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1. Introduction. Let B be a Boolean algebra. We denote Ly the collection of all
subalgebras of B. On Ly we define a partial order < as follows. Let C and D € Ly.
We say C < D if C = D. With respect to this partial order Ly is a complete lattice:
with the first element {0, 1} and the last element B itself. (For notation in Boolean
algebras we follow HaLmos [2].) For any family {C,} = L, Sup C, = the subalgebra

of B generated by the family {C,} and is denoted by VC,. Similarly, Inf C, = NC,
and is denoted by AC,. The symbols v, A as applied to families of subalgebras.

should not be confused with the same symbols used for the elements of some fixed
Boolean algebra. In the context it will be clear in what sense these symbols are used.
The primary object of this paper is to study the lattice structure of Lg.

Some of the natural questions that arise in the study of the lattice Ly are the fol-
lowing.

(i) Is Ly distributive? i.e., is it true that C A (D v E) = (C A D) v (C A E)
for every C, D and E in Lg?

(ii) Is Ly complemented?i.e., given any C in Ly does there exist a D in Ly satisfying
CVD = Band C A D = {0, 1}? (We say that D is a complement of C.)

We remark that the lattice Ly is distributive if and only if B consists of four elements
or B = {0, 1}. The if part is easy to see. If B consists of more than four elements, take
three nonzero disjoint elements a, b, ¢ from B satisfyinga v b v ¢ = 1. Let C =
={0,avb,ecl},D={0,aveb1}and E={0,bV ca,l}. Notethat C A
A (DVE) # (C A D) v (C A E).

The study of the second question is the central theme of this paper.

2. Preliminary results. We need the following definitions.

Definition 2.1. Let B be a Boolean algebra and I an ideal in B. We have the natural
homomorphism h : B — BJI defined h(b) = [b], where BJI is the quotient Boolean
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algebra and [b] is the equivalence class containing b. We say that h admits a lifting
if there is a subalgebra C of B such that h restricted to C is one to one and takes C
onto B/I. We call C a lifting of h. (Actually h becomes an isomorphism between C
and BJI).

In the more familiar language, B/I is a retract of B. See Halmos [2, p. 130]. We
prefer the term ‘lifting’ to retract which is more suggestive in that one has to pick an
element from each equivalence class in B/I so that the resultant collection of points
becomes a subalgebra of B. This notion of ‘lifting’ is also in conformity with the one
adopted by IoNescu TuLCEA and JoNEscu TuLcEA [3].

Definition 2.2. Let X be a topological space. Let Y be a closed subset of X. Y is
said to be a retract of X if there exists a continuous map f : X — Y which is an identity
on Y. See SIKORSKI [14, p. 46].

Let I be an ideal in a Boolean algebra B. Let X be the Stone space of B. Then the
Stone space of the quotient Boolean algebra B/I can be identified as a closed subset Y
of X. See Sikorski [14, p. 31 — last paragraph]. The following theorem connects
lifting and retract.

Theorem 2.3. The following are equivalent.

(i) The natural homomorphism h : B — B[l admits a lifting.
(ii) The closed subset Y of X is a retract of X.

Proof is easy and we omit it.
As a first result on complementation we have the following result.

Theorem 2.4. Let B be a Boolean algebra. Any finite subalgebra A of B has
a complement in Lg.

Proof. Let ay, a,, ..., a, be all the atoms of 4. So Va; = 1. We shall straightaway
1

construct a complement of 4. Let Fy, F,, ..., F, be any maximal filters in B containing
ai, a,, ..., a,respectively. Let F = F; n F, n...n F,. Then F is a filter in B. Let C
be the Boolean algebra generated by F in B. In fact, C = {beB:b or b’ e F}. We
claim that

(1) AAC={0,1},
and
(2 Av C=B.

Proof of (1). Let be A A C be such that b + 0 and b # 1. Since b € C, we can
assume without loss of generality that be F. Since be 4, b = a;, v a, v ... v a;,
for some atoms a;, a;, ..., a; of A. Take a j such that j + i;,1,,...,i, and 1 <

Sj=n. Asa;jeF;and be Fj, we note that 0 = b A a; € F; which is a contradic-
tion. Hence b = 0 or 1.
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Proof of (2). It is sufficient to show that every element of B which is <a, belongs to
A v C. Then, by a similar argument, it follows that every element of B which is <a;
belongs to A v C for every j. Consequently, we observe that for any be B, b =
=(bAra)vbra)v..v(barag)edvC.

Let ¢ € B be such that ¢ < a,. Then either ce F; ora; — ce F,. If ceF,, c v
Va,Vv..va,eF and hence a; A(cva,vasv..va)=cedvC If
a,; — c € Fy, by a similar argument, it follows thata, — ce 4 v C.Buta; €4 v C.
Hence ce A v C. This completes the proof.

Our next theorem characterises complements of certain subalgebras of B. We
need the following notation and Lemmas.

For an ideal I in a Boolean algebra B, let B(I) = {ce B: ¢ or ¢'el}, ie., B(I)
is the subalgebra of B generated by I.

Lemma 2.5. Let B be a Boolean algebra and I an ideal in B. Let C be a sub-
algebra of B. Then

B(I)v C.={beB:bAcel forsome ce C}.

(A denotes the operation of symmetric difference.)

