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LATTICES OF CONVEX EQUIVALENCES¥*)

TEeO STURM, Praha

(Received August 12, 1977)

This paper is a continuation of [1] and [4—6]. In the first part of the present
paper ther is proved that the lattice of all convex equivalences of an ordered set can
be interpreted as a lattice of all congruences of an object of a special category. The
second part contains a characterization of compact elements of this lattice. In the
final part, we shall study an equivalence on the set of all orderings of a given set.
I want to express my great thanks to prof. MIROSLAV NOVOTNY for his numerous
suggestions that had deep influence to my work.

CONVEX EQUIVALENCES AS J-CONGRUENCES

1. Notation. a) Let & = (X; <) be an ordered set. Let us define for every x, ye X
(x>e =pe{zeX | z<x}, X)g =Df{zeX|x <z},
{X, D& =pt <x)x n (.V>9r s [X, .V]x =pe X, g U Y, XDg U {x, y} .

Y is called convex subset of & if for every x, y € Y, there is [x, y]y < Y. An equi-
valence ¢ on X is called convex in Z, if every element of the corresponding factor-set
X|o is a convex subset of Z. The set of all convex equivalences on % will be denoted
by ¢(%) or by ¢(X; <). The system ¢(%) was studied in [4], Sections 35—45 and in
[5], Section 5. (See also [8].)

Let r be a binary relation. By the way of the following definition, we obtain a ternary
relation ¢&,:

(x,y,2) €& < (x,y)er et (y,z)er.

If # = (Y; r), then we put ¥* = (Y; &,).

*) This paper has originated at the Seminar ‘“Algebraic Foundations of Quantum Theories”,
directed by prof. JIRf FABERA. It is my pleasant duty to express my thanks to Dr. JANA RYSLIN-

KOVA, a member of this seminar, who has substantially contributed to the improvement of the
text.
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If Z is a system of sets, then the ordered set (Z; <_:) will often be denoted by Z,
as well,

b) In this paper we shall use the notation of [6] (Section 1). Especially recall:

E(X) is the set of all equivalences on X. Let r be a relation of arity n. For the sets

., Y, put (Yl, . Y,,) e, if either Y; = @ for every i = 1, ..., n, or there exist

y1€ Yy, ..., ya€ Y, such that (y,, ..., y,) € r. The symbol (X; r) denotes a structure
with the support X and an n-ary relation r n X",

¢) In the whole paper, & = (A; §) will denote a given ordered set. If x, y € 4,
then we shall write (x), (x), {x, ¥, [x, y] instead of (x) , {X)a, <X, YD s [X, ¥]e-

2. Remark. Section 1 of paper [1] contains the definition of the class Cony (X)
of all S -congruences for every J -object X of a given category . Section 1 -of
paper [3] contains the following result: If 2" is the category of algebraic structures
of a given type, then Con, (X) is a set and it holds

Cony (X) = {ker f| domf =X, fisa f—morp}hisAm}}

In sections 3 — 7 of the present paper, we consider a problem in a certain sens converse:

Let us associate, to every ordered set Z, the set c(ffl’ ) A shown in the following,
there exists a quasivariety 7 of relational systems with a ternary relation and a map-
ping & > %° (where ° € 7°° such, that (%) = Cony (2°).’

3. Remark. a) Let us define the category . The class 7 °° is a quasivariety of all
relational systems Y = (Y’; {;) satisfying the following quasiidentity

1 - : (Vx, ye Y)((x,y,x)ely=>x=y).

If Y, Z e 7°, then f e Hom, (Y, Z) iff f : Y’ — Z' is the usual homomorphism of ¥
to Z *). Following Section 5 of paper [3], Cony (Y) is an algebraic closure system
of the lattice E(Y”) (7°° being a quasivariety). Hence Con (Y) is an algebraic lattice
(see Section 8/a or [2], Section 5).

b) Theorem 2.c of paper [3] ylelds the followmg characterization of J -con-
gruences:

Let Ye 7°° and let 0 € E(Y"). Then o € Cony (Y) iff (Y'[0; ({4)) € 7

(A quasivariety is closed under 1somorph1sms and homomorphic images; the set of
operational symbols is empty in our case, hence every equivalence on Y’ is an absolute
congruence on Y. It is easy, after aH to prove th1s result directly.)

c) LetZ = (B =<)bean order¢d set. The ordenng being an antisymetric relation,
#B* = (B; é<) is a 7 -object. Given f: A - B, itis obvious that f € Hom, (s, %)
iff f is an isotonic mapping from &/ to 4.

