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(Received July 7, 1977)

A congruence on an object X of a category C is a subobject of X:x X which is
a kernel pair of some morphism with domain-X. Al congruences‘on X form:a lattice
(under weak assumptions on C, discussed below) and they can 'be composéd. via
pullbacks. The aim of the present paper is to exhibit a categorial proof of the fact
(well-known in universal algebra) that-if congruences are permutable then the con-
gruence lattice is modular. Congrhences on algebraxc structures are mentioned.

1. Congruences on an object

1.1 a) In this part we'make several easy (and probably well-known) observations
about congruences. m a category C We assume throughout the paper that C has
finite 11m1ts ] L ,

b) A relation E on an object X is a subobject of X x X 1e a monomm;phlsm
E -, X x X, up to 1somorphlsm Composing this with projections we obtain a pair
ep e E>X and we shall identify the relation- with (ey, e,). (A pair of morphmms
fi,f2 : E > X represents a relation iff it is collectlvely monomorphic, i.e., given
distinct p, g : Y F then either f; .p = f;.qor f,.p * f2.4.)

- Let f: X - Y be a morphism in C. The kernel pair of f is the relation (e,, e,),
defined by the pullback

X .

[,

Y

ST Goomr gty - E
Ll T NP E2J
e f

(Thls is correct because the definition of pullback safeguérds (e4, €,) as a collective
mono.) We denote ker f = (e, ez) A relationon X is a congruence if it is the kernel
pair of some morphism witht domain X. : e

e, . .
—_—

*) Thls paper has orlgmated on the seminary “Algebralc Foundations of Quantum Theorles ,.
held on the Faculty of Electrical Engineering under the leadership of Prof. Jiki FABERA.
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¢) Relations on X are naturally ordered, as subobjects of X x X. We denote
by Con (X) the ordered class of congruences on X. This is a poset, provided that C
is well-powered, of course. It is worth noticing that, under side conditions, it is a poset
also if C'is regularly cowell-powered (i.e., if every object has only a set of coequalizer-
quotients). Recall that a multiple pushout of regular epis is called regular cointersec-
tion.

1.2. Proposition. Let C have finite limits. A necessary and sufficient condition
for each Con (X), X € C°, to be a (small) complete lattice is:

C be regularly cowell-powered and have regular cointersections.

Proof. I) Sufficiency.
a) Every congruence ey, e, : E — X has a coequalizer. Proof: let (e1, €3) = ker f,

then there is d:X — E with e; .d =e,.d =1 (because f.1 = f.1). Hence,
e, and e; are regular (even split) epis and, by hypothesis they have a pushout

E X
& l l”z
X Y

Py

Then p, is the coequalizer of e;, e, because p;, = p; .e; .d = p,.e,.d = p,.

b) Con (X)is a set for every X. This follows from the fact that C is regularly cowell-
powered, and that two distinct congruences have clearly coequalizers, distinct as
quotient-objects.

¢) Con (X) is a complete lattice: for each non-void set M of congruences, let ¢
be the cointersection of the coequalizers c,, (m € M) of the pairs m. The ker c is the
join of M. And the least element of Con (X)is 4y = ker idy.

(7]

1) Necessity is easy; it suffices to recall that for a regular epi f, ker f has always
a coequalizer, viz., f.

1.3. a) Definition [2]. A category is regular if it has finite limits and if pullbacks
carry regular epis (i.e., given a pullback p.p = 7. g such that p is a regular epi,
then also 7 is a regular epi).

b) Proposition. Let C be a regular category in which each Con (X) is a complete
lattice. Then C has regular factorizations, i.e., every morphism can be factorized
as a regular epi followed by a mono.

Proof. As noted in the previous proof, each kernel pair has a coequilizer. It is
proved in [2] (see 1.6 on page 130) that every regular category with this property
has regular factorizations (a result of Tierney).
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¢) The following proposition shows that every well-behaved category has complete
lattices of congruences. (If well-behaved means cocomplete, finitely complete and
regularly co-well powered, then this follows from the above, of course.) Hoehnke [4]
proves this proposition more generally for factorization systems (&, .#); yet we
exhibit a proof here since it is a short one and we need it below.

d) Proposition. Let C be a complete, well-powered category with regular facto-
rizations. Then each Con (X) is a complete lattice: Given ker f; in Con (X) (i €I),
with f;: X — T, let f : X - [] T; be the canonical morphism, then ker f = A ker f;

iel iel
in Con (X).

