosg + H,, cos’¢.

In the same way we get

(29) K, = Kjjcos?g + 2K ,singcos¢ + K,,sin’ ¢,
K,, = —&(K{; — Ky,)singcos g + &Ky,(cos? o — sinp),
K,, = Kjysin®g — 2K ,singcos¢ + K,, cos® g .

Further, from H = H, (27) and (28) it follows that

(30) Ay = Hyqc08°Q + 25, sinQcos o + Ay, sin®g,
Hy, = —e(#Hyy — H1y)sin g cos g + &, ,(cos? ¢ — sin’ g),
Hyy = Hyisin? g — 20,500 Cos @ + H,, cos? o

and from (25), (26) we obtain

o cos? o + 2B sing cos g + € sin® g,

(31) A =
B = —&(of — €)singcoso + & HB(cos® ¢ — sin? g),
@ = &/sin?o — 2Bsingcosg + G cos?p.

According to (20), (21), the relations (29), (30) and (31) yield the assertion.
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Remark. By direct calculations we get, & being pseudoparallel,
(32) J = 4H[y,(yy — o) + 72(r2 — 22) + Bi(By — 61) + Ba(By — S2)} +
+ 2H?[(ay — ¢;) + (a2 — ¢,)* + 4(b] + B3)] K,

so that J does not depend on A, ..., E; (i = 1,2). In fact, it is possible to show
that, up to a multiplicative factor, J is the unique function with this property which
can be obtained by the elimination of 4, ..., E; (i = 1, 2) from the equations (11),

(14), (16).

3. In this section we are going to give some characterizations of the sphere in E*.
They will be proved by means of the maximum principle used in this form:

Let M be a surface in E* 0M its boundary. Let F be a real-valued function
on M and F, F;; (i,j = 1,2) its covariant derivatives defined by (12). Let (1)
F 2 00nM,(2)F =0ondM, (3)on M, let F satisfy the equation

ay Fyy + 2a,F 5 + a5,F,, + a,Fy + a,F, + aF = a

where ao =<0, a = 0 and the quadratic form aijxix" is positive definite. Then
F =0 on M.
In what follows, we use the function

(33) f=H—4K = (a; — ¢;)* + (a, — ¢;)* + 4b7 + 4b3

which satisfies obviously f = 0 on M and f = 0 at the umbilical points (a; — ¢, = 0,
a, —¢; =0, by =0, b, =0) of M.
Using (4), (5) and (12), we easily see that

fi= 2(01 - Cx) (“1 - 71) + 2(‘12 - Cz) (“2 - Vz) + 8(b1ﬁ1 + bzﬁz),

fa= 2(‘11 - ‘31) (ﬂx - 51) + 2(a, — Cz) (ﬁz - 52) + 8(51?1 + bz?z)
and

(34)  fi1=2a; — ¢;) (4 — Cy) + 2(ay — ¢;) (4, — C,) + 8(byBy + b,B,) +

+ 200y — y1)* + 2y — p2)* + 8(B] + B3) — [k + 4(a;by — byay)] k—
= 2(ay = er) ey + (a2 — e2) e — 4(bT + BI)] K, /

fi2 = 2(a; — ¢;)(By — Dy) + 2(ay — ¢;) (B, — D,) + 8(b,C, + b,C,) +
+ 2(ay — 1) (By — 1) + 222 — 72) (B — 85) + 8(Byys + Baya) +
+ 4[(a; + ¢;) by + (a, + ¢;) b,] K,

faz =2(ay — ¢;)(Cy — Ey) + 2(ay — ¢3) (C, — E,) + 8(by Dy + b,D,) +
+ 2(By — 6,)% + 2(B, — 8,)* + 8(¥; + 73) — [k + 4(bye, — ¢1by)] k +
+ 2[(a; — ¢;) a; + (ay — ¢;) a, + 4(b] + b3)] K.
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Now, we formulate

Theorem 1. Let M be a surface in E* and M its boundary. Let
(i) K >0 on M;

(ii) & be pseudoparallel in P(M);

(iil) (&£ — G)(H# 1y — Hyy) + ABH 1, 2 0 on M;

(iv) @M consist of umbilical points.