Proof. Let D ={beB:bAcel for some ceC}. First we show that D is
a Boolean algebra. Let b,, b, € D. There exist ¢y, ¢, € C such that b, Ac, and
by Ac, el. Note that (by v by,)A(c; v ¢;) £ (by Acy) v (by Ac,). Since I is an
ideal in B, (by v b;)A(cy v ¢;)€el. Since C is a subalgebra of B, ¢; v ¢, €C.
Hence by v b, e D. Now, let b e D. There exists a ¢ € C such that b A cel. Note
that b"Ac¢’ = bAcel and ¢’ € C. Hence b’ € D. Obviously, 0 e D. Hence D is
a subalgebra of B.

Now, we observe that C = D and I = D. Hence, B(I) v C = D. Let de D.

There exists a ce C such that d Acel. Let b =dAc. Thend = bAc, since bel
and ce C, de B(I) v C. Thus, we see that D = B(I) v C.

Lemma 2.6. Let B be a Boolean algebra and I an ideal in B. Let C be a subalgebra
of B such that B(I) A C = {0,1}. Then given be B(I) v C, there exists a unique
ce C such that bAcel.

Proof. Existence of at least one ¢ € C such that b A c e[ is guaranteed by the
previous lemma. Suppose ¢; and c,e CandbAcyelandbAc,el. Thene; Ac, el
and ¢; A c, e C. Hence ¢; A c, € B(I) A C. Therefore, ¢; Ac, = 0 or 1. Since I is
a proper ideal, ¢c; Ac, = 0, i.e., ¢; = ¢,.

Theorem 2.7. Let B be a Boolean algebra and I an ideal in B. Let B(I) be the
subalgebra of B generated by I. Let X and Y be the Stone spaces of B and B/I
respectively with Y < X. Then the following statements are equivalent.
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(i) B(I) has a complement in Lp.
(ii) The natural homomorphism of B onto B[I admits a lifting.
(iii) Y is a retract of X.

Proof. (i) - (ii). Let h : B — B/I be the natural homomorphism, i.e., h(b) = [b]
for b € B. Let C be a complement of B(I) in Ly. We shall show that C is a lifting of h.
Equivalently, the map h restricted to C is one-one and onto B/I . Since B(I) v C = B,
by Lemma 2.5, for any b € B. There is a c € C such that b A c e I. So, h(c) = h(b) =
= [b]. Hence h restricted to C is onto. Since B(I) A C = {0, 1}, by Lemma 2.6,
there is a unique ¢ € C such that b A c € I. Hence h restricted to C is one-one.

(ii) > (i). Let C be a lifting of the natural homomorphism h : B — B[I. We show
that C is a complement of B(I) in Ly. Let b € B(I) A C. Either b eI or b’ € I. Suppose
bel. So, h(b) = [b] = 0. Since h restricted to C is one-one and since h(b) = h(0),
we have b = 0. The other case is similarly disposed. Hence B(I) A C = {0, 1}.
Now, we prove that B(I) v C = B. Let b e B. Since the map h : C — B|I is onto,
there is a ce C such that h(c) = [b]. Consequently, cAbel. By Lemma 2.5,
be B(I) v C. Hence B(I) v C = B. :

The equivalence of (ii) and (iii) was stated in Theorem 2.3.

Remarks. If B(I) has a complement in Ly, any complement of B(I) is isomorphic
to B[I. Consequently, any two complements of B(I) ar¢ isomorphic. This statement
is not true for any subalgebra of B. As an example, we have

X ={1,2,3,4}; B = The collection of all subsets of X; C = {0,X,{1,2},
{3,4}}; D ={0.X,{1,3}, {2,4}} and E = {0, X, {1}, {3}, {2,4}, {1,3}, {1,2,4},
{2, 3, 4}}. D and E are both complements of C. Clearly, D and E are not isomorphic.

Now we give an example of a Boolean algebra B and a subalgebra A of B such
that 4 has no complement in Ly. For any set X, we shall denote the power set of X
by P(X), i.e., P(X) is the class of all subsets of X.

Theorem 2.8. Let N be the set of all natural numbers. Let C be the field of all
finite-cofinite subsets of N. Then C has no complement in Lpyy.

Proof. Observe that C is the field generated by the ideal I of all finite subsets of N.
It is well known that the Stone-Cech compactification of N, BN is the Stone space
of P(N) and BN — N that of the Boolean algebra P(N)/I. If C were to admit a com-
plement in Lpy,, then, by Theorem 2.7, SN — N would be a retract of N. But this
is not true. See GILLMAN and JERISON [1, 6Q, p. 97].

In the next two sections, we study certain classes of Boolean algebras in the light
of complementation problem in Boolean algebras.

3. C,-Boolean algebras. In this section we introduce a new class of Boolean
algebras.
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Definition 3.1. A Boolean algebra B is said to be a C;-Boolean algebra if every
subalgebra of B has a complement in L.

Theorem 3.2. Every finite Boolean algebra is a C{-Boolean algebra.

Proof. This follows from Theorem 2.4.

Theorem 3.3. Let B and D be two Boolean algebras such that D is a homomorphic
image of B. If B is a C,-Boolean algebra so is also D.

