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DECOMPOSITIONS OF HOMOMORPHISMS

IvAN CHAJIDA, Pierov

(Received January 30, 1978)

Some sufficient conditions for direct decompositions of homomorphisms were
investigated for suitable algebras in [5] and [6] and for lattices and the so called
weakly associative lattices in [7]. The aim of this paper is to derive new conditions
for direct decompositions of homomorphisms on universal algebras by using the
well-known conditions for direct decompositions of congruences derived by G. A.
FRASER and A. HORN in [2} and the results on the Unique Factorization Property
derived by G. BIRKHOFF (see [1], [3], [4]).

Let [] A4; be the direct product of given algebras 4, ..., 4, of the same type and

i=1

let pr; be the projection of [] 4; onto the i-th factor 4,. If ¢ is a permutation of the
i=1

subscript set {1, ..., n}, denote by x(c) the isomorphism of []A4; onto [] A4,
i=1 i=1
given by the rule
%(0) (ag, ..o @) = (Ap(ays -+ Aomy) 5

ie., x(a) permutes only the direct factors, which is not essential for the direct product
representation.

Let A;, B; (for i = 1, ..., n) be algebras of the same type and let h; be a homo-
morphism of A; into B;. The mapping h = Hh of A= HA into B = HB
introduced by

pr; h(a) = h(pr;a)

foreveryae Aandeachi = 1, ..., nis called the direct product of homomorphisms h;
(see e.g. G. Gritzer, Universal Algebra, p. 127).
With respect to the above remark, let us introduce conversely: a homomorphism k

of A into B is said to be direct by decomposable, provided h.x(c) = [] h; for
i=1

568



a suitable permutation ¢ of {1, ..., n}, where h; is a homomorphism of 4; into B,;

forall i = 1,..., n, and %(c) is an isomorphism of [] B; onto [] B,
i=1 i=1

Lemma. Let B and Ay, ..., A, be algebras of the same type and let h be a homo-

morphism of A =[] A; onto B inducing a congruence @, on A. If ©, =[]0,
i=1 i=1

where ©, is a congruence on A;, then there exist algebras B, ..., BY and homo-

morphisms h; of A; onto Bf such that B = [| Bf (by the isomorphism f) and
i=1

h.f=]]hs
i=1

Proof. B = h(i]:—[lA,-) gi]f[lA,-/@,, - lAi/i]jl@,- =if[1(A,./@,.) (see c.g. [1]. p.

f n n
140). Denote B} = A;/©;, hence B = [| Bf and clearly h.f = []h;, where h;:
i=1 i=1

: A; > A0, is a canonical homomorphism. Q.E.D.

An algebra is said to have the Unique Factorization Property over the class M
(briefly .#-UFP), provided A is isomorphic with a direct product of algebras from .#
and this representation is unique up to isomorphism, i.e. provided the condition

Ax|14;=211B;, I={1,...,n}, J={1,...,m}

iel jeJ
(where card A; > 1, card B; > 1 for every subscript i, j) with A;, B;e . for i€l,
Jj € J always implies the existence of a bijection ¢ of I onto J with 4; = B,;, for all
iel. If J is the class of directly irreducible algebras (of the same type as 4), A is
said briefly to have the Unique Factorization Property. (For this definition, see
e.g. [3] and [8]).

The concepts involved can be relativized by the following

Definition. Let € be a class of algebras of the same type and . its subclass. We
say that:

(i) % has AM-directly decomposable congruences provided for every congruence @

on each A€ € with A = [] 4, for 4, ..., A, € M there exists ©; on A; such that
i=1
@ = H Qi'
i=1 .
(ii) € has A-directly decomposable homomorphisms provided for every 4, Be 4,
A =[] A;, B =T]]B; with 4, B;e .4, every homomorphism h of 4 onto B is
i=1 i=1

directly decomposable.
(iii) € has #-UFP provided every A € € has .#-UFP.

569



Theorem 1. Let % be a class of algebras of the same type and M its arbitrary
subclass closed under homomorphic images. Then the implication (a)=>(b) is
satisfied, where:

(a) € has A-directly decomposable congruences and .#-UFP;

(b) € has M-directly decomposable homomorphisms.

Proof. Suppose A,Be %, A =[] A; B=]]B; with 4;, B;e .# and let h be
i=1 i=1

a homomorphism of 4 onto B. Let ©, be a congruence induced by h on 4. By (a),

0, =[] ©;, where O; is a congruence on A;. By Lemma, there exist Bf € % (i =

i=1

=1,...,n) and homomorphisms h} of A4; onto Bf with B ~ [] B} (an isomor-
i=1

phism f) and & . f = [ h;. Since .# is closed under homomorphic images and B} =

=1
= h}(A,), also Bf € M for i = 1,...,n. As € has #-UFP, there exists a permuta-
tion ¢ of {1,..., n} such that B; = B}, . Denote by g, this isomorphism B}, = B,
and put h; = h} . g,. Then clearly

=h.f. l:[lgi = L]lh;“ ) IJlgi = igl(hi‘ . 9:) = ,-Ulhi'

Hence % has .#-directly decomposable homomorphisms. Q.E.D.

