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Let A be a nonempty set and let F = F(A) be the system of all mappings of the
set A into A. For each f € F we denote by H(f) the set of all mappings g € F that are
permutable with f, i.e.,

H(f) = {geF :f(9(x)) = g(f(x)) foreach xeA}.

Further, we put

Eq(f) = {fi e F : H(f) = H(f,)} .

In this paper the following question will be investigated: how large can the set
Eq(f) be? It will be shown that the relation

(1) card Eq(f) < ¢

is always valid (independently of the cardinality of the set 4) and that the estimate (1)
is the best possible.

A mapping f e F is called connected if for each pair x, y € A4 there are positive
integers m, n with f™(x) = f"(y). In the present Part I the case when f is connected is
dealt with. The results of Part I will be applied in Part II to the general case in order
to prove the relation (1).

1. PRELIMINARIES

It will be convenient to use the algebraic terminology concerning unary algebras
and their homomorphisms.

Let A and F = F(A) be as above and let f € F. Then we can consider f as a unary
operation on A. The algebraic system (4, f) is a monounary algebra (for the ter-
minology, cf. B. JONssoN [4]) and H(f) is the set of all endomorphisms of the algebra
(4, f). Endomorphisms of monounary algebras have been studied by several authors
(for references, cf. M. NovoTnY [7] and L. A. SkorNJakov [9]).
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The set Eq(f) defined above is the set of all unary operations f, € F with the pro-
perty that the system of all endomorphisms of the algebra (4, f) coincides with the
system of all endomorphisms of (4, f;). If f; € Eq(f), then f and f, will be said to
be equivalent with respect to endomorphisms and we shall write f, eq f.

In terms of the algebraic terminology, the relation (1) can be expressed as follows:
Let & = {(A, f,-) :iel} be a system of monounary algebras having the same set of
endomorphisms. Then card & < c.

We denote by F, the set of all connected mappings of the set 4 into A. If fe F,,
then the algebra (4, f) is called connected.

A nonempty subset C is called a cycle of a connected unary algebra (4, f), if
(C. f) is a subalgebra of (4, f) and if there is a positive integer k such that f(y) = y
for each y € C. If a monounary algebra possesses a cycle, then the cycle is uniquely
determined and finite. The cardinality of a cycle C will be called also the period of C.

It will be proved that if f € F is connected and g € Eq(f), then g is connected as
well. For each fe F, we give a constructive description of all mappings g € F that
are equivalent to f with respect to endomorphisms (Thms. 1, 2 and 3). For each
f € F, the following assertions are valid:

(i) Suppose that (4,f) has a cycle C with a period p > 1 such that f(x)e C
for each x € A. Then card Eq(f) = ¢(p), where ¢ is the Euler function.

(ii) Let Z be the set of all integers. Suppose that there exists a subset Co =
= {x;€ A :ieZ} such that x; + x; whenever i, j are distinct elements of Z, f(x;) =
= X;,, for each i€ Z and f(y) € C, for each y € A. Then card Eq(f) = 2.

(iii) Suppose that neither the assumptions from (i) nor those from (ii) are fulfilled.
Then Eq(f) = {f}.

From (i)—(iii) it follows that the relation

(1 card Eq(f) < N,

is valid for each connected mapping f and that the estimate (1') is the best possible.

For f, g e F we put f < g if H(f) 2 H(g). Then (F, <) is a quasiordered set and
Eq(f) ={heF:h < f and f < h}. Let us remark that a similar quasiorder on
systems of unary operations (defined by means of homomorphisms) has been in-
vestigated in the papers [10], [3], [2]; an analogous quasiorder for systems of
abstract machines (i.e., partial monounary algebras) has been studied by W. BARTOL

[1]
2. SOME AUXILIARY RESULTS

Let us denote by N the set of all positive integers, N, = N U {0}, and let Z be the
set of all integers. Further, let Z, be the set of all integers modulo. p.

Let (4, f) be a monounary algebra. The notion of the degree s/(x) of an element
x € A with respect to the operation f was introduced in the paper [7] (cf. also [5]
and [8]) as follows:
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Let us denote by 4(®) the set of all elements x € 4 such that there exists a sequence
{X,}nen, of elements belonging to A with the property x, = x, f (x,) = x,-1 for each
neN. Further, we put A® = {xe 4 :f7(x) = 0}. Now we define a set AP = 4
for each ordinal A by induction. Assume that we have defined A® for each ordinal
o < A. Then we put

AD = {xe A = UpesA® 1 f7Hx) € UpsA®} .