Proof. Let h: B> D be a homomorphism mapping B onto D. Let E be a sub-
algebra of D. Let F = {be B: h(b) € E}. It is easy to verify that F is a subalgebra
of B. Let G be a complement of F in Ly. Now, we claim that h(G) is a complement
of E in Ly. Let d e E A h(G). There exist b; € F and b, € G such that h(b,) = d =
= h(b,). Clearly, b, e F. Since F A G = {0,1}, b, =0 or 1. Hence d = 0 or 1.
So, E A h(G) = {0, 1}. Since F and G generate B, h(F) and h(G) generate h(B).
But h(F) = E and h(B) = D. Hence E v h(G) = D.

Theorem 3.4. Let B be any infinite Boolean g-algebra. Let N be the set of all
natural numbers and P(N) the power set of N. Then P(N) is a homomorphic image
of B.

Proof. Let by, b,, ... be a sequence of nonzero, pairwise disjoint elements in B
such that by v b, v ... = 1. Let F,, F,, ... be a sequence of maximal filters in B
containing by, b,, ... respectively. Define h : B — P(N) as follows. h(b) = {n = 1:
:beF,}. Clearly, h(0)=0 and h(l)=N. h(a, v a;) ={n:a, v aeF,} =
={n:a,eF,} u{n:a,eF,}. For, let ne Left hand side expression. a, v a, € F,.
Then, either a, € F, or a, € F,. If not, a; € F, and a) € F,. Since F, is a filter, a; A
A a) € F,. This together with a; v a, € F, implies (a; v a,) A (a] A a3) =0€F,.
This is a contradiction. Hence n € Right hand side expression. If n € Right hand side
expression, it is obvious that n € Left hand side expression. Next, we claim that A is
onto. Let Ny = {ny, n,, ...} be a subset of N. Then, h(b,, v b,, v ...) = N,.

Corollary 3.5. Let B be any infinite Boolean c-algebra. Then B is not a C,-
Boolean algebra.

Proof. If B were to be a C;-Boolean algebra, then, in view of Theorems 3.3 and
3.4, P(N) would be a C,-Boolean algebra. But this is not the case with P(N). See
Theorem 2.8.

The following is a non-trivial example of a C;-Boolean algebra.

Theorem 3.6. Let X be any set and C the field of all finite-cofinite subsets of X.
Then C is a C,-Boolean algebra.
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Proof. Since Cis a superatomic Boolean algebra, every subalgebra D of Cis atom-
ic. See Sikorski [14, example D, p. 35].

Case (i). One of the atoms of D is cofinite. Then D is a finite algebra. Hence D has
a complement in L., by Theorem 2.5.

Case (ii). Every atom of D is finite. Let {D, : « € J} be the collection of all atoms
of D. Choose and fix one element x, € D,. Let E be the subfield of C generated by
{{x} :xeX and x % x, for any o}. f M = {x,:eeJ}, then E={AcX:4n
N M = Qand Aisfiniteor 4 > M and A is coﬁnite}. Now, we claim that E is a com-
plement of D in L. Let H e D A E. H is either finite or cofinite. Assume H is finite.
Since He D, H = D,, u D,, u ... U D, for some ay, a,, ..., o, in J. We can write
H = (D, — {x,,}) U(Da, = {x0}) U ... U(Dy, — {x4,}) U {Xay» Xuy» -+ X, }. Each
D,, — {x,,} € E. Since H € E, we find that {x,, X,,, ..., X,,} € E. This shows that
H = 0. In the case when H is cofinite, we can prove that H' = @. Hence H = X.
Thus, we have E A D = {0, X}. Next, we prove that D v E = C. For this, it is
sufficient to prove that {x} e D v E for every xeX. Each {x,} e D v E. For,
D,eD and D, — {x,} € E. Hence D,n (D, — {x,}) = {x,}eD v E. If x # x,
for any o, then {x} e Ec D v E. Hence D v E = C.

Remark 1. A similar proof can be given to show that L for the above C'is a rela-
tively complemented lattice, i.e., B,D, E€c L, B < D < E implies there exists
FeLcsuchthat D A F=Band D v F = E.

Remark 2. We do not know if every superatomic Boolean algebra is a C,-
Boolean algebra.

4. C,-Boolean algebras. Definition 4.1. A Boolean algebra B is said to be a C,-
Boolean algebra if for every ideal I in B, B(I) has a complement in Lg.

Theorem 4.2. Let B be a Boolean algebra and X its Stone space. Then B is a C,-
Boolean algebra if and only if every closed subset of X is a retract of X.

Proof. This follows from Theorem 2.7.

Corollary 4.3. Every countable Boolean algebra B is a C,-Boolean algebra.

Proof. The Stone space X of B is a compact totally disconnected metric space
and for such a space X, every closed subset of X is a retract of X. See the last para-
graph in Sikorski [14, p. 46] or KELLEY [4, O, p. 165]. This Corollary can also be
obtained from von Neumann-Stone’s Theorem 17 of [7, p. 369] which is stated as
Theorem 6.3 below.

Corollary 4.4. Let B and D be two Boolean algebras such that D is a homomorphic
image of B. If B is a C,-Boolean algebra so also is D.
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Proof. Let X and Y be the Stone spaces of B and D respectively. Then Y is a closed
subspace of X. Since every closed subset of X is a retract of X so also every closed
subset of Y is a retract of Y.

