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A CHARACTERIZATION OF HYPERSPHERES 
IN THE QUATERNIONIC SPACE 

JAN TROJAK, Praha, JiRi VANZURA, Olomouc 

(Received November 17, 1977) 

Let us consider the 4-dimensional euclidean space R^, which we shall identify 
in the natural way with the division algebra H of quaternions. The left multiplication 
by the quaternionic units i,j, к induces on R"^ three tensor fields / j , /2 , /з of type 
(1,1) satisfying 

I:Ij + IjI,= -25,jl, 

i.e. a quaternionic structure. At any point x e R"^ the tensors J^, 12, /3 are orthogonal 
automorphisms of the tangent space T^[R^). 

We shall investigate the structure induced on a 3-dimensional submanifold M с jR̂  
by the quaternionic structure on R"^. Let us suppose that M is orientable and let us 
denote by N the field of positive unit normals on M. From the above mentioned 
properties of the tensors I^, 12, /3 it follows easily that 

</,]V,iV> = 0 , iI,NJjNy = ô,j 

for any i,j = 1, 2, 3. 
It enables us to define three orthonormal tangent vector fields V^ = I^N, V2 = 

= I2N, F3 = /3N on M obtaining thus on M a complete parallelism. We write 

[ F i , F , ] = a,V, + a2V2 + a,V, , 

[V2,V,-]^b,V, + b2V2 + b,V,, 

[V,,V,]=C,V, +C2V2+C,V, 

with üi, hi, Cii i = 1, 2, 3 being functions on M. 
Taking for M a hypersphere of radius r we get 

[^^1, V,-] = - -̂  Кз, [V,, F3] = - - F. , [K3, F.] = - ? F, . 
r r r 

The goal of the present note is to prove the following 
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Theorem. Let M be a connected oriented 3-dimensional submanifold of R"^ on 
which the complete parallelism V^, V2, V^ satisfies 

[Vu F2] = - - F3 , [V2, ^з] = - ^ ^i , [V,, I/,] = - ^ F, . 
r r r 

Then M is part of a hypersphere with radius r. 
For the proof we shall need two lemmas. 

Lemma L Let V denote the Levi-Civita connection on M and let us write 
Wj^^{IjN) = rlJj^N. Then 

1 /1 2 3 \ / 1 2 3 \ 
r^ij = sgn I I f̂ ( I is a permutation and T^^ = 0 otherwise. 

r \i j kj \i j kj 
Proof. Using the basic properties of the Levi-Civita connection we can write the 

identities 

(1) 2<V;,7, Z> = X<y, Z> + Y(Z, Xy - Z<X, У> + 

+ <Z, [X, y]> + <y, [Z, X]> - <X, [7, Z]> , 

(2) <V;,y, Z> - <Z, [X, y]> = <V,X, Z> 

with any X, y, Z G Т(М). The identity (l) enables us to evaluate 

^lAhN), hN} = - ~ {(hN, I,Ny + ihN, I^N} - </,iV, /,N>} , 
r 

i.e. <r î2//ciV, /aiV) = - 1 / r . It follows that Г?2 = - 1 / ^ ̂ ^^ ^̂ ^̂  to (2) we have 
Г21 = 1/r. Similarly it can be shown that Г13 = Г32 = 1/r, Г23 == Г31 = - 1 / r . 
Furthermore, 

implies TI^ = 0 and using the same argument we get T ĵ = 0 whenever at least two 
of the indices i, j , к are equal. 

Lemma 2. Let bij denote the components of the second fundamental form of M 
with respect to the basis I^N, I2N, I2N. Then 

r 

Proof. We denote by V the canonical connection in R'^. Using Lemma 1 and the 
Gauss formula 

Vj.^IjN) = Vj,^IjN) + b,jN 
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we can evaluate 

= ~I,N - byJ^N , 
r 

= -I,N - b,,I,N. 
r 

Comparing the right hand sides of the above equations we get b ^ = — 1/r, bi2 = 
= bi3 = 0. Proceeding along the same lines we find easily fe22 = ^33 = — 1/̂ ^ 
Ьгъ = 0. 

The proof of our theorem follows now easily from Lemma 2, which in fact says 
that every point of M is umbilical. See e.g. Theorem 5.1 in Chap. VII of [1]. 
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