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ON ALGEBRAIC CLOSURES OF COMPACT ELEMENTS¥*)

BrLankA KuTiNOVA, TEO STURM, Praha
(Received August 13, 1976)

It will be shown that an algebraic closure operator f : L— L on a complete lattice
& = (L; <) has the following property: if ¢ € L is compact in .2, then f(c) is compact
in (f(L); <). If the lattice . is algebraic, then (f(L); <) is algebraic as well and an
element is compact in (f(L); <)iff it is an image by f of an element which is compact
in #. This implies, i.e., some well-known results concerning lattices of subalgebras
and those of congruences on universal algebras.

1. Remark. We shall use the following current terminology (see [1], chap. II.1,
or[2] e.g.). Let £ = (L; <) be a complete lattice. A subset A < Lis called a closure

system of &, if for every set X < A, these is infX = inf X. If 4 is a closure system
4;2) Zz
of &, then (4; <) is a complete lattice.

Let A be a closure system of .#. A mapping f, : L— Ldefined by
Fa(x) =Df( inf){y ed|x <y} (xelL)
A3

is called closure operator on £ corresponding to 4 [every closure operator g on &
corresponds to the closure system g(L) of &1].
A closure system A4 is called algebraic, if for every non-empty chain B in (A; <),

it holds sup B = sup B. A closure operator is called algebraic, if the corresponding
(4;2) z
closure system is an algebraic one.

An element c € L is called compact in L, if every set X = Lsuch that ¢ < sup X,

<z
contains a finite subset X’ = X with ¢ < sup X'. We say that a set B generates &
by joins, if for every element x € Lthere ex1sts a set B(x) S Bsuchthatx = sup B(x).

A complete lattice & is called algebraic, if the set of all its compact elements generates
it by joins.

*) This papzr has originated at the seminar “Algebraic Foundiations of Quantum Theories’’,
directed by Prof. JIRi FABERA.
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2. Theorem. Let A be an algebraic closure system of a complete lattice & =
= (L; £). If c is compact in &, then f,(c) is compact in (4; ).

Proof. Let f,(c) be not compact in (4; <). Then there exists at least one set X
satisfying the following condition:

(1) X = A4, f4(c) < sup X; no finite subset X’ < X satisfies relation f,(c) < sup X".
(4;2) (4;5)

Among all sets X satisfying condition (1), consider the sets with the smallest car-
dinality; choose one of them and denote it by Y. The set Y is infinite by (1). Following
the Axiom of Choice, there exists such a well-ordering <, that the ordinal type of
(¥; X) is the initial ordinal of the cardinality |Y|. For every y € Y put

2(y) =pesup {x| xe X, x X y}.
4;5)

Then for y;, y, € Y, y; X y,, thereis z(y;) < z(y,), hence the set Z =p; {z(y)| y € Y}
together with < forms a chain. With respect to the algebraicity of 4, we get

supZ =supZ.
(4;5)

Since for every y € L there is {x| x € ¥, x < y} € ¥, then z(y) < sup Y. This implies
4;)
the relation sup Z < sup Y. On the other hand, there is for every ye Y, y € {xl xey,

W) A49)
x < y}, hence y < z(y).

It yields
supZ =supZ =sup Y.
£ “5)  4:3)
Following the choice of Y we have f,(c) < sup Y, thus f,(c) < sup Z, as well. There
is ¢ < f4(c), hence ¢ < supZ The element c is compact in .Sf then there exists
a finite set {y;,..., ¥} g Y with ¢ < sup {z(yy), ..., z(y,)}. Moreover, (Z; <)
<z

being a chain, {z(y,), ..., z(y,)} contains the greatest element with respect to <;
denotes it by z(y;). It holds

() ¢ < sup {2(y1)s s 2(va)} = 2(¥y) =(il;lg){x| xeY,x=Zy}.

f4 is a closure operator, specially it is an isotonic mapping of & to #. This fact
together with (2) yields

(3) fA(C) §f.4( SUP {xl xeY,x =< J’i}) = s'{P {x! xeY, x = J’i}

(the elements of A are fixed by f4)- By assumption, the ordinal type of the chain
(Y; X) is the smallest one of the cardinality |Y| hence the cardinality of a proper
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section {x € Y| x < y} is strictly smaller then |Y|. Following (3) and the choice of Y
[as a set with the smallest cardinality satisfying (1)], one can choose a finite subset
Y € {xeY|x =Xy} with f,(c) < Sup Y'. However, Y’ being a finite subset of ¥, Y

=)
does not satisfy condition (1). Th1s contradiction yields the compacticity of f,(c)
in (4; <). The theorem is proved.