Let X and Y be the Stone spaces of the Boolean algebras B and D respectively.
Then the Stone space of B + D is the disjoint union X U Y of X and Y equipped with
union topology. See Sikorski [14, Section 16, p. 50].

Corollary 4.5. If B and D are two C,-Boolean algebras, then B + D is also
a C,-Boolean algebra.

Proof. Let X and Y be the Stone spaces of B and D respectively. If every closed
subset of X is a retract of X and every closed subset of Yis a retract of Y, then every
closed subset of X U Yis a retract of X U Y.

Remark. The above corollary does not extend to countable direct union of
Boolean algebras. For, P(N) is a countable direct union of two element Boolean
algebras and P(N) is not a C,-Boolean algebra.

Theorem 4.6. No infinite Boolean g-algebra B is a C,-Boolean algebra.

Proof. If B were to be a C,-Boolean algebra, then P(N) would be a C,-Boolean
algebra which is not the case. See Theorem 3.4 and Corollary 4.4.

Corollary 4.7. Let X be any set. P(X) is a C,-Boolean algebra if and only if X
is finite.

Theorem 4.8. Let o be any ordinal number. Equip 10, o] with order topology.
Let C be the field of all clopen subsets of [0, «]. Then C is a C,-Boolean algebra.

Proof. It is sufficient if we prove that every closed subset H of [0, ] is a retract
of [0, a]. The main idea in the proof is taken from some observations in the proof
of Lemma 1 of Bhaskara Rao and Bhaskara Rao [9, p. 195].

We shall denote [0, o] by X. We have to define a map f from X onto H which is
continuous and identity on H. Let o, be the first element in H. Since H is closed
there exists a last element in H which we call «,. For g€ H, let ' be the first suc-
ceeding element of B in H. Since H is closed, for any x € [o, a; ] — H there exists
a e H such that f < x < f. (Such a f is unique.) We define f as follows.

fx)=a if 02 x<aq,
=0, if ¢y<x=Za,
=x if xeH,

= p if xel[ay o] — H, where f is the element of H satisfying
B<x<p.
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To conclude that f is continuous on X it is sufficient to show that for any well ordered
transfinite sequence x; increasing to xo, f(x;) converges to f (xo).
This we prove as follows.

Case (i). xo < o. Then f(x;) = ao = f(x,). Hence f(x;) converges to f(x,).

Case (ii). o; < xo. x; is eventually greater than o, and hence f(x;) is eventually
equal to «; which is equal to f(x,).

Case (iii). xo € [otg, &ty ] — H. There exists a f € H such that f < x, < p’. Then x;
is eventually in the interval (B, B’) and hence fi (x;) is eventually equal to B = f(x,).

Case (iv). xo € H and x, = p' for some § in H. Then f(x,) = B’ and (B, f'] is an
open neighbourhood of x,. Hence eventually x; > . Consequently, f(x;) = p’
eventually.

Case (v). xo€ H, xo * oo and forno e H, x, = p'. Then fe H, B < x, implies
B’ < x,. Since H is closed, x e X — H and x < x, implies there exists a f € H such
that x < B < x,. So x; is eventually in (B, xo]. Consequently, f(x;) is eventually
in (B, xo]- Hence f(x;) is eventually in (x, xo]. This implies that f(x;) converges
to f(x,). The proof is complete.

5. Complementation in general fields. B. V. Rao [11] considered the following
problem. Let X be any arbitrary set. Let Lpx, be the collection of all sub g-fields
of P(X). L}y, is a complete lattice with {0, X} as the first element and P(X) as the
last element in the natural order of inclusion. For any family {Ca} of sub o-fields
of P(X), VC, is the sub o-field of P(X) generated by the family {C,}, and AC, = NC,.

L3 x, is said to be complemented if for every element B in Ly x, there is an element D
in L}, such that B A D = {0, X} and B v D = P(X). B. V. Rao [11, p. 214]
proved that if X is uncountable, then L3y, is not complemented. In effect he showed
that the countable-cocountable o-field on X has no complement in Lpy,. In this
section, we give two simple proofs of this result, one based on measure theory and
the other on set theory.

Let the cardinality of X be N;, Aleph-one. Let C be the countable-cocountable
o-field on X. Suppose C has a complement D in Ljy,. Then C v D = P(X) =
={Y < X : YA D is countable for some D in D}. This may be proved along the
same lines of the proof of Lemma 2.5. Moreover, for every Y < X, there exists
unique D e D such that YA D is countable. The proof is similar to the one given
in Lemma 2.6. Let u be any measure on D. We can define a measure 4 on P(X)
which is an extension of y by the following formula. For Y = X, let A(Y) = y(D),
where D is the unique set in D such that Y A D is countable. Observe that A is always
a continuous measure, i.e., A({x}) = 0 for every x in X, whatever be the nature of the
measure yu on D. For, for x in X, {x} A0 is countable. Hence, A({x}) = u(0) = 0.
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So, if we start with a 0—1 valued measure u on D, we end up with a 0—1 valued
continuous measure A on P(X). This is a contradiction to Ulam’s theorem which
states that there is no continuous probability measure on P(X). See, for example,
Bhaskara Rao and Bhaskara Rao [9, p. 196]. In Section 6 we use the above argument
to prove a more general theorem.