Fig. 1. Fig. 2.

Remark. If a subclass .# of € is not closed under homomorphic images, the
implication (a) = (b) of Theorem 1 need not be satisfied, even if .# is a subclass of
directly irreducible algebras. It can be demonstrated by the following

Example. Let # = {Ns,I,}, where N; is the non-modular pentagon (Fig. 1)
and I, the two-element lattice, and let 4 be a class formed by five lattices: a one-
element lattice E and N5, I;, A = N5 x I,, B=1I, X I,. Let h be a homomorphism
of A onto B visualized by arrows in Fig. 2. Clearly ¥ has .#-UFP and .#-directly
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decomposable congruences as follows directly from Corollary 1 in [2] (namely the
congruence @ induced by & satisfies ® = ©@; x 6,, where @, on N4 collapses onto
x,y — see Fig. 1, and @, = I, x I,), however h is not directly decomposable
because h; induced by ©; maps N onto the whole B contrary to h, induced by O,
which collapses I, onto the one-element lattice E.

Theorem 2. Let € be a class of algebras of the same type containing a one-
element algebra E, let 4 be an arbitrary subclass of € closed under homomorphic
images such that E€ M. If € has #-directly decomposable congruences, the fol-
lowing conditions are equivalent:

(1) € has A-directly decomposable homomorphisms,
(2) € has #-UFP.

Proof. The implication (2) = (1) follows directly from Theorem 1. Prove (1) =

=(2).Let Ac¥and A =~ || A; = || Bj, where A;, B;€ .# and card 4; > 1, card B; >
i=1 j=1

> 1. Without loss of generality, suppose m < n. Put B; = Eforj=m + 1,...,n.

Then H A; = H Bj; denote this isomorphism by h. As his ./#-directly decomposable,
i= i=1

=1

thus, for every i = 1,..., n, A; is isomorphic to B, ;, for a suitable permutation o
of {1,...,n}. Hence card B; > 1 for j =1,...,n, i.e. m = n and A4 has .#-UFP.
Q.E.D.

Necessary and sufficient conditions for the direct decomposition of congruences
are derived by G. A. Fraser and A. Horn in [2].

Corollary 1. Let € be a class of algebras with distributive congruences and M
an arbitrary class of directly irreducible algebras of € closed under homo-
morphic images and containing a trivial algebra E of €. Then

(@) % has A-directly decomposable homomorphisms if and only if € has .//-UFP.
(b) If A€ A implies that A is finite and a trivial algebra is a subalgebra of A,
then € has -directly decomposable homomorphisms.

Proof. If % has distributive congruences, then by Corollary 1 in [2], € has .-
directly decomposable congruences and (a) follows immediately from Theorem 2.

If algebras from ./ are finite and contain a trivial algebra of € as a subalgebra,
then by (i) in [4] (p. 285), € has also .#-UFP. By virtue of the just proved (a), also
(b) is valid. Q.E.D.

As an application, we can concentrate on the class of lattices. Let % be an arbitrary
non-trivial variety of lattices and . the class of all chains with least elements. Then:
(i) % has distributive congruences (see [1], Theorem VI.9),
(ii) € has #-UFP (see Theorem 2 in [8] for @ = v and w = A),
(iii) # < € (since every non-trivial variety of lattices contains a variety of distri-

butive lattices containing /),
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(iv)  is closed under homomorphic images (evident),
(v) 4 contains a one-element lattice (evident),
(vi) . contains only directly irreducible lattices (see [1]).

Hence, by Corollary 1 (a), we obtain

Corollary 2. Let Ay, ..., A,, By, ..., B, be chains with least elements and A =
=[] 4;, B = [[ B;. Then every homomorphism h of the lattice A onto B is directly

i=1 i=1
decomposable.

An analogous result can be proved if a variety of weakly associative lattices or the
class of tournaments is considered instead of € or .#, respectively. The result obtained
is contained in [7]. '

Let & be a class of relatively complemented finite modular lattices and .# a sub-
class of all directly irreducible lattices of €. Then clearly the previous conditions (i),
(iii), (v) and (vi) are satisfied. By Theorem 7 in [1] (p. 89), € contains only modular
geometric lattices (Definition in [1], p. 80) and by Corollary on p. 93 in [1], all
lattices in .# are simple. Hence, .# is closed under homomorphic images, thus also
(iv) is satisfied. Since lattices of % are relative by complemented, ¥ has permutable
congruences ([1], p. 163, Ex. 7). As lattices in € are finite, they have congruence
lattices with finite lengths and, by Corollary 1 on p. 169 in [1]. € has .#-UFP. Hence
(ii) is also true and by Corollary 2(a), we have

Corollary 3. Let € be a class of relatively complemented finite modular lattices,

let A,Be % and A =[] A;, B =[] B, where A, B; are directly irreducible lattices

i=1 i=1

of €. Then every homomorphism h of A onto B is directly decomposable.
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