The sets AW are pairwise disjoint. For each x € 4, either x € 4 or there is an
ordinal 1 with x € A¥). In the former case we put s,(x) = oo, in the latter we set
sp(x) = A

The following assertions are consequences of the definition of s,(x) (cf. also [8],
Lemma 3.14 and Lemma 3.15):

(a) Assume that either o is an ordinal or o = 0. If s/(X) < «, then s (f(x)) < .
(b) If 5/(x) + oo, then s (f(x)) > s/(x).

The construction of the mapping H in the following lemma is analogous to that
used in [8], Definition 5.10.

Lemma 1. Let (4, f) be a connected monounary algebra, x, y€ A, x * y, f(x) =
= f(»), s/(x) £ s/(y). Assume that f"(x) + x and f"(y) % y for each neN. Then
there exists a mapping H : A — A such that H is a homomorphism with respect
to f, H(x) = y and H(z) = z for each z € en.f ~"(»)-

Proof. This is an immediate consequence of Definition 12 and Theorem 1 of [6].

Lemma 2. Let (A,f) be a connected monounary algebra, x,y,ze A, x * z,
j€No, fi(y) = x,f(x) = f(z) and let f"(x) + x for each n € N. Further,let H : A —
— A be a homomorphism with respect to f such that H(x) = H(z) = x. Then there
exists a mapping H' : A - A such that H' is a homomorphism with respect to f
and H'(x) = H'(z) = x, H'(y) = ».

Proof. Let the assumption of the lemma hold. The element z does not belong to
the cycle of the algebra (4, f), since H is a homomorphism with respect to f, H(z) = x
and x does not belong to the cycle. Thus we have also 5,(z) < 5,(x) and according

to Lemma 1 we obtain that there is a mapping H' : A — A such that H' is a homo-
morphism with respect to f and H'(x) = H'(z) = x, H'(y) = ».

Lemma 3. Let f,g € F, feq g. Then we have:
(a) If x € A, f(x) = g(x), then g"(x) = f"(x) for each ne N.
() If x € A, f(x) = x, then g(x) = x.

Proof. (a) The mapping f is obviously a homomorphism with respect to f. There-
fore f is a homomorphism with respect to g, thus f and g are permutable. Then we get

¢
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for xe A
F7x) = f(F(x)) = f(a(x)) = 9(f(x)) = 9(9(x)) = g°(x)
and by induction we obtain f"(x) = g"(x) for each n € N.

(b) Let x € 4, f(x) = x. Put H(z) = x for each z € 4. The mapping H is a homo-
morphism with respect to f because, for each z € A4,

H(f(2) = x = f(x) = f(H(z))
is valid. Thus H is a homomorphism with respect to g as well which yields
9(x) = g(H(x)) = H(g(x)) = x.
Let xe€ A, he F. We denote
Kh(x) = UmeNo UnsNo h_m(h"(x)) .

If y € h™J(h¥(x)) for some i, j € No, then obviously K,(x) = K,(y). The monounary
algebra (K,(x), h) will be called a connected component of (A, h) generated by the
element x. Let (4’, h) be a subalgebra of (4, h); (4’, h) will be called a connected
component of (A, h), if there exists x € A such that A’ = K,(x).

Lemma 4. Let f,g € F, feq g and let (A, f) be a connected component of (4, 7).
Then (A’, g) is a connected component of (4, g).

Proof. (a) First assume that there exists an element x, € A’ such that g(x,) ¢ 4’.
Put H(x) = f(x) for each x € 4’, H(x) = x for each xe 4 — A’. The mapping H
is a homomorphism with respect to f, hence H is a homomorphism with respect
to g and we get

9(f(xo)) = g(H(x0)) = H(g(x0)) = g(xo) -
Let neN, n > 1 and suppose that the relation
g(f™(xo)) = 9(xo)
holds for each n, e N, n; < n. Then
9(f"(x0)) = fg(f"~*(xo)) = f(g(x0)) = 9(£(x0)) = g(xo)-
Let xe/™"(y), y = f(xq), m, n € No. Then
9(x0) = 9(f"(x0)) = 9() = 9(/"(x)) = 9(H"()) = H"(g(x)) -