Set theoretic proof of the above result is included in the more general theorem 5.3
to be proved later in this section.

Let k, A be any two cardinal numbers. Let X be any set of cardinality A. Let L%
denote the collection of all k-fields on X. A collection D < P(X) s said to be a k-field
if it is nonempty, closed under complementation and <k many unions. L¥ is complete
under the following lattice operations. If {D,} is a family of k-fields contained
in P(X), VD, is defined to be the smallest sub k-field on X generated by the family

{D,} and AD, = (\D,. In this terminology, every o-field is an N;-field, and every

field is an No-field. Further, Ljx) = L}' and Ly, = L5°. Let Y be a set of cardinality
‘k. For any cardinal number k, its succeeding cardinal number k¥ is regular. This
observation and the following theorem reduces the problem of complementation
in L% for any k to the problem of complementation for the case of regular cardinals k.

Theorem 5.1. If k is not regular, then L = Lk".

Proof. It is clear that L < L. Let C be any k-field on X. We will show that C
isalsoa k*-field. Let {C; : j € J} be a family of sets in C such that the cardinality of J
is <k™. It is enough if we treat the case when the cardinality of J is k. Since k is not
regular, we can write J = (J J;, where the cardinality of each J; and I is <k and J;’s

iel
are disjoint. Note that (J C; = J U C;. Since C is a k-field, | C; e C for every i
jeJ iel jel; JjeJi
in I and hence, |) U C; € C. This completes the proof.

iel jeJi

Theorem 5.2. If 1 < k, then every element C in L¥ has a complement D in L.

Proof. First, observe that every element of L% is a complete field. Hence every
element of L} is atomic. See Sikorski [14, p. 105]. Let {C, : a € J} be the collection
of all atoms Ce L. Choose and fix one element x, € C,. Let D be the k-field on X
generated by {{x} : x + x, for any a}. It is easy to verify that D is a complement of C.

Theorem 5.3. Let k be a regular cardinal number. If A = k, then there exists an
element C in L} such that C has no complement in Lpxy-

Proof. Let C = {4 < X : cardinality of 4 or 4’ is <k}. Since k is regular, C € L.
Suppose D is a complement of C in Lpx,. Let I be the collection of all subsets of X
of cardinality <k. Then P(X)|I is isomorphic to D by Theorem 2.7. Now, we use the
following theorem of Sierpinski [13, Theorem 1, p. 448]. “Let X be a set of car-

D

538



dinality k. Then there exists a family {X; : j e J} of subsets of X such that the car-
dinality of each X; is k, the cardinality of J is >k and the cardinality of each X; n X ;
is <k for i # j.”” In view of this result, we find that there are more than k disjoint
nonzero elements in the Boolean algebra P(X)[I. For example, one can take the
family {[X;]:je J}, where [X;]e P(X)/I is the equivalence class containing X ;.
But, D being a sub field of P(X), D cannot contain more than k (=1) pairwise dis-
joint nonempty sets. Hence D and P(X)/I cannot be isomorphic. This contradiction
establishes the result.

Corollary 5.4. Let k be a regular cardinal number. If 1 = k, then there exists an
element C in LY such that C has no complement in LY.

Proof. Let C and I be as defined in the proof of the previous theorem. It is clear
that the field generated by I on X, P(X)(I) = C. Suppose C has a complement D
inL% ie., Disak-field, C A D = {(2), X} and C v D = the smallest k-field containing
both C and D = P(X). We shall show that the smallest field containing both C
and D is P(X). Since Cis a field generated by the ideal I, the smallest field containing
both C and D =E = {4 < P(X): AABel for some Be D}, by Lemma 2.5.
Since I is a k-ideal and D is a k-field, E is a k-field. Hence E = P(X). Consequently,
we note that D is a complement of Cin Lpy,. This is a contradiction to the Theorem
5.3.

Theorem 5.5. Let k be a regular cardinal number. If A > k, then there exists
an element C in L which has no complement in LY.

Proof. Let Y be a set of cardinality k and X a set of cardinality A such that YcX.
By Corollary 5.4, Ly, contains an element which has no complement in Ljy,.
It is not difficult to prove that L;‘,(x) contains an element which has no complement
in L x).

Combining the previous theorems, we have the following result.

Theorem 5.6. Let k be a regular cardinal number and A any cardinal number.

(i) If A < k, then every element in L} has a complement in L.
(ii) If A = k, then L} contains an element which has no complement in L.

Remarks. (i) If 2 = k = N,, L} = L}, contains an element which has no com-
plement in L§x,. This result of B. V. Rao [11, p. 214] is a special case of the above
theorem. See also the second and third paragraphs of this section.

(ii) The above results strengthen B. V. Rao’s [11] results in several directions.
(iii) The problem considered in the Theorem 5.6 was suggested by B. V. Rao.

Combining the theorems 5.1 and 5.6, we summarise the results of this section
below.
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Theorem 5.7. Let A and k be any cardinal numbers.

(i) If A < k, then every element in L} has a complement inL}.
(i) If A > k, there exists an element in L} which has no complement in L.
(iii) If A = k and k is not regular, then every element in L§ has a complement in L.

(iv) If A=k and k is regular, there exists an element in L§ which has no complement
in L.

6. Some complements to the complementation problem. In this section we consider
the complementation problem for some special cases.