*) ie. it bolds ) X
B R Vx, y,2€ Y ((x, ¥,2) € Ly = (f(0), fON f(2)) € (). -
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4. Theorem. There is c(/) = Cong (*).
Proof. Let o € ¢(s#). All the elements of 4/c aré convex subsets of &, hence
(VX, Ye Alo) (X, Y, X)e(() =X =Y),

i.e. (A]o; (£<)) € 7 °°. This yield, by Section 3/b, o € Cony (*).

Now, let o € Cony (o/*). Then there exists h € Hom, (&/*, Y) (where Ye 7°%
such that ¢ = ker h. Let x;,x,€X € Ao and ye A be such that x, < y < x,.
Then (x,, y, X,) € £< and thus, h being a 7 -morphism, there is (h(x,), h(y), h(x,)) €
€ {y. Further (x,, x,) € ¢ = ker h, i.e. h(x,) = h(x,). Hence, by (1), there is h(x,) =
= h(y),i.e. y € X. Thus o € ().

5. Corollary. ¢(«) is an algebraic closure system of the algebraic lattice E(A).
Especially: ¢(&) is an algebraic lattice.

Proof. This assertion follows immediately from Theorem 4 and the results men-
tioned in Section 3/a and 8/a. This assertion can also be proved directly.

6. Remark. Hence lattices of convex equivalences can be interpreted as lattices
of I -congruences. Of course, it is possible that there exist some other categories with
the same property. From this point of view it is interesting to consider the following
theorem, showing that a relatively natural category J¢" is not convenient for that.

7. Theorem. Let X" be a category satisfying the following three conditions:

Every X -object X is a relational system (X'; rx) with a binary relation ry.
Every ordered set is a A "-object.
There is, for every X, Ye A4°°,

Homy (X, Y) = {f: X' = Y'| (Vx, y e X') (xrxy = f(x) ry f(¥))}- *)

Then there exists an ordered set B with
c(B) % Cony, (B) .

Proof. Let C = (C’; rc) be the ordered set characterized by Fig. 1.

Co °C,

Fig. 1.

*) Le. the class of all #-morphisms is the class of all usual homomorphisms of X -objects.
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Then
0 =pg {Cl’ 02}2 U {03, "4}2

is a convex equivalence on C. If o ¢ Con, (C), then the theorem holds. If we suppose
that ¢ € Con, (C), then there exist X € #°® and h € Hom, (C, X) such that ¢ =
= ker h. This yields the existence of two elements x, y € X’ with

h(c;) = h(cs) = x + y = h(cs) = hca).

=4,

G »

Fig. 2.

Fig.3
od1
Since h is a o-morphism and (cy, ¢5) € r¢, (3, ¢2) € re, then (x, y) e ry, (v, X) €1y,

as well. (See Fig. 2.) Let D be an ordered set characterized by Fig. 3. There is, by
assumption, D € 2", Defining

g9(dy) = g(ds) = x, g(d2) =y,
there is g € Hom, (D, X). Further,

ker g = {dy, d3}* U {(d2, d,)} ¢ ¢(D),
i.. ¢(D) + Cony (D).

COMPACT ELEMENTS OF THE LATTICE (c(¥); <)

8. Remark. a) (Construction of the closure operator induced by c()). ¢() is
an algebraic closure system of the algebraic lattice E(A), following Section 5.

Theorem 9 of paper [2] characterizes the compact elements of (c(#); <):

Let £ = (L; X) be an algebraic lattice, let S be an algebraic closure system
of £ and let us : L— Lbe the closure operator which corresponds to S *). Then an
element c is compact in (S; X) iff it is a us-image of a compact element in Z;
moreover, (S; X) is an algebraic lattice, too. (See also [7]).

*) Recall: S is an aléebraic closure system of £ if the following two requirements hold:

There is, for every X < S, inf(s;<) X = infy X.