Proof. Denote by m;, : T— T, the projections from T = [[T;, then f; = n;.f,
hence ker f; = ker f, for each iel. Let g : X — S be given with ker f; = ker g for
each i:

ker f; «<—— ker f ker g =kerc

S

If g=m.c, mamono and ¢ : X —» S a coequalizer, then ker ¢ = (e, €,) implies
¢ = coeq (ey, e,) and ker g = ker c. Now, ker ¢ < ker f;, hence f;.e, = f; . e, for
each i and we get p, : S’ - T; with f; = p; . ¢ for each i € I. This yields a canonical
p:S — T with f = p.c. The last implies ker f = ker ¢ = ker g. Hence, ker f =
= A ker f;.

e) Corollary. Let C, D be complete, well-powered categories with regular
factorizations. Given a functor F : C — D we obtain, for each object X in C, an
induced (compatible) mapping

F, : Cong (X) — Cony, (FX) : ker f+— ker Ff .
If F preserves products then each Fx, preserves meets.
1.4. a) The above Corollary shows why concrete categories usually have the
property that congruences on X form a closure system in the lattice of equivalences

on X (i.e., congruences are closed to meets). The reason is that the forgetful functor
U :C - Set often as not preserves limits; and the induced mappings Uy, are
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_def Con,,, (UX). For finitary concrete categories,

beddi C X Eq(X . .
embeddings Cone (X) ~ Eq(X) Con (X) is an algebraic closure system

i.e. such that U preserves filtered colimits‘, A
in Eq (X) (i.e., congruences are closed to directed joins):

b) Proposition. Let C, D be finitely complete well-powered categories with regular
factorizations and directed colimits. Let F : C — D be a functor preserving directed
colimits. Then the induced mappings Fy,: Cong(X)— Cony (FX) all preserve
directed joins.

Proof is easy.

¢) To generalize the well-known fact that for varieties of finitary algebras Con (x)
is a complete sublattice of Eq (X), we must consider functors F : C — D which
preserve some pushouts. (This guarantees that then all F, (x) preserve finite joins.)

Generally, preservation of pushouts is a much less natural condition than preserva-
tion of limits and directed colimits (when forgetful functors are studied). But an
interesting result of Barr [3] is helpful here. Barr proves that, given EX5 categories
(see 2,1c below) C, D, every functor F : C — D which preserves finite limits and
exact coequalizers (i.e., coequalizers of kernel pairs), preserves finite regular cointer-
sections. And preservation of exact coequalizers is a rather natural condition (e.g.,
every set-functor preserves exact coequalizers).

d) Proposition. Let C, D be-. complete, well-powered categories with directed
colimits and regular factorizations. If a functor F :C — D preserves products,
directed colimits and pushouts of regular epis, then each Fy,: Cong (X) —
— Cony, (FX) is a complete lattice homomorphism.

Proof is easy.

Corollary., Let C,D_ be coMplete, well-powered EXS cqtegories. Then every
finitary functor F :C — D, preserving limits and exact coequalizers, has the
property that each F x, is a complete homomorphism. '

Example. Let C be a complete, well-powered, finitary concrete EXS5 category
with a continuous forgetful functor U : C — Set. (This is a very natural set of con-
ditions, satisfied e.g. by -every: variety of finitary algebras.) If U preserves exact
coequalizers, then each Con (X) is isomorphic to a complete sublattice. of the lattice
of equivalences on UX.

2. Permutable congruences

2.1. a) RelationS;.on an object X (more generally, relation's,from,X to- Y, i.e.
subobjects of X: x; Y) are not only ordered but they also have a natural algebraic
structure of composition. Following Barr and Grillet [2] we define the composition
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of relationsg : R - X x Yando:S > Y x Z (o, o are monos) in a regular category
as follows. Consider the pullback of ¢ X 1 and 1 x o

T — + XxS

ri fxo“

RxZ XxYxZ — — == XxZ
us

px1

and the projection 7: X X YX Z—>X x Z. Then .o x1.r=n.1x0.5:
: T, » X x Z can be factorized as a regular epi, followed by a mono, giving rise to
a subobject 7 : T— X x Z. The composition of (R, ¢) and (S, o) is defined as the
relation (T, 7). Concisely

T=SoR.