Firstly, the argument given in the second paragraph of section 5 gives the following
theorem.

Theorem 6.1. Let A be a o-field of subsets of a set X containing all singletons and
admitting no nonzero continuous 0—1 valued measure on A. Let I be any o-ideal
in A containing all singletons. Let A(I) be the o-field generated by I on X. Then
A(I) has no complement in LY, where LY is the lattice of all sub-o-fields of A.

Proof. Suppose A(I) has a complement B in Lj. Then the o-field B is isomorphic
to the Boolean o-algebra A/I. The argument is similar to the one given in the proof
of the Theorem 2.7. Since B is a o-field of sets, B admits a 0—1 valued measure.
In fact, any degenerate measure on B would do. Consequently, there is a nonzero
0—1 valued measure pu on the Boolean s-algebra A/I. This measure pu can be lifted
as a nonzero measure 1 to 4. Since I contains all singletons, A is a 0—1 valued
continuous measure on A. This contradiction shows that A(I) has no complement in L.

Remarks. (i) In particular, Theorem 6.1 is applicable in the following cases.

(a) The cardinality of X is non-measurable, i.e., there is no nonzero 0—1 valued
continuous measure on P(X), and 4 = P(X).

(b) X is any set and A is any separable o-field on X containing all singletons.

(c) X = R, the real line; 4 = Borel o-field; I = All Borel sets of p-measure zero
for any finite nonatomic measure g on A4; or I = the collection of all Borel
first category subsets of R.

(d) X is any set; A is any separable o-field on 4 and I is any o-ideal in 4 containing
all the atoms of 4.

Now, we generalise the remark (i) (c) to general measure spaces and to general
topological spaces.

Let (X, A, y) be a measure space where  is o-finite and A4 is complete with respect
to p, i, Ae A, y(4) = 0, B = A implies that B e 4. Let I, be the ideal of all sets
in 4 with p-measure zero.
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Theorem 6.2. A(In), the o-field generated by Iu on X, has a complement in L,
if and only if pu is completely atomic.

Proof. Suppose p is completely atomic. We can find a sequence A,, 4,, ... of
sets in 4 with the following properties. (i) A;’s are pairwise disjoint. (i) | 4; = X.
iz1

(iii) Each A, is a p-atom. Since y is o-finite u(A;) is finite for each i. Given any Ae A,
we can find a unique subsequence A4;,, 4; such that u(4 A{J 4;) = 0. Let B
izt

PTICRR

be the sub-o-field of 4 generated by A4,, 4,, ... . Then B is a lifting for the natural
homomorphism h: A — A|I,, ie., h(A) = [A],. Hence B is a complement of
(Az).

Conversely, suppose that A(I,) has a complement B in Lj. Consequently, B is
isomorphic to the quotient Boolean s-algebra A[I,. Since y is o-finite, 4/I, satisfies
the countable chain condition. Hence the o-field B satisfies the countable chain con-
dition. Hence B is isomorphic to P(N), where N is the set of all natural numbers.
The o-finite measure u can be transferred, in a natural way, to P(N) as a strictly posi-
tive measure. Any such measure on P(N) is completely atomic. See Theorem 2 of
[10, p. 352]. This proves the theorem.

The above theorem raises the following natural question. Does A(Z,) have a com-
plement in the bigger lattice L,, the lattice of all sub-fields (same as Boolean sub-
algebras) of 4? An affirmative answer to this question follows from a theorem of
MAHARAM [6, Theorem 3, p. 992] which we quote below.

“For any measure space (X, A, ;z) with p, a o-finite complete measure, there
exists a field of sets C = 4 which is a lifting of the natural homomorphism from A
onto A4/1,.”

The following question remains open. Let (X, A, u) be a charge space, i.e., 4 is
a fied of sets on X and p is a charge (finitely additive) on 4. Does the field A(I,,)
generated by I, have a complement in L,?

Now, we examine the problem how far the assumption of the completeness of the
measure p is essential in Theorem 6.2. Below we shed some light on this aspect.
For this we need the following theorem.

Theorem 6.3. (vON NEUMANN and STONE [7, Theorem 17, p. 369 and Theorem 15,
p. 367]). Let A be a Boolean algebra and let I be an ideal in A with the following
property.

(*) For every J = I with cardinality of J < cardinality of AI, there exists ae A
which is the supremum of all elements in J.

Then we can find a subalgebra B of A which is a lifting of the natural homo-

morphism from A onto AL

Remark. It is clear that the B given by Theorem 6.3 is a complement of A(I), where
A(I) is the subalgebra of 4 generated by I.
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Theorem 6.4. Assume Continuum Hypothesis. Let A be any o-field on X with
cardinality < c (the cardinality of the continuum). Let I be any o-ideal in A.
Then A(I) has a complement in L,.

Proof. Note that the cardinality of A/I is Zc. Since I is a o-ideal, Continuum
Hypothesis implies that (*) of Theorem 6.3 is valid. This completes the proof.

Remarks. If A4 is a separable o-field on X, then it is true that the cardinality of 4
is £ c¢. Theorem 6.4 covers the case of the Borel o-field of the real line with the o-ideal
of all sets of u-measure zero for some measure p. Further, the Borel o-field of the real
line is never complete under any o-finite measure.