There is, for every nonvoid chain X of (S; <), sup(s;<) X = supg X.
We put, for x € L, ug(x) =pinfy {ye S| x < »}.
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First, let us find the algebraic closure operator u ., of E(4). Take a binary rela-
tionrand neN =5 {0,1,2,...}, and put

Yo(r) =pe(r o 4%) —id,, .
Vs 1(r) =pe U{[x ¥ (ida © (7)) | (x, ) € (r)} -

Then there is, if m,ne N, m < n,

Yu(r) |//,,(r) < A%,
Put

%(r) =pgidg L U gl/,,(r)

There is, for every ne N, y,(r) < #(r), r 0 A*> < «(r) and 1dA S x(r) = A% 1t is
easy to prove, that x(r) is an equivalence on A. Let (x, y) e x(r), ze 4, x < z < y.
If x #+ y, then there exists n € N such that (x, y) € ,(r). Then [x, y]* S ¥,+4(r)
€ x(r); thus, (x, z) e (r). If x = y, then x = z and obviously (x, z) € x(r), as well.
Therefore x(r) € ¢(#).

Let 0 € ¢(«#), r n A* < 0. Using the induction over n, we get ¥,(r) < o, hence
%(r) < o, as well. Then

#(r) = ﬂ{aec(&/)l rnA? c o}
especially
% | B(4) = Uoa »

where % | E(A) denotes the restriction of % to E(A4). (See also [9], Section 2.) ..

b) (Function m). Let r be a binary relation and let x € 4. If there exists y € 4 such
that for some n e N it holds

(5 y)evn(r) v ()™,

then we put m(x) equal to the smallest of those n. If such a natural number n does
not exist, we put m(x) =p; —1. By this way we have defined a mapping m : 4 —»
> Nu { 1} (Functxon m depends also on r, but the binary relatlon ris always
fixed.)’

Let m(x) 1. Denote by i = m(x) Then there exists yeA such that (x, y)e
ey(r) v (¥, (r)) ! 4nd’ for évery z€ A, there is (x,z)é ¥, 1(r) oy (7 l(r))'
This 1mp11es the e)nstence of X1, xz €A, satlsfymg at least one of the followmg even-
tualities: ek g

(2) i ymeranty 4 om (xl’ xz)ezp, (1) xe [xl, xz] v
) R (xv xz)en//, 1(’) (x y) [xl, xz]z l//. 1(’)
@) (x5, x2) €Vi- 1(") ()” x) [xl’ xz] l//, 1(’)

Possibility (4) is excluded as shown by the fo]lowmg if (y, x) [x1 xz] n,lz, l(r) then
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y € [x1, x,] and there exists z € [x,, x,] such that (2, X) € Yxy-1(r) — which is
in contradiction with the definition of m(x). In (2) and (3), there is x € [x,, x,].
Since (X, X;) € Ym(x)-1(r)s We have x; # x + x,. This yields that there exist x,, X, €
€ A such that (x,, X2) € Yx-1(r) and that x, < x < x, (we still suppose m(x) = 1)

¢) Lemma. Let {X, | ieI} be a system of nonvoid subsets of A. Put
r=pU{X7|iel}.

Let Ye Alx(r). If X, Y % 0 for some icl, then X; < Y. If 2 < |Y|, then there
exists j e I such that X; < Yand 2 £ |X;|. (See also [9], Section 5/b.)

Proof. Let aeX; n Y for a given i € I. Then for every x € X, there is (x, a) €
€ X} = r < «(r), hence (x, a) € Y2, too; i.e. there is x € Y.
Let 2 < |Y|. Suppose that X; n Y = 0, whenever X, has at least two points. Put
s =pe(#(r) — Y?)uidy.

Obviously, s € c(«/) and s is a proper subset of %(r), following the assumption | Y| 2 2.
For all i eI, for which 2 < |X|, there exist Z; € A[«(r) with X} = Z7 (since r < x(r)
and Yn U{X;|iel, 2 < |X,|} =0, then we get Y Z,). Thus Z; e As and, fol-
lowing, r < s. We have proved

rcscxr), sed),
and that is a contradiction (see Section 8/a).

d) Let o € E(A). Then ¢ is compact in the complete lattice E(4) iff it satisfies the
following two requirements:

[{Xedlo|2 < |X]} <No; (VXedlo)(|X| <Ny).

The proof of this statement follows immediately from the definition of a compact
element and from the properties of (E(4); <), and it is left to the reader.