Then M is part of a 2-dimensional sphere in E*.

Proof. The condition (ii) is expressed by (9) and implies k = 0 on M. Consider
the equations (9) and (13). As H =+ 0, there exists a unique solution of the system

a4+ 9, =Ma, + ¢ )H 'Hy, B+, =3a, +¢;) H 'H,,

ay + y, =4%ay, + ;) H'Hy, By + 3, =4(ay + ¢;) H'H,.

Hence
(35) 1H 'HT = (01 + 71)® + (o2 + 72)%,
1H 'HH, = (“1 + }’1) (Bx +0y) + (0‘2 + 72)(ﬂ2 + 52) >

1H 'H} = (B1 + 51)2 + (B, + 5,)

and using these relations and k = 0, the equations (14) have the form, according
to (17),

(36) (ay 4+ ¢) (A4, + Cy + ¢K) + (as + ¢3) (4, + Co + ¢,K) = 3H™ ',
(ay + ¢1)(By + Dy) + (ay + ¢3) (B, + D) =3H 'y,
(ay + ¢)(Cy + Ey + ayK) + (a, + ¢2)(C, + E; + a,K) = YH ' 5, .

The system of equations (11) and (36) has, because of H = 0 and (35), the only
solution

(37) Ay + Cp =(a, + ¢ ) H2#,, — K,
By + Dy =(ay + ¢;) H 2 Hy,,
C, +E, =%a, +c¢)H *H,, — a,K,
Ay + Cy =4(ay + c;) H?H — K,
B, + D, = (a, + ¢;) H 2 # 4,5,
C, + E, =¥a, + c;) H?H5, — a,K.
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Thus we have

(38) A, — E, =%(a1 ‘*‘Cl)H_Z(«}fu _fzz)'*‘(ax '"C1)K,
B, + D, = ia; + ¢)) H *#,,
Ay — E;, = 3(ay + ;) HH(H 1y — H3,) + (a; — 1)K,
B, + D, = a, + ¢;) H 2H 4, .

Now, consider the function f defined by (33). According to (34), we have

(39) fir + far = 2[f + 4(b? + b K = 2V + 20

where

(40) Vo= (o =71+ (Br — 0:)* + (02 = 12)* + (B2 — 62)° +
+4(BT 07 + B3 +73),

(41) @ =(a; —¢;)(A; — Ey) + (a, — ¢;) (4, — E;) +

+ 4b,(B; + D,) + 4by(B, + D,).
Inserting (38) into (41) we get
O =IH XA — ) (Hyy — H32) + 2H 2BH 5 + [(a;, — ¢;)* + (a2 —¢;)*] K
and thus, according to (20),
@ =31H 2 + [(a; — ¢1)* + (a, — ¢,)*] K,
so that the equation (39) is of the form
(42) fi1 + faa —4Kf =2V + H .

It is ay = —4K < 0 because of (i), a = 2V + H~?I = 0 according to (40) and (ii),
and the quadratic form corresponding to fi; + f,, is positive definite. Thus, the
assumptions of the maximum principle are satisfied, and we have f = 0 on M, i.e.
each point of M is umbilical.

Remark. Let V;, V, € T(M) be orthonormal vector fields. Choose orthonormal
frames on each U, in such a way that v, = V), v, = V,. Define normal vector fields
Vi1, Via, V5, by the relations

Vi = (V1V1)N , Vo= (V1V2)N » V= (Vsz)N >
(X)" denoting the normal component of the vector field X. Then it is easy to see that

(43) Vii = avs + ayv,, Vi = bivs + by, Vyy = civy + cov4.
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Thus, the condition (iii) of Theorem 1 can be written, using (18) and (43), in the form

("1,) (‘%ﬂ“ - %22)<Vll - l/22s V11 + V22> +
+ 4'#12<V12’ V11 + V22> 2 0 on M.

The following theorem is a generalization of the preceding result. To establish it,

we use the already mentioned property of the invariant J that this function does not
contain 4, ..., E; (i = 1,2).