Now, we turn our attention to the topological case. Let (X, T) be a topological
space. A subset B of X is said to have the property of Baire if we can write B = U A P
for some open set U — X and a first category set P = X. Let B be the collection of all
subsets of X with the property of Baire. Then B is a o-field on X. See OXTOBY [8,
Theorem 4.3, p. 19]. Let I be the o-ideal of all first category subsets of X. It is clear
that B is complete with respect to I, i.e., Be I, C = B implies C € B. In this set-up
the following two problems arise.

1. Does the sub o-field of B generated by 1, i.e., B(I) have a complement in Ly?
We answer this question in the negative.

2. Does B(I) have a complement in Lg?
We answer this question in the affirmative.

Proposition 6.5. Let X be the real line equipped with the usual topology. Then
B(I) has no complement in Lg.

Proof. Note that B contains the Borel o-field of the real line. Consequently, there
is no nonzero 0—1 valued continuous measure on B. Further, I contains all single-
tons. An application of theorem 6.1 completes the proof.

To answer the second question we need the following theorem.

Theorem 6.6. (Von Neumann and Stone [7, Theorem 18, p. 372 and Theorem 15,
p. 367]). Let A be a Boolean algebra and I an ideal in A satisfying the following
property.

(**) For any two nonempty J,, J, < I such that the cardinalities of J, and

J, < the cardinality of A|I and ¢ < d for every ce J; and de J,, there
exists a € A such that ¢ < a < d for every ce J; and de J,.

Suppose there is a function F : A — A satisfying
(i) F(a)Aael for every ac A.
(i) a,be A and a Abel implies F(a) = F(b), and
(iii) F(a v b) = F(a) v F(b) for a,be A.
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Then we can find a subalgebra B of A such that B is a lifting of the natural homo-
morphism from A onto A|l.

Using this result we prove the following theorem.

Theorem 6.7. Let X be any topological space. Let B be the o-field of all subsets
of X having the property of Baire and I the o-ideal of all first category subsets
of X. Then B(I) has a complement in L.

Proof. Note that the ideal I satisfies the property (x*) of Theorem 6.6. Now,
we define a function F : B — B as follows.

For A e B, F(4) = {x € X : for every open set V containing x, ¥ n A is not of first
category in X}. Then F satisfies the following properties.

(i) F(A)e B, AeB.
(i) F(A)A A€l for AeB.
(iii) A, Be B, AABel implies F(A) = F(B).
(iv) F(4 U B) = F(4) U F(B) for A, B¢ B.
See KURATOWSKI [5, pp. 83—85].
Invoking Theorems 6.6 and 2.1, we get the desired result.

Remark. This result can be viewed as a category analogue of Maharam’s Theorem
[6, p. 992].

Finally, we make a remark on the following problem raised by B. V. Rao [11,
p. 215]. Characterise the sub o-fields of the Borel o-field 4 of the real line which
have complements in Lj. Recently, Sarbadhikari and K. P. S. Bhaskara Rao [12]
have shown that every separable sub o-field of 4 has a complement in Lj. The
problem still remains open for a complete solution.

7. Ultrastructures. Let B be a Boolean algebra with the associated lattice Ly of
all subalgebras of B. With each element C # B, C e Ly we can associate an ideal
Ic ={DeLg:D £ C} in the lattice Ly. When is a maximal ideal (proper) in Ly is
of the form I for some C € L? To answer this question we introduce Ultrastructures.

An element C + B, C € Ly is said to be an ultrastructure in Ly if for any De Ly
such that C £ D < B implies either D = C or D = B. (B. V. Rao [11, p. 215—-216]
defined ultrastructures in the lattice Lpx, and gave a characterisation of these
structures.) It is easy to see that I is a maximal ideal in Ly if and only if C is an ultra-
structure. So the problem of charactrisation of maximal ideals of the form I in Ly
boils down to the characterisation of ultrastructures in Lz. We do this in this section.

The following characterisation of ultrastructures in Ly is similar to the one obtained
by B. V. Rao [11, Theorem 4, p. 216].
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Theorem 7.1. Let I and J be two distinct maximal ideals in B. Let A(I, J) =
={beB:bor b'eln J}. Then A(l,J) is an ultrastructure in Ly. Conversely,
every ultrastructure in Ly is of this form.

Proof. It is clear that A(I, J) is a subalgebra of B. In fact, A(I, J)is the subalgebra
generated by the ideal I n J in B. Since I and J are distinct, A(I, J) # B. Let D be
an element in Ly which contains A(I, J) properly. We will show that D = B. For this,
it is sufficient to show that I = D. (Since I is maximal in B, the subalgebra generated
by I is B itself). Let d € D be such that d ¢ A(I, J). Consequently, d and d’' ¢1 n J.
Without loss of generality assume that d el and d’' e J. Let b el. It follows that
b A delnJ. Consequently, b A d' e D. Case (i). be J. We find that b A de
eInJ. So, b AdeD. Consequently, b= (b Ad)v (bnad)eD. Case (ii).
b"e J. We observe that bAd = (b v d) A (b' v d')eln J. From this it follows
that b Ade D. This together with d e D implies that b A d =d — (bAd)e D.
Hence b € D. Thus we have proved that I < D.

To prove the converse, we need the following two lemmas.