Proposition [2]. In a regular category composition of relations is well-defined
and associative.

b) A relation R on an object X, i.e. a collective mono e, e, : R — X, is said to be
an equivalence if it is

(i) reflexive, i.e. 4y = R (or, equivalently, there exists d : X —» R with e, .d =
=1=e¢e,.d);

(if) symmetric, i.e. e,, e, : R —> X is the same relation (the same subobject of
X x X); and

(iii) transitive, i.e. RoR < R.
. Every congruence is easily seen to be an equivalence. The converse.does not hold
in general; it is called in [2] 7

(Lawvere Condmon) Every equivalence is a congruence.

¢) Barr calls a regular category C an EX5-category if it has ﬁltered colimits and

exact coequalizers, it satisfies Lawvere Condition and finite limits commute with
filtered colimits.

2.2. Lemma. Given relations A, B, H on an object X, we have
(AcH)nBc Ao(Hn(A‘leB)).
Proof. We have monos a: 4 - X x X; b;B—»X'x X and h:H - X x X.

a) The left-hand relation (4o H) N B is the image of i.b in the following
diagram *) (where P denotes pullbacks):

x

*) In all diagrams index * substitute by *
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/
-
-
x
>

We denote the respective projections by
T XxX xX—>X and 7,;: XxXxX>XxX (i,j=1,2,3and i % j) and
X xX->X (k=1,2).
¢) Now we define i* : B* - X x B (= product with projections py, pg) by
1)  pp.i*=i and py.i*=m (a7t x 1).h.b*.

Let us verify that (1 X b).i* = (a~* x 1). (k. b*) and that, therefore, u : B* —» C
exists with
(2 aT.u=i* and b.u="h.b*:

a xXWXx)(xX
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We have: =, .[(1 x b).i*] = px-i* =7 .[(a™! x 1).(h, b*)], by definition
of i*. Furthermore, since 7, 5 . (1 x b) = b. py:

Mas. [(Lxb).i*]=b.i
while 7, 5. (a™! x 1) = 7, 5. (a x 1) yields
mas-[(@tx1).(h.b*)]=mn5.(ax1).h.b*=b.i.
This proves that (1 x b).i* = (a™* x 1).(h.b*).

d) Let us verify that (denoting by qx, gy the projections of X x H) we have
h.(qg.a.b*)=[(a! x 1).b].u and that, therefore, there exists v : B* - H*

with
3 h*.v=u and j.v=gqy.a.b*:

lrr(a'ﬂ)b' m,(1% b).aT

X

Indeed, clearly k. gy = 7, 5. (1 x h) and so

h.(gg.a3.b*) =mn,5.[(1 x h).a].b*
=my3.(a x1).h.b*
=m3.(a"' x1).h.b*
=m3.(a7'x1).b.u.
¢) Finally, the right-hand relation 4o(H n (47! . B)) is the image of =, ;.
.(a x 1). B in the pullback
D—% »XxH"

5 RENE

Ax X ——> XX x X
ax1 \
\\
L)

)?xx
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Denoting by ry, ry. the projections of X x H*, we define v*: B¥* - X x H* by
(4) rH.-v*'-:U and rx-v*=7[1.(axl).‘;i.b*-

Let us verify that (a x 1). (k. p*) = (1 x (h.j)).v* and that, therefore, there
exists w : B¥ - D with ;

) a.w=op* and B.w=nh.b*:

AxX—mXxXxX

We have, by definition of v*,
my . [(@ x 1), k. b*¥] = ry.v*
=mn, . [(1 x (h.j)).v*].
Furthermore, (@ x 1).h = (1 x h).@and 7, 5.(1 X h) = h. gy, thus
Ras L@ x 1).5.b¥] = h.qy.a.b*
 —h.j.o by(3)
=h.j.rg..v* by(4)
T3 [(1 % (h.J).v*].
f) To conclude the proof we oniy recall that ' :

(4eH)nB=im(b.i) and Ae(Hn (Ao B) = im (n,5.(a x 1). f)
and that ’ i
b.i="b.pg.i* by(1)
7r2_3.(1 X‘b).i*-‘—; :
=m3.(a7' x1).b.u by'(2).
=my5.(a x 1) E.b*
= (ms.(a x 1).8).w by (5).

