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Let N and Z* be the sets of all positive and non-negative integers, respectively.
Let n be a fixed, but arbitrary, element of N. Write I for the set of all functions
s l {1,2,...,n} > Z* and, for each s € M, let

For each me N, let P(m) be the set {(s, w)e M x M : |s| + |w| < m}. For each
seM, let O l R" — R be defined by

0.(x) = (2xi)" 11_11 x5

for all x € R". By A will be meant that version of Lebesgue measure on R"” such that

for all integrable functions f on R". For each pe[l, o], “ ”p will be the usual
L,-norm on L,(R", 2). Other notation will be as in [10].

The space S of rapidly decreasing functions in C°°(R”) bears a topology induced
by the family {| ||, : 5, w € M} of semi-norms where

© [l = 16 - D"

for all fe © and s, we M. Kucera in [3] introduced a novel construction of S.
He took a sequence {H,,,};',LO of locally convex spaces with the properties:

(1) H,-; > H, and the identity map on H,, is continuous for all n e N;
(2) S is a dense subset of each H,; '

(3) © = H, and the topology on & is the projective topology induced by the

m=0

spaces H,,.

503



For each m and k in Z*, he defined O, ,, to be the set of multiplication operators
from H, into H,, and attached to it the usual operator norm. The spaces O, ,, were
shown to be Banach spaces, O, ,, was proved to be just {0} if k < m, and the linear

o] 0

space () U Oy, was exhibited to be precisely O,,, the space of slowly increasing
m=0 k=0

functions in C*(R"). In [5:} the usual topology on O,, was shown to agree with the

projective topology on ﬂ U Om (U DO, . bearing its inductive topology for
m=0k=0

each m). In [6], these results were explmted to show that the natural mapping from
Oy x & onto &' is jointly continuous.

A concrete sequence {H,,},, was studied by KUcera in [3] and [4]. Here H,, =
= Ly(R") and, for each meN, H,, = {f| R" > C: 0,. D*(f) € H, for all (s, w)e
€ P(m)}. The topology on H,, was induced by the norm given by

flm=C % 6. D))"
)R (m)

and H,, was seen to be a Hilbert space. The Fourier transform was shown to be
a surjective linear isometry on H,, and the spaces O, ,, were studied in some detail.

Kucera’s spaces suffer from some defects however. First of all, the functions in H,,
need not have classical derivatives of all orders less than m. Second, they may need
not even be integrable, and so the definition of the Fourier transform is not so neat
as might be wished. Third, the functions are not necessarily either bounded or con-
tinuous.

The present paper seeks to supply these deficiencies by introducing a related, but
different, sequence {$,,}re—o. The new spaces $,, do not retain the property of being
Hilbert spaces, but they are reflexive.

Let $, be the linear space {f € L,(R") : fe L,(R")} where the Fourier Transform f
is defined by

@ i) = (7(2—)) f e~ 1(4) dt

for all x € R" (here {t,x) = Y t;x;). For fe $,, let
j=1

() A1 = 1l + 171

Below are listed some properties of §, along with references:

(6) 9, is a semi-simple Banach algebra under convolution ([7] 6.1.1);
(7) if f*(x) = f(—x) for all x e R", then

8) f =f* forall fe$, ([2] 31.17);
(9) the Fourier transform is a linear isometry of $, onto itself (obvious from (5),

(7), and (3));
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(10) (f*h)* = f.h forall f,he $, ([2] 31.5);

(11) 9o is a dense ideal in Ly(R") (under convolution) and Li(R") x $, = H,
([2] 39.34).

A functionf| R" — Cis said to be positive-definiteif ), ), o f(x) — x®) > 0
j=1k=1

whenever {o;}7_; are complex numbers and {x’}7_, is a subset of R". Let P(R")
be the set of all continuous positive-definite functions on R" and K(R") be the
linear span of P(R") in C(R") (the elements of K(R") are all bounded ([2] 32.4.11).
Write M(R") for the Banach algebra (under convolution) of all complex, bounded,
regular Borel measures on R”, the norm " " M Oon M(R") being the total variation
norm. Then
(12) the Fourier transform is an algebra isomorphism of M(R") onto K(R"), || 2/, =
< |uf s for all pe M(R"), and P(R") = {fi: p 2 0, pe M(R")} ([2], 33.1 and
33.3).

For each f € K(R"), let i be the measure in M(R") such that 2, = f.