If we assume that g(x) € 4', then H"(9(¥)) = f"(g(x)) € 4’, which is a contradiction
with g(xo) ¢ A’. Thus we get

H"(g(%)) = g(x) .
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Hence, for each x EUmeNo U"ENof—m(fn(xo)) = Kf(XO) = A” the relation g(x) =
= g(xo) holds. This implies

flg(x0)) = g(f(xo)) = g(xo)

and, according to Lemma 3(b), g(g(xo)) = g(xo)- By induction we obtain g"(x,) =
= g(xo) for every ne N. Now we set G(x) = g(xo) for each x & J,ex, 9 "(¥o) and
G(x) = x for each x € 4 — e, g "(x,). The mapping G is a homomorphism with
respect to g. According to Lemma 3(b), f(Xo) # Xo. Further we have g"(f(xo)) =
= g(x,) for each n € N, hence G(f(x,)) = f(¥o)- Thus G fails to be a homomorphism
with respect to f, since

G(f(x0)) = f(x0) * (x0) = f(9(x0)) = F(G(xo)) -

We arrived at a contradiction, therefore g(A’) c A/, i.e., the set A’ is closed with
respect to the operation g.

(b) Let A" = K/(xo) and let x € K (xo). Then there are m, ne N, such that
g"(x) = g"(x,). From part (a) of the proof it follows that g(x)e K/ (x) and by
induction we obtain g(x) € K (x) for each k € N,. Then g"(x) € K /(x). Since g™(x) =
= g"(x,) € K (%), we have K ;(x) n K (x,) # 0 and thus x € K ;(x,). Hence K,(x,) =
< K (xo). Analogously, K /(x,) = K,(xo), and therefore K (xo) = K,(xo)-

Corollary 1. Let fe F,, g € Eq(f). Then g € F..

3. CONSTRUCTION OF THE OPERATIONS g € Eq(f)

Let % be the class of all connected monounary algebras. We introduce the fol-
lowing denotations for classes of monounary algebras:

0, — the class of all algebras that belong to % and contain a one-element cycle;

0, — the class of all algebras that belong to % and possess a cycle with more than
one element; i

0,0 — the class of all algebras (B, g) belonging to 0, such that g(x) belongs to
the cycle of (B, g) for each x € B;

021 = 0, — Oz '

A" — the class of all algebras of the class % with the property that the degree of
each element is an ordinal; v

Ay — the class of all algebras belonging to % — (0, U 0,) and having distinct
elements u, u’, v, v’ such that f(u) = u’, f(v) = v/, f(w) = f(v') (Where f is the
corresponding unary operation);

Ny=U—(0,00,0H UN).
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Lemma 5. Let (A,f)e N'5. Then there is a set {x,€ A :ieZ} such that x; ¥ x;
for each i,jeZ, i * j, f(x;) = x;4, for each i€ Z, and f(y) € {x;: i € Z} for each
yeA.

Proof. Since (4, f) ¢ A, there exists x € 4 such that s/(x) = oo, i.e., there exists
a sequence {y;} .y, of elements of A such that y, = x, f(y;) = y;—, for each i e N.
Put x; = f(x) for each i€ Ny, x; = y_, for each i€ Z, i < 0. Because of (4, f) ¢
¢ 0, U 0, the elements {x;},, are distinct. We have f(x;)) = x;4. Suppose that
there exists y e 4 with f(y) ¢ {x;:ieZ}. Then y ¢ {x,:ieZ}. The algebra (4, f)
is connected, thus there exists the least i € Z such that f"(y) = x; for some ne N
(obviously, n 2 2). Let us denote u = f"~2(y), u' = "~ (), v = x;-5, V' = X;_;.
The elements u, u’, v, v’ are distinct and f(u) = ', f(v) = v, f(u') = f(v'), which is
a contradiction with (4, f) ¢ A";.

Theorem 1. Let A = J;({x;} U B)), x; # x; for each i,jeZ, i * j, x, ¢ B, for
each i€ Z. Further, let f(b;) = x;,, for each b;e {x;} U B;, j€ Z. Then Eq(f) =
= {f, g}, where g(b;) = x;_, for each b;e {x;} U B}, je Z.

Proof. If H is a homomorphism with respect to f, then there exists i € Z such that
) H(x;) = xj4i, H(B;) < Bjii U {x;4:}

holds for each j e Z. And conversely, if H is a mapping satisfying (2) for some i € Z,
then H is a homomorphism with respect to f. Similarly, H is a homomorphism
with respect to g if and only if there exists i € Z such that the condition (2) is fulfilled.
Therefore g eq f.