3. Lemma. (WARD). Let & = (L; £) be a complete lattice and let f : L— L be
a closure operator on &. Then

f(supX) = sup X
& (F(L); %)
for every X < f(L).
" Proof. See [5], p. 76, Theorem 15 e.g.*). [See also [6], Section 1.6.]

4. Lemma. Let A be a closure system of a complete lattice ¥ = (L; <).If a set B
generates £ by joins, then f(B) generates by joins the complete lattice (4; =).

Proof. For every x e L, there exists, B(x) £ B such that x = sup B(x). The
mapping f, : L— Lis a closure operator in %, hence it holds ‘
x = sup B(x) < sup f,(B(x)) < fA(sgpfA(B(x)))-
This yields
1400 S Suflsup LB = fsup £(B) = sup £.(B()

[the latest equality holds following Section 3: it is A = f,(L)]-

On the other hand, there is y < x for every y € B(x), thus f4(y) < f(x), as well;
hence

sup £,(B(:) < £,(5).
Since f is isotonic and f,f4 = f4, we get, by Section 3, the inequality
(iul; )f A(B(x)) =f A(Sgp f A(B(x))) < faf. A(x) =f A(x) .

5. Theorem. Let & = (L; <) be an algebraic lattice and let A be an algebraic
closure system of %. Then (A4; <) is an algebraic lattice.

Proof follows immediately from Sections 2 and 4: Let C denote the set of compact
elements in £. Then C generates £ by joins and, following Lemma 4, f, A(C) generates
(4; £) by joins. Moreover. all elements of f,(C) are compact in (4; <) by Theo-
rem 2.

*) It is easy to prove a more general statement: Let £ = (L; <) be a complete lattice and let
f: L — L be a closure operator on . Then f (sup X)= sup f(X)forevery X S L.
U(@y;s)
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6. Remark. Let & = (L; <) be a complete lattice and let f, be an algebraic closure
operator on £. The converse of this statement is, in general, not true, since lattice
(4; =) could contain some compact elements, which are not f,-images of any com-
pact element in #:

Consider the closed interval L = <0, 1) in the set of real numbers with the usual
ordering, A = {0, 1}. Then A is an algebraic system of closed elements in % and

f40) =0, fux)=1 forevery xe(0,1).

Further, 1 is compact in (4; <) although no element of (0, 1) is compact in £. As
shown in the following statements 7—9, the converse of Theorem 2 is, all the same,
in some special case, true.

7. Theorem. Let & = (L; <) be a complete lattice, f : L— L of a closure operator
on % and let (S; §) be a join subsemilattice in the join semilattice ¥. Further,
let ¢ denote a compact element of (f(L); <) and let there exist C < S with ¢ =
= f(sup C). Then there exists s € S such that ¢ = f(s).

P2
Proof. Denote by 4 =p;f(L), d =p¢sup C. There is x < f(x) for every x € C,
z

hence d < sup f(C). This yields, with respect to Lemma 3, the inequality
<

¢ =f(d) = f(sup S(C)) = sup f(C) -

Since ¢ is compact in (A; <), then there exists a finite non-empty set C’ < C such

that ¢ < sup f(C’). Denoting by s =p, sup C’, there is se S since (S; <) is a join
(4;2) %
subsemilattice in #. Moreover, for every x € C', there is f(x) < f(s), hence

¢ < (i‘_‘f)f c)=r (sup (£ (€) S ££(s) = 1(s) -
On the other hand, there is
s=supC’' <supC=d
£ 4
and, following,
f(s) = f(d)=c.

8. Lemma. Let & = (L; <) be a complete lattice and let C be the set of all com-
pact elements in £. Then (C; <) is a join subsemilattice of the join semilattice & .

Proof follows immediately from the definition of a compact element.

9. Theorem. Let & = (L; _S_) be an algebraic lattice and let A be an algebraic

closure system of £. Then an element c is compact in (A; £) iff it is a f-image
of a compact element in £. [See also [9], Theorem 4.3.]
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Proof. The statement is a direct consequence of Section 2, 7 and 8.

10. Remark. Let us denote by E(A) the set of all equivalences on a given set 4, i.e.
EA)={cc 4 xAIidAga, o =01 oo <o}

(where id, = {(x. x)| x € 4} denotes the identity relation on A). It is well-known
that (E(A); <) is an algebraic lattice and that o € E(4) is compact in (E(4); ) iff
it satisfies the following two conditions:

(i) The set of all classes of AJo *) with at least two points, is finite.
(ii) Every class of Afo is finite.