Theorem 1. The set §, is an ideal in K(R") and K(R") is the family of multiplica-
tion operators on $,. Furthermore, if f € K(R"), then ||uf||M is the operator norm
of f viewed as a linear operator on 9,. Finally,

(13) 9o = K(R") A Ly(R").

Proof. The first two assertions of Theorem 1 are just [7], Theorem 6.3.1, for p = 1.
The first of these assertions implies $, = K(R") n L;(R"). Let f be any function in
K(R") n Ly(R"). Then 2, = f is in L,(R") and so, by [2] 31.44.d, u, is absolutely
continuous with respect to Lebesgue measure on R” and its Radon-Nikodym deriva-
tive g has f as its Fourier transform. By [2] 31.44.b, we have f = g* which is in
L,(R"). Hence, f is in $,, which proves (13). Q.E.D.

Theorem 2. For all f, g € L(R"), let F | 9o — C be defined by

Fyo(h) =f

R

(fh + gh) da

for all he $o. Then 4 = {Fy,: f, g € L ,(R")}.
Proof. It is well-known that L_(R") may be identified with L,(R"). If §, is iden-

tified with the projective limit {(h, i) : h € $,}, then Theorem 2 follows from [9]
1v.44. Q.ED.
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A direct computation shows that || f|. < [f] for all fe L;(R"). Consequently,
by (8),

(14) 17l = 171 = 171
Theorem 3. The Banach space 9, is reflexive.

Proof. It will suffice to prove that the unit ball B, of $, is o(Do, $5) — compact.
Let {f,} be an arbitrary net in B,. Alaoglu’s Theorem ([2] B.25) implies that there
exists a subnet {f,(4)} such that lim F(f,,) exists for all F € §;. For each h e Ly(R") N

B

A L, (R"), Theorem 2 implies that

limj h.fup di = lim Fh,o(fr(p))
B Rn B

exists. Since L;(R") N Lo(R") is dense in Ly(R"), and since (14) implies

T ol £ T | 5 1.

it follows that

limj h.f4dl existsforall he Ly(R").
B Rn

Noting that

W i o = T8 | s < 158 | 5 1
we may apply Theorem 6.2.ii and 6.5.iii of [8] to obtain some f e K(R") such that
limJ‘ h.frp dA =j h.fdA forall heLy(R").
B R" R®
For each h e L;(R") n Lo(R"), Holder’s Inequality implies

f h.fd/ll=lim 'f h.f,(p)d/l‘é
Rn B Rn

< [ilw - T [ frwl s < - B S| < A

It follows that f is in L;(R"). Hence, by (13), f is in $ and {frs)} converges to f
in 6($,, Ho). Evidently f is in B. This proves that B is o(Ho, Ho) — compact. Q.E.D.
For each me N, let

(15) O = {9y : 0. D*(f) € H, for all (s, w) e P(m)} .
Lemma. If me N and f € 9, then fis in H,,.
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Proof. For any F e & and (s, w) € P(m), we have the well known equality
(16) [6,. D*(F)]* = (-1)"' D¥o,,.F).

Since f* is in $,,, Hormander’s rule for differentiating products yields thatDs(@,, - f *)
is in §, for each (s, w) € P(m). It follows from (16) that

[6. D*(/)]* = (=1)™ D6, - f*)

is in 9, for all (s, w) € P(m). Hence, fis in $,. Q.E.D.

For each m € N, define the norm || | on §,, by
R 1/ S R SR e )

Note that, for each me N and f € $p+1,
(18) 90 > O > Hes and 7] = £ =[]0
Theorem 4. For each m € N, the Fourier Transform is a surjective linear isometry

on 9,

Proof. That the Fourier Transform is isometric follows from (9) and (17). That it
is surjective follows from (8) and the fact that §,, = H,. Q.E.D.

Theorem 5. For each me N, $,, = C"(R").

Proof. Since $,, = 9o = L,(R"), and since each f € $,, is the Fourier transform
of f*, we may differentiate under the integral sign, Q.E.D.
Theorem 6. For each me N, $,, is a Banach space.

Proof. Let {f,} be any Cauchy sequence in $,. Since $, is complete, for each
(s, w) € P(m) there exist functions f;,,, and h,,, in H, for which

im ([ 0, DU + [ = 0. DGN®) = 0

by (18) and (14), this implies

lim | £, — 0,. D*(f,)]|w = 0 = lim |[h,,, = 0, . D*(f,)]w -
It follows that, for all (s, w)€ P(m), f;,, = 0,. D*(fo,0) and h,,, = 6,. D*(h, ).
Since

li:n ”f,. —fo,o”(o) =0= li”m ”f:l - h°-0”(0)'
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it follows that fo,o = h, o. Hence,

lim ||f, = fo.o|™ =0. Q.E.D.