Now suppose that h e Eq(f), h =+ f, h + g. Lemma 4 implies h € F,. The opera-
tion h is a homomorphism with respect to f, thus there exists i € Z such that h(x;) =
= Xj;; M(B;) S B;+;u {x;4;} for each jeZ. The component generated by x;
contains X;.,; m € Z, and it contains no x; with k % j + mi for all m e Z. Since
heF, we have i =1 or i = —1. If i = 1, then h(x;) = x;,, = f(x;) for each
j€Z, thus there is je Z, bje B;, b;,; € Bj,; with h(b;) = b;,,. Put H(z) = z for
each ze 4, z # b;, H(b;) = x;. Then H is a homomorphism with respect to f, but
it is not a homomorphism with respect to A, since

h(H(bj) = h(x;) = xj41 # bjv1 = H(h(b))),

which is a contradiction. In the case i = —1 we obtain a contradiction analogously
as in the case i = 1, if we replace f by g. ‘

Hence Eq(f) = {f. g}.

Theorem 2. Let peN, p > 1 and let A =Uiz,({x:} UB)), x; * x; for each
i,jeZ, i+ j, x;¢B; for each i€Z, Further, let f(b;) = x;., for each b;e
e{x;} UB,, jeZ, Then Eq(f) = {f*:0 < i < p, i and p are relatively prime}.
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Proof. First assume that g eq f. Since g is a homomorphism with respect to f, we
have g(x,) € {x; :j € Z,}. Put g(x,) = x;. According to Lemma 3(b), i + 0 holds
and we have

9(x)) = 9(f(x0)) = f(g(x0)) = fi(xs) = x;4;-

Suppose that there exists d € N, d > 1 such that both p and i are divisible by d.
From Lemma 4 it follows that there are m, n € N with g"(x,) = g™(x,). By induction
it can be easily shown that ¢"(x,) = x,; and hence

Xpi = gn(xo) = gm(xx) = g"'(f(xo)) =f(g"'(xo)) =f(xmi = Xmi+1 o

Then ni = mi + 1 (mod p) and there exists le Z with ni = mi + 1 + Ip. This
implies that 1 is divisible by d, a contradiction. Hence i and p are relatively prime.

Let jeZ,, b;e B;. We obtain
fla(by) = 9(f(5))) = 9(xj+1) = Xjs1415

thus g(b;) € f~'(Xj4i+1) = {X;+:} U Bj4+;. Suppose that there is b;,;€ B, ; such
that g(b;) = b;,;. If we set H(b;) = x;, H(z) = z for each z€ A, z + bj, then H
would be a homomorphism with respect to f, but it would not be a homomorphism
with respect to g, which is a contradiction. Therefore g(b;) = x;. ;. We have proved
that g = f'.

Now let g = f), ieN, 0 <i < p, i and p being relatively prime. Then there
exists ke N, 0 < k < p such that ki = 1 (mod p) and k and p are relatively prime.
Since

f(xj) = Xj+1 = Xjiki = gk(xj) >
J(b)) = xj41 = Xjumi = 9(x;) = g"(b))

for each b; € B; and each je Z,, i.., f = g*, a mapping H : A - A is a homomor-
phism with respect to f, if and only if H is a homomorphism with respect to g.

Corollary 2. If the assumptions of Theorem 2 are fulfilled, then card Eq(f) = ¢(p),
where ¢ is the Euler function.

Remark 1. Observe that in the proof of Theorem 2 it has been shown that the fol-
lowing assertion is valid:

(i) If f fulfils the assumptions of Theorem 2 and if g € Eq(f), then there isie N
such that 0 < i < p, i and p are relatively prime and g = f.

(ii) If n is as in (i) ind if k is a positive integer such that k < p, ki =1 (mod p),
k and p are relatively prime, then f = g*.

(The fact that i and p are relatively prime implies the existence of a positive integer k
such that k < p, ki = 1 (mod p) and k and p are relatively prime.)
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Lemma 6. Let A = {x,} U By, xo ¢ B, f(z) = x, for each z € A. Then Eq(f) =
= {f}.