9. Lemma. Let o€ c(.sal). Then o is a x-image of a compact element in E(A) iff
it satisfies the following requirements:

(5) The system of all classes of A|o having at least 2 elements, is finite.

(6) For every X € Ao, the set of all maximal elements in (X; <) as well as the set
of all minimal elements in (X; <), is finite.

(7) For every Xe Ao, every maximal chain in (X; <) is bounded in (X; £).
Proof. 1. Suppose that there exists an element &, which is compact in E(A) and

such that ¢ = %(«). If @ = id,, then o = %(«) = id, and requirements (5—7) are
trivially satisfied. So, let o % id,. Then there exist finitely many pairwise disjoint
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finite subsets X4, ..., X, of 4 with at least two points and such that

a=id, Ul X?
i=1
(see Section 8/d). Then o = x(a) satisfies (5) following Section 8]c.
Let us show that o satisfies (6). Take such an X € Ao, that |X| 2 2 (if |X| =
then (6) holds, of course). Let x be maximalin (X; <). From the definition of m : A -
— N u {—1}, we get (for the considered «) m(x) 2 0, since |X | = 2. We shall prove
that m(x) = 0. If, to the contrary, 0 < m(x), then there exist x;, x, € 4 such that

(%15 X2) € Ymzy-1(0) S 2(2) , %3 < X < x,
following the statement of Section 8/b. Hence X cannot be maximal in (X; £); this

contradiction yields m(x) = 0, thus er X,;. Since U X, is finite, the set of all
i=1

maximal elements is finite, too. By an analoglcal way can be proved that the set of all
minimal elements is also finite.

We shall prove that o satisfies (7). Let X € Ao, |X| = 2 (if [X | = 1, then (7) holds

trivia]ly) and let x € X. First, show that there exists x’ € X n U X, such that x < x'.
i=1
If m(x) = 0, then we can put x' = x. Let for a given ke N and for every ye X,

for which m(y) < k, there exists y' € X n U X; with y £ y(|X] 2 2, X € 4/x(a),

hence m(y) = 0 for every y € X). Let x be a glven element with m(x) = k + 1. Then,
by Section 8/b, there exist x,, x, € A such that

(x1x2)eP(@) = #(a), x; <x<x;.

Then m(x,) < k, x, € X, hence there exists x € X n () X such that, by the assump-
i=1

tion of induction, x, < x2 Then x < x5, of course, and we can put x’ = x5. Among

those elements y of X N U X for which x < y, consider the maximal ones (X N U X;
i=1 i=1

is a non-empty finite set and therefore it has at least one maximal element); chose

one of them and denot it by x**. If x** < y for some y €X, take yeX n U X;
i=1

such that y < y’. The element x** is maximal in X N U X;; on the other hand,
i=1
x** < y hence x** = y’. We get x** = y, thus there exists, for every x € X, a maxi-
mal element x** in (X; <), for which x < x**. Dually, there exists an element x*
which is minimal in (X; <) and such that x* < x.
Let R be a maximal chain in (X; <) *). If a is maximal in (X; <), put M, =p

*) 1 want to thank to Professor MILAN SEKANINA, the reviewer of this paper, for his suggestion
making this final part of the proof considerably simpler (included after the final version).
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=pr{x€X |x** = a}. (X; £) has only finitely many maximal elements; hence,
there exists, among them, an element b such that M, is confinal in (R; §). Since R
is a maximal chain, then b € R, especially, R has an upper bound. Dually can be
proved that R has also a lower bound. Hence o satisfies (7).

2. Now, suppose that ¢ € ¢(«f) satisfies conditions (5—7). For X € 4o put

X =p{xeXx | x is either minimal or maximal in (X; <)}

and
a =peid, U U{(X)* | X € 4[0} .

We get a symmetrie relation « withid, € « € ¢ < 42 Let us prove that o is transi-
tive. Let (x, y), (y, z) € a. Then there exist X, Ye Ao such that x, ye X, y,ze ¥.
This yields X = Y, hence (x, z) € (X)?, showing that o € E(A).

By (6), 1 < |X| < N, for every X € Ao and, by (5), there exist only finitely many
X € Afo having at least two elements. Hence, by Section 8/d, a is compact in E(A).