Theorem 7. For each me N, 9,, is reflexive.

Proof. Let O(m) be a copy of P(m) and define ¥ | $,, - H3™°™ by letting,
for each f € §,,, ¥ be the function on P(m) U O(m) such that ¥ (s, w) = 6, . D*(f)
for all (s, w)eP(m) and ¥ (s, w) = 6,. D*(f) for all (s, w)e O(m). Then ¥ is
a topological isomorphism of §,, into $3 ™2™ Since §,, is a Banach space, ¥($,,)
is closed. Since products of reflexive spaces are reflexive ([9] p. 146), Theorem 3
implies that $3 ™2™ js reflexive. Since closed subspaces of semi-reflexive spaces
are semi-reflexive, ¥($,) and $,, are semi-reflexive. Since ,, is a Banach space, it
is reflexive. Q.E.D.

Theorem 8. Let m be in N and let O(m) be a copy of Y(m). For each function
| P(m) U O(m) > L,(R"), let F,| 9, — C be defined by

(19) rn= % f [e(r. 1) . 6, D'(]) + ofs, w) . 6, D*()] .
(r,t)eD(m) R

Then $,, = {F, : o | P(m) L O(m) > L (R")}.

Proof. Recall the mapping ¥ defined in the proof of Theorem 6. It follows from
Theorem 2 and the properties of ¥ that Theorem 7 holds. Q.E.D.

Lemma. Let w be any element of M. For each x € R", write m(x) for the number
n
max {|xj| :j=1,2,...,n}. The number lw| is, by definition, ) w;. For all x and y
j=1
in R" for which m(x) < 1,

(20) [0.,(y + x) — 0,(9)| < m(x).(2n)™ . |w

"2 (m(y)™ + 1).

Proof. Let I be the set of all choice functions ¥ in the product [] {0, 1,..., w;}
i=1

such that m(¥) =+ 0. Then

n wj . _ n w
05+ = 0.0 = ot fT 8 ()77 - [l
j=1k=0 j=1

@3 11 ()bl bl = @ £ T (u) 4 1) o) <
< o)™ (m(y)™ + 1). m(x). |w|" 2™ Q.E.D.
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Lemma. Let w be in M and f in 9,,,. Then
e [ b meyay <
R'l

(where m(y) = max {|y;| :j = 1,..., m}).

Proof. For each j = 1,2, ..., n, let w") be the element of M such that w{? = |w|
if j = k and w¥? = 0 otherwise. Then, for each y € R,

Z |9wm (.V)l = Z |)’j‘|w] .2n > m()’)M .
=1 =1
Thus, (5) and (15) imply (21). Q.E.D.

Lemma. Let {g,} be a non-negative sequence in L,(R") such that [g, d) = 1 for
all ke N and g,(x) = 0 for all x € R" farther from O than 1/k. Let s be in M and f
in 51‘;' Then

(22) likm (g *f).0,—f.6,], =0.

Proof. For each r > 0, let B(r) be the ball of radius r in R". Let ¢ be any positive
number. By (21), we may select » > 0 such that

(i) j |05 . f| dA < e[4.
R™\B(r)

and so, for x € B(1),

(ii) (\/(lzn))" L(r“)Jgs(y —x).f(y — x)|dy £ f BW|0, Sl da<efa.

Evidently, since f is in L;(R"),

lim j fv — x) — f()| dy = 0
x=0 J gn

so there exists m € N such that, if x e B(1/m),

(i) (7am) L( OO =)~ O 8y <.
| In view of (20) and (21), m can be chosen so that
O G S O v P

< (7a) [ 100+ = 000110 @y < i
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whenever x € B(1/m). From (i), (ii), (iii), and (iv) We have

1

) (7(27)) Lnlﬂs(y)l Afy = %) = £() dy <

éj +f <efd+ed+eld+efa=c.
B(r+1) B(r+1)c
For all k > m, (v) yields

1

Hwen-0. =10l = (5 ) | L0 [ 0616 = 00 = 10).00)| 47 =

-G 1.

s (). 181 [ 001 0 = ) - 50 4y ox <

< (¢(12n)>" f gD o=

Theorem 9. For each me Z*, $,, is an algebra and & a dense subset of Dm:

04(¥) |gu(x) [f(y — *) — f(y)] dx| dy <

Q.E.D.