Proof. Let g € Eq(f) and let x € 4. If we set H(x) = x,, H(z) = z for each z € 4,
z # x, the mapping H is a homomorphism with respect to f. Then H is a homomor-
phism with respect to g and, according to Lemma 3(b), we get (because either x = x,,
or we have g(x) # x by Lemma 4)

J(x) = xo = g(xo) = g(H(x)) = H(g(x)) = g(x)-

Lemma 7. Let (A4, f) be a connected monounary algebra and suppose that s (x) =+
+ oo for each x € A. Then Eq(f) = {f}.

Proof. Letg e Eq( f ) From the assumptions of the lemma and from the fact that g
is a homomorphism with respect to f it follows that f"(g(x)) # x for each x e 4
and for each ne N, Namely, we have f(x) + x and s/(g(x)) = s,(x) for each
x € A. If there exist x € 4 and n e N, with f"(¢(x)) = x, then for n 2 1 we obtain

sp(x) = s/ (f"(9(x))) > s/9(x)) = s,(x);

hence n = 0, g(x) = x. According to Lemma 3(b) we have f(x) = x, which is a con-
tradiction.
Let x € A. Since f € F,, there are m, n € N, with f"(x) = f™(g(x)). Denote f"(x) =
= z, g(x) = y. Suppose that m = n. Then
fm7(g(@) = f*"((f*x) = f"(9(x)) = =,
which is a contradiction. Thus n > m. Put n — m = i. Further assume that f(x) # y.
We obtain

() f@) =17 = f7U0) = £10) = (6() = 9(f"(x)) = 9(2) -

Lemma 4 implies g € F,, hence there exist k, j € N such that g¥(z) = g’(f(z)). It can
be easily shown by induction that g*(z) = f*(z) for each k € N. Then

f¥(2) = g4(2) = ¢'(F(2)) = 1(9°(2)) = 9(¢(2)) = F(f(2)) = F/"""(2) ;
this yields ki = ji + 1, hence i = 1.

Further, assume that n is the least positive integer with f"(x) = f"~(y) (since
f(x) # y, n>1 holds). Denote f* *(y)=c, f""!(x)=a, f*"*(x)=b. Then
a # c¢ and we have

g(b) = g(f**(x)) = f""Xg(x)) = f*7*(y) = ¢, ,

g(a) = g(f""'(x)) = £ H9(x)) = f*7() = f1(x) = f(f"7'(x)) = f(a) .
According to Lemma 3(a) we have g'(a) = f%(a) for each I € N,. Further we obtain
Q=172 0) = f710) = z = f(a) ,

f(9(e)) = 9(() = 9(f(a)) = f*(a),
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thus g(c) € f ~*(f*(a)). By induction it can be shown that

9(c)ef ' (f"" (@) = f 79" (a))

for each le N. Since g € F,, there are ¢, x € N with g'(a) = g*(c). Hence we have

g(c)ef " g**(a),
@) = 1(70) = (00) = ¢ 00) = 06(a) = 4™,
thus % = . Now let % be the least positive integer such that g (a) = g*(c). Put
a' = g* (a), ¢ = g*"(c); obviously a’  ¢. Then
1) = £ @) = ¢~ @) = ¢ 0(6) = 76 E) = 1)-

First assume that s(a’) = s,(c’). From Lemma 1 it follows that there is a mapping
G e F such that G is a homomorphism with respect to f and G(¢') = a’, G(b) = b.
Then G is a homomorphism with respect to g and

¥ = G(¢) = 6g*™E) = Gla"(a(8) =
= g*"'(9(G(b)) = g*"'(g(b)) = " H(c) = ¢',
which is a contradiction. »

Suppose that s(a’) < s,(¢’). Then according to Lemma 1 there exists a mapping
H e F such that H is a homomorphism with respect to f and H(a") = H(¢') = ¢'.
Since H is also a homomorphism with respect to g, Lemma 2 implies that there is
a mapping H’ € F such that H’' is a homomorphism with respect to g and H'(a") =
= H'(¢) = ¢/, H'(b) = b. Hence we obtain

¢ = H'(a') = H(9*"!(a) = H'(¢9* (f(b))) =

= ¢ HEE) = G0) = @) =
which is a contradiction. We have proved that f(x) # g(x) is impossible for every
x € A. The proof is complete.

Lemma 8. Let (A, f) be a connected monounary algebra and let there exist
u,ve A, ke N such that the following conditions are fulfilled:

(@) fH(u) = us

(b) v * fi(u) * f(v) for each j e Ny;

(©) u =)
Then Eq(f) = {f}.

