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SQUARES OF GRAPHS
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Although TUTTE’s characterization [6] of graphs having 1-factors was published
in 1947, the problem of existence of 1-factors is still one of the topical subjects of the
contemporary graph theory. Obviously, a necessary condition for a graph G to have
a 1-factor is that G have even order. CHARTRAND, POLIMENI and STEWART [2], and
independently SUMNER [5] proved that if a connected graph G of even order is
either a line graph or a square (i.e. the square of a graph), then G has a 1-factor.
Hopss® ideas in [4] concerning the need of common generalization of at least some
of the concepts of the square, the cube, the total graph, and the line graph of a given
graph inspired the present author to introduce the concept of a partial square which
generalizes the concepts of a square and a line graph. In the present note it will be
proved that if a connected graph of even order is a partial square, then it has a 1-factor.

In the present not graphs are considered in the sense of the books [1] and [3].
Let G be a graph. We denote by V(G) and E(G) the vertex set of G and the edge set
of G, respectively. The number |V(G)| is referred to as the order of G. If u, v € V(G),
then we denote by dg(u, v) the distance between u and v in G. A set W < V(G) is
called a vertex cover of G if for every pair of adjacent vertices u and v of G, either
ue Wor ve W. If Wis a vertex cover of G, then we shall say that G is W-connected
if there exists a component G’ of G such that W < V(G’). We shall say that w e V(G)
is a Y-vertex of G if there exists an induced subgraph F of G such that (a) F is iso-
morphic to the star K, 3, (b) w € V(F), and (c) w has degree one in F. A vertex cover W
of G will be called a Y-cover of G if every Y-vertex of G belongs to W, and W =+ 0.

Let G be a graph. The graph G, with ¥(G,) = V(G) and such that for every pair
u,ve V(G)

uve E(G,) ifand onlyif 1 < dg(u,v) <2,

is called the square of G. If E(G) # 0, then the graph G, with V(G,) = E(G) and
such that for every pair e, f € E(G), '

ef € E(G,) if and only if e and f are adjacent in G,
is called the line graph of G. The graph G, with ¥(G;) = V(G) u E(G) and such that
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for every pair x, y € V(G) u E(G),
xy € E(G,) if and only if x and y are adjacent or incident in G,

is called the total graph of G. Finally, the graph G, obtained from G by inserting
precisely one new vertex (of degree two) into each edge of G is called the subdivision
graph of G. We denote by G?, L(G), T(G) and S(G) the square of G, the line graph
of G, the total graph of G and the subdivision graph of G, respectively.

Let G be a graph and let W be a Y-cover of G. The subgraph of G* induced by W
will be called the partial square of G with respect to W and denoted by the symbol
psq(G, W). Obviously, if W = V(G), then psq(G, W) = G If G is the graph in Fig. 1
and Wis the set of black vertices in Fig. 1, then psq(G, W) is the graph in Fig. 2.

?

Fig. 1 Fig. 2

Let G be a graph. It is well-known that T(G) is isomorphic to (S(G)). If E(G) # 0,
then it is easy to see that L(G) is isomorphic to psq(S(G), V(S(G) — V(G))).
Proof of the following proposition may be omitted:

Proposition. Let G be a graph and let W be a Y-cover of G. Then psq(G, W) is
connected if and only if G is W-connected.

Let T be a tree and let v € V(T). Similarly as in [3], we mean by a branch at v
(of the tree T) a subtree B of T which is maximal (by < in V(T)) with respect to the
property that it contains v as a vertex of degree one.

Lemma. Let G be a graph and let W be a Y-cover of G. Assume that IWI = 3and
that G is W-connected. Then there exist wy, w, € W such that 1 < dg(wy, wy) S 2
and that G — wy — w, is (W — {wy, w,})-connected.

Proof. There exists a component G’ of G such that W < V(G’). Since G’ is con-
nected, there exists a tree S spanning the graph G’. Obviously, W is a vertex cover
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of S. We denote by T the tree obtained from S by deleting all the vertices u with the
properties that u has degree one in S and u ¢ W. Obviously, Wis a vertex cover of T,
and every vertex of degree one in T belongs to W. It is clear that no pair of vertices.
in ¥(G) — V(T) is adjacent in G.