Proof. Let f and h be in $,, and (s, w) in P(m). By Hérmander’s Rule
(i) 6, D*(fh) = ¥.6,. i~ <”r”) . D(f). D*"(h) ;

since (s, r) and (0, w — r) are in P(m), and since $, is an algebra, 8, D*(fg) is in Ho.
Hence, fis in ,, and $,, is an algebra.
Foreach k = 1,2, ... define

gk | R"3 x > k*?" exp (— k n|x|?) .
Thus

gy = g”,,]R"ax—»exp(— %lxlz)

If n =1 and p and g are positive integers, then 6,D%, is a linear combination

Lx) =W, (—1’;) x*P exp (—— % xz)

q
Y I, ; where
i=o
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and each W; is a polynomial of degree not exceeding j. The solution to dl; #x)[dx =0
being \/[k(j + p)]/2n, we have

sl = W, (1) L) ey exp(- ’f<f_+£>).

k 2n 2

This proves the first part of the following equality; the second part following from
the first in view of the arbitrariness of p:

(i) lim 0,D%, ] = 0 = lim 0,0

Evidently (ii) holds as well for arbitrary n, whenever p and ¢ are multi-indices and
g =+ 0. A direct calculation shows that, for g = 0,

(iii) lim 16,91 = 0.
That
(iv lim g, + £ = ], = 0

for all fe L,(R") is well-known.
Let he H,, and (s, w) € P,, be arbitrary. Then (ii) yields

Tm [0, D*(guh — )] <

IIA

(?)1e- 200 200 + Jo.. 0. = ) 2001

O*r<w

=Im( 3, )<»:) D"~ ()|, - 6. D"@)] o + |6 D*(B)[}1 |19 — 1] = O

OFrsw
furthermore (iii) and (iv) imply

i [0, D0k = W) =

= m (as [<,§Zwi_M (’:) D(g) - D“’"h) - D‘%])A -
= E r;vi—lwl Ds<[(vr") (6, - 9¢) * (ew_,ﬁ)] - ewﬁ) 1 <

sHm ¥ (‘:) 10,0 % D@y + [ gi * D0,B) — DO, =

*rsw

sim 3 () loads 1@ +0=0.

k= OFrsw
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This means that

v) lim [|gih — h|™ = 0.
k=0

Since h € §,, was arbitrary, we may apply the Fourier transformation to (v) to obtain

(vi) lim [|gi * h — h|™ = 0.
k—
Foreach k = 1,2, ..., we use (vi) to choose k' such that

N m _ 1
HGk' * (9ih) — ﬁkh”( b < —.
m
From this and (v) follows
(vii) lim | gy * (9. h) — h|™ = 0.
k
For any poor (p, ) of multi-indices, we have

[0, D(gue * (@i - W) |1 = [ D76, - g - (90 W)]x <
=3 (f) | D7(094) - [D7~"(ge) * A1 1 <

s 3 (0) 1700l 1ol 1l < .

which implies that g,. * (g, . h) € S for each k = 1,2, ....
Thus, (vii) implies that & is dense in $,,. Q.E.D.

Theorem 10. The projective limit () 9, is S.

m=0

Proof. By Theorem 9, € = ) $,,. It is a simple consequence of (15) and (14)

o]
that any function in ﬂ 9., is rapidly decreasing. It is evident that the usual topology

on S, that generated by the semi-norms of (0) is the one generated by the norms
| |, mez*. QE.D.

We have now shown that (1), (2), and (3) hold for the sequence {$,,}.-o. Note
that the duals of a sequence {H,,}»_, satisfying (1), (2), and (3) are Banach spaces
under their strong topologies. Kucera noted in [4] that the scquence {H,’,,},fzo of

duals may be regarded as an increasing chain such that &' = U H,, and that the

inductive topology induced on &' is finer than the strong topology ﬂ(@ S). Howev-
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er, the Mackey topology (€', €) on &' is just (&', &) and it is shown in [9] IV.4.4
that 7(&’, &) is the inductive topology induced by the Mackey topologies t(H,,, H,)-
The Banach spaces H,, bear their Mackey topologies precisely when they are reflexive,
and this is the case when the spaces H,, are reflexive. We have shown

Theorem 11. If a sequence {H,}u-, satisfying (1), (2), and (3) is composed of
reflexive spaces, then the strong topology B(S', ©) on &' is the natural inductive

topology on ) H,,.
m=0

We will investigate the multiplication operators from $, and $, in a further paper.
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