Proof. Let ko be the least positive integer with f*°(u) = u. Put C, = {f/(u):
:jeN}. If ze A, ky €N and if f*(z) = z, then obviously z € C,. Let g € Eq(f).

414



Then g is a homomorphism with respect to f and g(u) = g(f*(u)) = f*(g(u)),
hence g(u) € Co. If ko > 1, then there is i e Ny, 0 < i < ko such that g(u) = fi(u).
This implies g(f/(u)) = f/*%(u) for each je N. Since f() % u, we have i + 0 ac-
cording to Lemma 3(b). If k, = 1, then g(u) = u by Lemma 3(b).

(«) In the case ko = 1 or i =1 we obtain g(f’(u)) = f(f(u)) for each je N,,
i.e., g(x) = f(x) for each x € C,. For each n e N we define by induction the set C,
by putting C, = f~'(C,-;) — C,—;. Wehave C, = {x e 4 : f"(x) € Co, f""}(x) ¢ Co}
for every ne N. Clearly, n > 1 and x € C, n f~*(C,) imply f"(x) € C, and f(x) € C,
whence f"(x) ¢ Co; this is a contradiction. Thus x € C, n f~*(C,) implies n = 0.

We shall prove that g(x) = f(x) for each x € C, and for each n € N,. If there is an
element x € C, such that y = g(x) # f(x), then f(x) € C, and we obtain

fla(x) = 9(f(x)) = F(f(x)) = F*(x),

ie., g(x)ef '(f*(x)). Then either g(x)e C, or g(x)e C,. If g(x)e Co, we have
g(x) = f(x). Hence g(x) € C;. Put

H(z) = z *for each z ¢ Upmenof "(%),
H(z) = f%™™™(x) foreach zef ™(x), meN,,
where j is an element of N such that jk, — m > 0.
The mapping H is a homomorphism with respect to f since
f(H(z)) = f(z) = H(f(z)) for each 2z ¢ Upmen,/ "(x),
FH(x)) = f(f(x)) = £*(f(x)) = H(f(x)) »
f(H(2)) = f(f7°7"(x)) = 77" (x) = H(f(z)) for
each zef ™(x), meN.
Further, we have
g(H(x)) = g(£*(x)) = f(F*(x)) = f***(x) * g(x) = H(g(x))
because f*°**(x) € Cy. g(x) ¢ Co. Thus H fails to be a homomorphism with respect
to g. Hence we have proved that g(x) = f(x) for each x € C;.

Let ne N, n > 1 and suppose that for each me N, m < n and each x’ € C,, the
relation g(x') = f(x) holds. If there is x € C, such that g(x) = y # f(x), then
x" = f(x) e C,~ and we obtain

flg(x)) = 9(f(x)) = 9(x') = f(x') = £*(x),
ie, g(x)ef ! (f*(x)). Since f*(x)e C,—,, we have g(x)ef '(Ch-2) € C,—y L
U Cpoy. If ye Cy—5, then ye C,_, n f7}(C,-,) and thus n = 2; put
Hy(z) = z foreach z¢Umen, 9 ™(x),
Hy(z) = g™ "™(x) foreach zeg ™(x), meN,,
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where j is an element of N such that jk, — m > 0. The mapping H, is a homomor-
phism with respect to g, but it is not a homomorphism with respect to f since

Hy(f(x)) = Hy(x) = x' + y = g*(y) = ¢°'(9(»)) =
= g (f(f(%) = ¢ (9(x)) = g°(f(x)) = f(g"(x)) = f(H\(x)),

which is a contradiction. Thus y € C,_;. Then f(y) = f(g(x)) = 9(f(x)) = g9(x') =
= f(x'). If s(x') < s/(y), then Lemma 1 implies that there is a mapping H, € F
such that H, is a homomorphism with respect to f and H,(x') = y, H,(y) = y.
Therefore H, is a homomorphism with respect to g and according to Lemma 2
there exists a mapping H; € F such that Hj is a homomorphism with respect to g
and Hj(x') = Hy(y) = y, Hy(x) = x. Thus

Hy(f(x)) = Hy(x') = y + x' = f(x) = f(Ha(x)),

and this is a contradiction. If s (x") > 5,(y), then it follows from Lemma 1 that there
is a mapping H € F such that H; is a homomorphism with respect to f and H,(x') =
= Hy(y) = x', H3(x) = x. Therefore

Hy(g(x)) = Hy(y) = x # y = g(x) = g(Hs(x)),

which is a contradiction. Hence we have proved that g(x) = f(x) for each
X € Uneno,Cn = A.