For every v e V(T), we denote by #(v) the set of branches at v (of the tree T). It is
obvious that |[V(B — w)n W| = 1 for every we V(T) and every Be %(w). We
distinguish the following cases:

1. Assume that there exists ¢ € V(T) such that |V(B — 1) n W| = 2 for at least
one B € %(t). Let w, and w, be the elements of V(B — t) n W. Then 1 < dg(wy, wp) £
< dr(wy, wy) £ 2. Tt is clear that T — wy — w, is (W — {wy, w,})-connected. There-
fore, G — wy — w, is also (W — {w;, w,})-connected.

2. Assume that |V(B — 1) n W| # 2 for every te V(T) and every Be 4(1). It is
not difficult to see that there exists u € V(T) such that u has degree at least three in T'
and there exists B, € %(u) such that |[V(B' — u) n W| = 1 for every B’ e %B(u) —
— {B,}. For every Be %(u), we denote by v(B) the vertex of B adjacent to u in T.
Denote B, = B(u) — {B,}. Moreover, for every B’ € %&,, we denote by w(B’) the
vertex of B’ which belongs to W.

2.1. Assume that for every B’ € %,, the vertices u and w(B’) are adjacent in T. Con-
sider distinct branches 4,, A, € %,. Then dg(w(A4,), w(A4,)) < dr(w(4,), w(4,)) = 2.
Since T — w(A4,) — w(A4,) is (W — {w(4,), w(4,)})-connected, we conclude that
also G — w(4,) — w(4,) is.

2.2. Assume that there exists B’ € %, such that u and w(B’) are not adjacent in T.
Since Wis a vertex cover of T, we have u € W.

2.2.1. Assume that there exist distinct By, B, € %, such that v(B,) and v(B,) are
adjacent in G. Since Wis a vertex cover of G, we may assume without loss of generality
that v(B,) € W. Hence w(B,) = v(B,). This implies dg(w(B,), w(B,)) < 2. It is clear
that G — w(B,) — w(B,) is (W — {w(B,), w(B,)})-connected.

2.2.2. Assume that for no pair of distinct B*, B¥* € 4, the vertices v(B*) and
v(B**) are adjacent in G. Since Wis a Y-cover of G, we have |530| < 2. Since the degree:
of u in T'is at least three, we have || = 2. Let D, and D, be the elements of 2.
Since Wis a Y-cover of G, we may assume without loss of generality that v(Bo) and
v(D,) are adjacent in G. Clearly, dg(u, w(D,)) < dr(u, w(D,)) < 2. It is easy to see
that G — u — w(D,) is (W — {u, w(D,)})-connected.

Thus the proof of the lemma is complete.

Let G be a graph. We say that G is a square if there exists a graph G, such that G
is isomorphic to (G,)*>. We say that G is a line graph if there exists a graph G, with
E(G,) = 0 such that G is isomorphic to L(G). Finally, we shall say that G is a partial
square if there exists a graph G’ and a Y-cover W’ of G’ such that G is isomorphic:
to psq(G’, W’).
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It is clear that the class of partial squares includes both the class of squares and the
class of line graphs. The graph in Fig. 2 is an example of a partial square which is
neither a square nor a line graph.

The following theorem is the main result of the present note:

Theorem. Every connected partial square of even order has a 1-factor.

Proof. Let G be a connected partial square of even order. Then there exist a graph
G’ and a Y-cover W’ of G’ such that G is isomorphic to psq(G’, W’), G’ is W'-con-
nected, and |W’| is even. We shall prove that psq(G’, W’) has a 1-factor.

The case when |W’| =2 is obvious. Let |W’| = n 2 4; assume that the assertion
“psq(G”, W") has a 1-factor” has been proved for every pair G”, W’ where W" is a
Y-cover of a W”-connected graph G” and |W”| = n — 2. Thelemma implies that there
exist wy, w, € W’ such that1 < dg(wy, w,) < 2 and that G’ — w; — wyis (W' —
— {wy, w,})-connected. Since W’ — {w,, w,} is a Y-cover of G' — w; — w,, it
follows from the induction hypothesis that

psq(G’ — wy — wy, W' — {wy, w,})

has a 1-factor, say F. It is obvious that the graph obtained from F by adding the
vertices w, and w, and the edge w,w, is a 1-factor of psq(G’, W’), which completes
the proof.

Corollary. (Chartrand, Polimeni, and Stewart [2]; Sumner [5]). Let G be a con-
nected graph of even order. If G is either a square or a line graph, then it has
1-factor.
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