Theorem 2. Let M be a surface in E*, 0M its boundary. Let
(i) K > 0 on M;
(ii) & be pseudoparallel in P(M);

(iii) 2 = ) [(# — €) (#11 — H22) + 4BH (5] + AH[(H 11 + H22) —
— 4H(K,; + K,)] Z 0 on M, .: M — R being a function with || < 2;

(iv) M consist of umbilical points.

Then M is part of a 2-dimensional sphere in E*.

Proof. Following the proof of Theorem 1 we have the equation (42). From (32)
we obtain, using (33),

2Kf = H2J — 4[p,(y1 — o) + Bu(By — 8;) + 72(v2 — a2) + Ba(B2 — 82)] -
Multiplying this equation by a function 1 and adding it to (42), we get
(44) fi1 + a2 =22 = A)Kf = H (I + 2J) + 2 W(%)
where
W) =V = 21y — %) + Bi(Br — 81) + 72(v2 — ) + BalB2 — 32)]
and further, according to (40),
W) = [oF = 201 = A) oy, ] + [0 = 201 — 2) B,8,] + (5 — 24) (BT + 1) +
+ [o02 = 201 = 2) azp,] + [0 = 21 = 2) B,5,] + (5 — 24 (B2 + 73) .-
Hence
@5) W) =[o — (L= Dy P+ [0, = (1 = )BT + (4 — 2 (Bi +91) +
L= (1= D0l + [0 — (1= )BT + (4= ) (B +33),
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so that, A being a function such that [/1] < 2, we conclude W(/l) = 0. As
(46) Q=N =) (H# — H2) + ABH 5] +
+ AH[(# 1, + H1p) — 4H(K | + K55)] = 2(I + AJ),

the equation (44) satisfies all the assumptions of the condition (3) of the maximum
principle. Thus, for |/1| < 2,f =0 on M and the proof is complete.

Remark. It is easy to see that Theorem 2 contains as a special case, namely for
A = 0, the assertion of Theorem 1.

Corollary 1. Let M be a surface in E* and 0M its boundary. Let the conditions
(i), (ii) and (iv) of Theorem 2 be satisfied on M. Let

(iii) LH\y + 2BH 1, + €Hy — 2H* (K1 + Kpy) 2 0 on M.
Then M is part of a 2-dimensional sphere in E*.

Proof. The assertion follows from Theorem 2 when putting A = 1 and using (19).

Remark. When using the notation (43), we can write the condition (iii) of
Corollary 1 in the form

(iii") H 1<V Vie + Vaz) + 282 V1i2, Vi + V) +
+ H3:Vaz Viy + Vo) — 2HAK; + Ky,) =0 on M.

Corollary 2. Let M be a surface in E*, M its boundary, M having the properties
(ii) and (iv) of Theorem 2. Let
(iiiy) Hyy + Hay — AH(K, + K35) 20 on M
or
(iiiy) H, +H,, — 4Ky +K;,) =0 on M.
Then M is part of a 2-dimensional sphere in E*.

Proof. The corollary with the supposition (iii, ) follows immediately from Theorem
2 for 4 = 2. Thus, we are going to prove it when considering that (iiiz) is true.
Putting A = 2 into the assertion of Theorem 2, we get from (44)

fii + S =H (I +2J) +2W(2)
where, according to (45),
W(2) = (g +71)> + (By + 8,)% + (a2 + 72)* + (B2 + 8,)
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and, because of (46),
I+2J = H[(#,, + #5,) — 4H(K,, + K15)] .
Further, using (35) implied by the condition (ii), we obtain
W(2) = tH '(H] + H3)
and hence, according to (17),
H XI+2J)+2W(Q2)=H,, + Hy, — 4Ky, + Ky,).

This completes our proof.

Remark. In fact, a little more general theorem involving the condition (iii,)
of Corollary 2 is valid. As proved in [2], we can omit the assumption of the pseudo-
parallelness of the mean curvature vector field ¢ to get the same inequality on M.
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