(B) Now let i > 1. Lemma 3(a) implies g(z) % f(z) for each z € 4. Put x = f(v);
then f(g(x)) = g(f(x)) = g(u) = fi(u), ie., g(x)ef~!(f'(u)). Since g € F,, there
exists the least positive integer no with g"(x) € Co. If ny = 1, then g(x) = f'~(u);
we put

G(z) = z foreach z¢Unen, 9 "(x),

G(z) = f/ ™" (u) foreach zeg"(x), neN,,
where jeN issuchthat jko —ni—1=0.

The mapping G is a homomorphism with respect to g since

G(9(z)) = 9(z) = 9(G(z)) for each z¢,en, 97 "(%),
G(9(x)) = g(x) = £171(u) = £** () = fo7H(fi(w)) =
= 7 (g(w) = g(5* " () = 9(6()) ,
Gg(z) = 77V (w) = fHTN(F(w)) =
= flom Y g(w)) = g(f* """ 1(w)) = ¢(G(z)) . for I
each zeg™(x), neN.
Further, we have f(g(v)) = 9(f(v)) = 9(x) = f"*(u), ie., g(v) ef}(f"*(w). If
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g(v) € Co, then g(v) = f***~%(u) € C,, and g"(v) € C, for each n e N. Thus g"(v) +
%+ x ¢ C,. Therefore G fails to be a homomorphism with respect to f since

G(f(v) = G(x) = f*7'(u) + x = f(v) = £(G(v)) -
Hence g(v) ¢ C, and we set
Gy(z) =z foreach z¢,nof "(9(v)),
Gy(z) = f*7"(g(v)) foreach zef "(g(v)), neNo,
where j is an element of N such that jk, —n > 0.

The mapping G, is a homomorphism with respect to f. Because of v # g(v), f (v) *
+ g(v) and f"(v)e C, for each neN, n = 2, we have f"(v) # g(v) ¢ C, for each
n e N,. Then G,(v) = v and G, is not a homomorphism with respect to g since

Gi(9(v)) = *(9(®)) € Co» 9(G1(v)) = 9(v) ¢ Co ,

and this is a contradiction. -
In the case n, > 1 the relation g(x) e f ~*(f(u)) — C, is valid. Put

Gy(z) = z foreach z¢ (.S "(9(x)),
Gy(z) = f*~"(g(x)) for each zef "(g(x)), neN,,
where je N issuchthat jko —n>0.

The mapping G, is a homomorphism with respect to f. Since x =+ g(x) *+ f(x) and
f"(x) e Cy for each 1 < neN, g(x)¢ C,, we have f"(x) & g(x) for each neN,.
Then G,(x) = x and G, fails to be a homomorphism with respect to g since

Ga(9(x)) = f*(g(x) € Co» 9(Go(x)) = 9(x) ¢ Co ,
which is a contradiction. Hence we have proved that Eq(f) = {f}.
Lemma 9. Let (A. f) be a connected monounary algebra such that f"(z) + z

for each ze€ A, n € N. Assume that there are distinct elements u, u’, v, v’ of A with
the property

3) f@)y=v, flo)y=v, f) =f(v’)'.
Then Eq(f) = {f}.

Proof. The case when s{(z) # oo for each z € 4 has been investigated in Lemma 7.
Hence we shall study the opposite case. Let g € Eq(f), g # f. Suppose that x is an
element of 4 with g(x) = y # f(x). Since f e F,, there are n, me N, with f*(x) =
= f™(y). Put f*(x) = z. If n = m, then ‘

9(z) = 9(f"(x) = f"(g(x)) = 1"0) = =
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and, according to Lemma 3(b), f(z) = z, which is a contradiction with the assumption
of the lemma. Let i = n — m and assume first that i > 0. In this case we use the same
reasoning as in the proof of Lemma 7 beginning with the relation () (let us remark
that in the part of the proof of Lemma 7 that follows the relation (*) we did not use
the assumption that s(u) + co for each u € 4). By the same method as in Lemma 7
we arrive at a contradiction.