There is o € (/) and « < ¢. This imply that x(x) S %(c) = o (see Section 8/a).
Let (x, y) € 0. Then there exists X € A/o such that (x, y) € X? and, by (7), x*, x**,
y*, y** € X such that x* < x < x** y* < y < y** (every element of X being an
element of a maximal chain in (X; <)). Then, of course

(x, y) e [x*, x**]* . [x**, y**]* . [y*, y**]* < (o) .
Hence o = x(c), where o is a compact element of E(4).

10. Remark. For o € E(4), formulate the following requirement:

(7) (VX € Ao) (Vx € X) (3x*, x** e X) (x* < x < x** and x* is minimal and x**
is maximal in (X; £)).

Conditions (6) and (7’) imply (7), as shown at the end of part 1 of the proof of
Lemma 9. It is easy to prove that (7) implies (7'): every element of X belongs to
a maximal chain of (X; <).

Hence, in Lemma 9, (7’) can take the place of (7).

11. Theorem. Let o € c(/). Then o is compact in the algebraic lattice c(sf) iff
it satisfies conditions (5—7).
Proof. ¢(«#) is an algebraic closure system of the algebraic lattice E(A) by Section

5 and, by Section 8/a. u,(, = % | E(4). The assertion of this theorem follows then
immediately from Lemma 9 and the assertion mentioned in Section 8/a (Theorem 9

of paper [2]).

12. Remark. Let 024 be the category of ordered sets, morphisms are isotonic
mappings. In paper [6], Section 28, there is shown that o € Cong,/(¢) is compact
in the algebraic lattice Cong, () iff it satisfies conditions (5—7).
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Moreover, there is Cong, () < c(s£), as shown in [4], Section 36.
Those facts imply the following statement (see also [9], Section 11/c):

Let o € Cong, ). Then o is compact in Cong, () iff it is compact in c(/).

AN EQUIVALENCE ON THE SET OF ALL ORDERINGS ON 4

13. Remark. a) Let %(A) denote the set of all orderings on 4, i.e.
U(A) =pc{ucexp 4> |unu™' =id,, uu S u}.
If u € %(A), then by putting
(x, y, z) € Ly <=pe (x, ), (v, z)€u —id, or
(z, »), (y, x)eu —idy,

we get a ternary relation {,. An equivalent definition of {, is the following one: If
X, y, z€ A, then

(x,y,2)el, iff |{x,y,2}| =3 and ye[x, 2] -

b) We shall define an equivalence A; on %(4) as follows (the motivation of this
definition is given in [6], Section 22): if u, v € %(A), put (u, v) € Ag iff Cong, (A4; u) =
= Cony,(A; v). The characterization of this equivalence A is not simple. However,
equivalence A4 suggests the following problem, characterize the equivalence on %(A)
defined by

u ~vepc(d;u) = c(4;0) *).

The characterization of ~ is essentially easier than this one of Ag;. First, we shall
prove the following theorem:

14. Theorem. Let u, v € %(A). Then ¢(A; u) = ¢(4;v) iff {, S L,

Proof. First, let us suppose that the inclusion {, < {, does not hold. Then there

exists (x, y, z) € {, — {,, hence y € [x, z](4,0y — [*, z](4.) by Section 13/a. Put
2 c1
0 =pg [x’ z](A;u) v ldA s

then o € ¢(4; u) — ¢(4; v) and the inclusion ¢(4; u) < ¢(4; v) does not hold.

*) It is easy to formulate these problems for some other categories of algebraic structures:
Let ¢ denote the category of all groupoids, and .#'(4) the set of all binary operations on A4,
e.g. Put, for o, + € #(4),

o+ <>pr Cong,(4; o) = Cong,(4; +) .

Then & is an equivalgnce on A4 °(A). 1t is possible to define similary equivalences between opera-
tions (or sets of operations) in other categories of algebraic structures. As far as‘I know, those —
relatively natural — equivalences were not yet studied.
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Suppose now that {, S {,. Then every u-convex subset of A is also v-convex,
hence ¢(4; u) < ¢(4; v).

15. Corollary. Let u, v € %(A). Then u ~ v if and only if {, = {,.

Proof. The assertion follows immediately from Theorem 14.

16. Remark. (included after the final version). The Theorem mentioned in Section
8.a was yet generated in paper [7], Section 2.1. The characterization of m-compact
elements in the lattice of all convex equivalences for any infinite cardinal m is given
in paper [8], Section 2.7 and 3.4. See also [9].
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