It is obvious that (exp 4; <) is also an algebraic lattice, all the compact elements
of which are precisely finite subsets of 4.

11. Remark. Let (4; F) be a universal algebra with the support 4 and the set F
of operations with finite arity on A. Denote by S(4; F) the set of all subalgebras
of (4; F) and by K(4; F) the set of all congruences on (4; F). It is well-known that
S(A; F) is an algebraic closure system of (exp 4; <) (the corresponding closure
operator will be denoted by f) and that K(4; F) is an algebraic closure system
of (E(A); <) the corresponding closure operator will be denoted by g); see [1],
chap. II.5 and IL.6, e.g. This yields, with respect to Theorem S, the well-known result
that the lattices (S(4; F); <) and (K(4; F); <) are algebraic. Following Theorem 9
and Remark 10, the sets of all compact elements of those lattices are

f({X eexp 4| |X]| < Ro}),
9({o € E(4)| o satisfies conditions (i) and (ii) of Section 7}).

12. Remark. If we consider the usuel category of ordered sets, then the theory
analogous to the theory of lattices of congruences on universal algebra, is the theory
of kernels**) of isotonic mappings — see [3], [4].

Let (4; <) be an ordered set. The G(4; <) denotes the set of all kernels of isotonic
mappings defined on (4; <). There is proved, in paper [3], Section 22, that G(4; <)
is an algebraic closure system of the algebraic lattice (E(4); <). Then, by Sections 5
and 10 of other present paper, (G(4; <); <) is an algebraic lattice. (This result is
obtained, in [4] Section 30, by an other way.)

*) If A = 0, then A/ has the usuel sens; see [1], Chap. 1.3. e.g. If 4 = 0, then ¢ = 0 and it is
natural to define 4/o = {(0} (see [3], Section 4).

**) If g: X — Y, then the kernel ker g of the mapping g is this equivalence on X, which is
defined by
(x, ) ekerg<epcx, yeX and g(x)=g().
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By Sections 18, 45 and 49 of [3], the closure operator
oo, [oeE(4)]

corresponding to the algebraic closure system G(A4; <) of (E(4); <), is given by

(4) éa =th:)06°(§ "a)"’ 0< =pg éan(éo)—l'

This imply, with respect to Section 10, that the images of compact elements in
(E(A); =) by the closure operator o> 6 are precisely those equivalences 7 e
€ G(4; <), which satisfy the following three conditions:

(iii) For every X € Alt, the set of all elements of X, which are either maximum
or minimum in (X; <), is finite.

(iv) For every X € Al, every maximal chain in the ordered set (X; <) has both
upper and lower bound.

(V) The set of elements of Alt having at least two elements, is finite.

Suppose t € G(4; <) satisfy conditions (jii)—(v). Denoting by 7 =p¢ {X € /1|
1 < |X|} and by X* the set of all both maximal and minimal elements in (X; <) for
every X € 7, put

™ =pcid, U U{X* x X*| XeT}.

Then t* is compact in (E(A); ). Moreover, (4) yields 75 = 7. The proof of the faot,
that every image of a compact element in (E(A4); <) by the closure operator o o' ¢
satisfies conditions (iii)—(v), is easy and it is left to the reader [use (i), (ii) and (4)].

Hence, from this and with respect to Theorem 9, it follows that the compact
elements in (G(4; <); <) are fully characterized by conditions (iii)—(v); this is also
proved, by different way, in paper [4], Section 28.

13. Remark. Let V'be a linear space over a lineary ordered field T. It is obvious that
the system 2" of all convex subsets of Vis an algebraic closure system of (exp V; <).
Hence (o'; <) is an algebraic lattice (see Section 5 and 10) and M € #” is compact
in (&; <) iff it is a simplex, i.e. a convex hull of a finite subset of V' (see Section 9
and 10).

14. Remark.*) This work appears with a great delay. Some papers that follow
resulty here achieved have been yet published or will be published almost simulta-
neously. We would like to mention above all the works [6], [ 7] and [9] where the sen-
tences 2, 5, 7 and 9 are generalized by different ways, and the paper [8], dealing —
among others — with characterization of m-compact elements in (G(4; <); <) for
arbitrary infinite cardinal m.

*) Included after the final version.
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