Assume now that i < 0. We have

z = f"(y) = f9(x)) = 9(f"(x)) = (/""" (/")) =
= g(f""(2) = f""(9(2)) = f 79 (2)) »
hence g(z) € f(z). By induction it can be shown that, for each I e N, the relation
g'(z) € f'{(z) holds. Put x, = f"(z) for each r € N, x, = f ~'*"(g'(z)) for each r e Z,

r < 0, where [ is the least positive integer with —li + r 2 0. If re Z, r < 0, we
obtain

F7) = £ @ @) = S E) =

ie., x, €f7(z). Since x, = f'(z) for each r e Ny, we have x, *+ x, for each r, pe Z,
r # p. From g € F, it follows that there are k, j € N with g*(z) = g/(f(z)) and then

=) = f(F 76" 2) = £ (f(2) =
=f—ji—kl'+l(gj(z)) =f—ki+l(f—ji(gj(z))) =f"ki+l(z) ;
hence i = —1. Since x, = f'*"(g'(z)) for re Z, r < 0 and [ is the least positive

integer with I + r = 0, we get | = —r. Thus x, = g~"(z) for each reZ, r < 0.
Obviously g(x,) = x,_, foreach re Z, r < 0. If r > 0, we have

9(x) = 9(£(2) = 19(2)) = /" (F(9(2)) = f(2) = x,-1 -

The identity g(x,) = g(z) = x_, holds as well. Obviously f(x,) = x,., for each
reNy If r < —1, then

J6e) =1(67) = 67 (f(2) = g7 H(9(f(2) = 9777 (z) = Xrs1 -

Since also f(x-;) = f(g9(z)) = z, we have f(x,) = X,+1, 9(x,) = x,-; for each
reZ. From this and from Lemma 3(a) it follows that g(w) # f(w) for each w e 4.
Put C, = {x, : r€ Z}. According to the assumption, f(u’) = f(v'), u’ + v', thus at
least one of the elements u’, v' does not belong to C,; let v’ ¢ C,. Because of fe F,,
there is the least positive integer I such that f!(v) € C,. Since f(v) = v’ ¢ Co, we get
1> 1. There exists re Z with f!(v) = x,. Put w=f'"%(v), w = f*"!(v). Thus
w, w' ¢ C, and we have

flaw) = g(f(w)) = 9(x,) = X-1,
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ie, g(w)ef " (x,-,). If g(w') € Co, then g(w') = x,_,; we set
G(a) = a foreach a¢l,.n,g7'(W),
G(a) = X,4,-, foreach aeg™'(w), teN,.

The mapping G is a homomorphism Wwith respect to g. Further, we have

flaw)) = g(f(w)) = g(w) = x,_,,

ie., g(w)ef '(x,-2). If g(w) € Co, then g(w) = x,_; and g'(w) e C, for each te N,
hence g'(w) + w’ ¢ C, for each t € Ny, and G(w) = w. Then we get

G(f(w)) = G(w) = xp-1 + W' = f(w) = f(G(w),
which is a contradiction, therefore g(w) ¢ C,. We put
Gy(a) = a foreach a¢,.n,f "(9(w)),
Gy(a) = x,_,_ foreach aef '(g(w)), teN,.

The mapping G, is a homomorphism with respect to f. Because of w + g(w), f(w) +
# g(w) and f*(w) e C, for each te N, t > 2, we obtain f'(w) + g(w) ¢ C, for each
teN,, and Gl(w) = w. The mapping G, fails to be a homomorphism with respect
to g since

Gi(g(w)) = x,—3 * g(w) = g(G,(w)) ,
and this is a contradiction.
In the case g(w')ef ™ !(x,-,) — Co We set
Gy(a) =a foreach a¢.n,f "(g(w)),
G,(a) = x,_,—, foreach aef '(g(w)), teN,.

The mapping G, is a homomorphism with respect to f. Since w' + g(w'), f'(w') € Co
for each te N, g(w') ¢ C,, the relation f'(w’) * g(w’) holds for each teN,, and
G,(w') = w’. Then we have

G(g(W)) = x,_, * g(w') = 9(G,(w")),

hence G, is not a homomorphism with respect to g, which is a contradiction. Thus
we have proved that if g € Eq(f), then g = f.

Theorem 3. Let (A, f) be an algebra belonging to some of the classes X', 0,, 05,
and Ay. Then Eq(f) = {f}.

Proof. The assertion follows from Lemmas 6, 7, 8 and 9.

The assertions (i), (ii) and (iii) from § 1 are consequences of Theorems 2, 1 and 3.
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