Since b . i factorizes through 74,3 (a % 1). B, its image is clearly smaller or equal
to the image of the latter morphism, thus

I

(AcH)NBc Ao(Hn (471, B)).
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2.3. a) Theorem. Let C be a regular category with Lawvere Condition. Let X
be its object with permutable congruences, i.e. such that RoS = SoR for R,S e
€ Con (X). Then Con (X) is a modular lattice with joins defined by

Rv S=RoS for R,SeCon(X).

Proof. All we have to prove is that R. S is a congruence, for R, S € Con (X).
Then ‘

1. Ro S contains R and S (for 4 = R implies S = 4.S < RS, analogously
4 = Simplies R = R, S);

2. RoS = R v S because, given a congruence T containing R and S we have
RoScTo.TcT,

3. Con(X) is a modular lattice because, given R, S, T in Con (X) with R < S, we
use the above lemma:

(R.T)nS<=Ro(Tn(R™'5))
and; sinée Ac R ' c Simplies R™1, S = S, we get
(RoT)nS =Ro(TnS).
By the Lawvere condition it suffices to verify that R - S is an equiva]encé. T
4. Reflexivity. Since 4 = R and 4 = S, we have W
‘ Ad=4.4<R,S.
5. Symmetry. Since R™! < R and S™* C‘S, we get
‘ (RoS)_1=S—loR—1CSoR=RoS.
6. ‘Tra-nsitiiv‘it‘y. Since RoR < R and So S < S, we get
RoSoRo.S = R(RS)SCRS

This concludes the proof.

b) C'orollary Congruence lattices in an abelmn category are modular

A non-abelian application: congruence lattzces in the category of groups are
modular.

3. Congruences on algebraic structures
3.1. a) We shall investigate algebraic structures of a given type S = (S, Sp, ar):
Sr and S, are disjoint classes of functions symbols, respectively predicate symbols,

and ar maps Sy U Sp to the class of all cardinals. An S-structure is a set A together
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with operations f,: A*Y) > A (feSy) and relations R, = A*® (ReS,). S-
structures form an obvious category (S) the morphisms of which (S-homo-
morphisms) are mappings which respect the operations and relations (according to
their symbols).

b) Let us mention, as a matter of interest, that these categories QI(S) are very
general. KUCERA and PULTR [5] prove that every reasonable concrete category (e.g.
such that morphisms factorize as onto, followed by one-to-one, and that fibres are
small sets) has a full embedding, respecting underlying sets, into some S(F). Here
F : sets — sets is a functor; objects of S(F) are pairs (4, «) with « = FA and mor-
phisms h : (4, «) - (B, p) are mappings with F f(a) = B.

Following Yoneda lemma, S(F) can be clearly viewed as a full subcategory of
some A(S) where S = (0, Sp, ar), provided that, for each cardinal m, Sp contains
at least card (Fm) symbols R with ar (R) = m.

Thus, we see that every reasonable concrete category has a concrete embedding
into some A(S). Since these embeddings are not expected to preserve anything,
this result does not inform us about congruence lattices and so it is not quite relevant
for our purposes. '

¢) Congruences in %(S) are independent of the predicate symbols, i.e. they are
just the algebraic congruences in (S*) where S = (S, Sp, ar) implies S* = (S, 0,
ar/Sg). The following is well-known:

Proposition. The forgetful functor U : A(S) — Set is continuous. It is finitary
iff Sg is finitary (i.r. ar (f) < W, for each fe Sg). If Sg is finitary, U preserves
exact coequalizers.

Corollary. A(S)-congruences form closure systems in equivalence lattices. If Sg
is finitary then U(S)-congruences form complete sublattices of equivalence lattices.

This corollary can be reversed for varieties of algebras, i.e. full subcategories of
(Sr, 9, ar)-structures, closed to products, subobjects and quotient objects:

Proposition [1]. If C is a variety such that congruences form complete sublattices
of equivalence lattices then there exists a variety C’ of finitary algebras, isomorphic
to C as a concrete category.

d) For subcategories C of %(S), the predicate part of S makes a substantial role
concerning C-congruences. E.g. let Sp = 0, Sp = {<} and ar (<) = 2. Then U(S)
is the category of graphs and compatible mappings. Let Pos denote its subcategory
of posets. Pos-congruences are studied in a number of papers of the second author
see [6—9] and references there.
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