Lemma 7.2. Let I, 1,, ..., I, be k distinct maximal ideals in a Boolean algebra B.
Let Ny and N, be any arbitrary partition of the set {1,2, ..., k}. Then there exists
a b e B such that bel, for every i€ Ny and b el; for every jeN,.

Proof. We prove this lemma by induction. For two distinct maximal ideals the
result is obvious. Assume the result to be true forany n — 1 (n > 3) distinct maximal
ideals. Let I, I,, ..., I, be n distinct maximal ideals. The case when one of the sets
in the decomposition of {1, 2, ..., n} is empty the result trivially follows. Assume,
without loss of generality, N, = {1,2,...,m} and N, ={m + L,m + 2,...,n}
and the cardinality of N, > 1. By induction hypothesis, there is an aeI; for 1 <
si=mandael;form+j<n-—1,andabel;forl1 <i<mandbel;for
m+ 2 =<j=<n av bwould do the trick.

Let B be a Boolean algebra and D a subalgebra of B. It is easy to verify that if I
is a maximal ideal in B, then I n D is a maximal ideal in D. It is also true that if I,
is a maximal ideal in D, there exists a maximal ideal I in B containing I,, which we
call an extension of I;.

Lemma 7.3. Let B be a Boolean algebra and let D be a subalgebra of B. If every
maximal ideal in D has a unique extension in B, then D = B.

Proof. Let X and Y be the Stone spaces of B and D respectively. We identify the
Stone spaces as the collection of maximal ideals. We define f: X — Y as follows.
f(I) = D n 1. From the hypothesis it follows that f is one-one. Hence the inclusion
map i: D — B is onto. See Sikorski [14, first four paragraphs on p. 34]. Hence
D = B.
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Now, we prove the converse part of the theorem. Let C be an ultrastructure in Ly.
We claim that there is no maximal ideal in C which admits more than two extensions
in B. Suppose not. Let I, be a maximal ideal in C and let J,, J,, J; be three distinct
extensions of I; in B. Now, I, < J; nJ,n J3; < J; n J,. The latter inclusion is
strict in view of Lemma 7.2. The subalgebra of B generated by I, = B(I‘) =Cis
strictly contained in B(J; n J,) = A(J,, J,). Hence C is not an ultrastructure.

Now, we claim that there exists at least one maximal ideal I, in C which admits
exactly two extensions I and J in B. This is obvious from Lemma 7.3.

Now, observe that C = B(I,) = B(I n J), since I, = I n J. Since B(I nJ) =
= A(1, J) is an ultrastructure in Lg, C = B(I n J), i.e., C is of the form A(I, J) for
some maximal ideals I and J in B. This completes the proof of the theorem.

Finally, we make a remark about the complements of ultrastructures in Lg. Let C
be an ultrastructure in Lg. Take any element b € B such that b ¢ C. Then the Boolean
subalgebra of B generated by b is a complement of C in Lg. Conversely, there exists
a compelement of the Boolean subalgebra of B generated by a single element b e B
such that b & 0 and b # 1 which is an ultrastructure in Ly. These statements are
not difficult to prove and the proof is omitted.

References

[1] L. Gillman and M. Jerison: Rings of continuous functions, Van Nostrand, London, 1960.
[2] P. R. Halmos: Lectures on Boolean algebras, Van Nostrand, London, 1967.
[3] A. Ionescu Tulcea and C. Ionescu Tulcea: Topics in the theory of lifting, Springer-verlag,
New York, 1969.
[4] J. L. Kelley: General Topology, Van Nostrand, London, 1955.
[5] K. Kuratowski: Topology, Volume 1, Academic Press, New York, 1966.
[6] D. Maharam: On a theorem of von Neumann, Proc. Amer. Math. Soc., 9 (1958), pp.
987—994.
{71 J. Von Neumann and M. H. Stone: The determination of representative elements in the
residual classes of a Boolean algebra, Fund. Math., 25 (1935), pp. 353—376.
[8] J. C. Oxtoby: Measure and Category, Springer-Verlag, New York, 1970.
[9] K.P.S. Bhaskara Rao and M. Bhaskara Rao: Borel o-algebra on [0, 2], Manuscripta Mathe-
matica, 5 (1971), pp. 195—198.
[10] K. P. S. Bhaskara Rao and M. Bhaskara Rao: A note on the countable chain condition and
sigma-finiteness of measures. Bull. Austral. Math. Soc., 6 (1972), pp. 349—353.
[11] B. V. Rao: Lattice of Borel Structures, Coll. Math., 23 (1971), pp. 213—216.
[12] H. Sarbadhikariand K. P. S. Bhaskara Rao: Complementation in the lattice of Borel struc-
tures, to appear in Coll. Math. .
[13] W. Sierpinski: Cardinal and Ordinal numbers, PWN, Warsaw, 1958.
{14] R. Sikorski: Boolean algebras, Third Edition, Springer-Verlag, New York, 1969.

Authors’ addresses: K. P. S. Bhaskara Rao, Research and Training School, Indian Statistical
Institute, 203 B. T. Road, Calcutta 35 India; M. Bhaskara Rao, Department of Probability
and Statistics, The University, Sheffield S3 7RH, U.K.

545



		webmaster@dml.cz
	2020-07-03T02:01:15+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




