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OF DIFFERENTIAL EQUATION OF n-th ORDER

JAN OHRIskA, KoSice

(Received November 5, 1977)

In this paper we shail investigate the n-th order nonlinear delay-differential equation
1) u®(t) + p(t)u(x(r)) =0, n>1, 0<a<l1
on [y, o), where

(i) 0 < p(t) € Cyy.m); P(2) is not identically zero in any neighborhood €(0),
(ii) (1) € Crro,e00» (1) < 1, lim 7(t) = o0,
t— o0

(iii) o = r/s, where r and s are odd natural numbers.

Without mentioning them again, we shall assume the validity of conditions (i),
(ii) and (iii) throughout the paper.

Our purpose in this work is to give an analogue of Theorem 1 of [3], and some
results concerning the influence of the argument delay on oscillatory properties of
solutions of the equation (1).

The basic initial-value problem for the equation (1) can be described as follows:
Let ¢(t) be a continuous function on an initial set E,,. Suppose that u,j=1,2,...
...,n — 1 are arbitrary real numbers. Find a function u(t) defined on E,, U [t,, T)
(T £ ) which satisfies the initial conditions

u(ty) = P(to), u(to +0) =uf’ for j=1,2,...,n—1,

u(t(t)) = ¢(z(t)) for (t) <t, (te[ty, T))

and for t € [t,, T) satisfies the equation (1). This function u(r) is called the solution
of the equation (1).

Suppose that there exist solutions of the equation (1) on an interval of the form
[b, o0) where b = t,. In the seque! we shall use the term “solution” only to denote
a solution which exists on [b, c0) where b = t,. Moreover, we shall exclude from
our considerations solutions of the equation of the type (1) with the property that
u(t) = 0 for t = T, where t, < T} < c0.

We can now define a function that we shall need later.
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Definition 1. Let y(f) = sup {s = 1, | ©(s) < t} for 1 2 1,.
From this definition we see that ¢ < y(¢) and ©(y(t)) = t. Another property of the
function (¢) is contained in the following lemma.

Lemma 1. For every t such that t, <t < oo, the value y(t) is finite.

Proof. Assume that for some t, € [y, o) the assertion of the lemma is false. Then
for every natural number k, there exists a point s, > k such that t(s,) < ¢;, which
yields a contradiction with (ii) and completes the proof of the lemma.

Definition 2. A solution u(¢) of (1) is oscillatory for t = t, if there exists an infinite
sequence of points {t;};2, such that u(t;) = 0 and t; > oo for i > c0. A solution
u(t) of (1) is nonoscillatory if there exists a number T, such that t, < T, < o and

u(t) £ 0fort 2 T,.
|

I. Li¢ko and M. Svic [3] investigated the differential equation
(2 u®™(t) + p(t)u*(t) = 0,

which can be obtained from (1) by putting 7(f) = t. For the equation (2) they proved
the following theorem (the theorem 1 in [3]):

Theorem A. Let p(f) be a positive continuous function on [ty, o). Let n > 1,
O<a<l1.

a) Let n be even. Then a necessary and sufficient condition for all solutions of (2)
to be oscillatory is

(3) f @D p(x)dx = 0, t>t,.

t

b) Let n be odd. Then condition (3) is necessary and sufficient for every solution
of (2) to be either oscillatory or tending monotonically to zero together with its
first n — 1 derivatives as t — oo.

For the proof of the theorem that will be an analogue of Theorem A, we shall
need the following lemma.

Lemma 2. Let u(t) € C{r,,,, and let either

\2
[\
!

4) u(t) >0, u()<0 for t2
or '
(5) ut) <0, u”(t)20 for 121t =2T.
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Let u™(t) be not identically zero in any neighborhood @(00). Then
1) there exists a number t, = t, such that the functions ud(1),j =1, 7,
are eventually of constant sign on [tz, 0); ’
2) there exists a number ke {1,3,5,....,n — 1} or ke{0,2,4,...,  ~ 1) if n
is even or odd, respectively, such that

n—1

(6) ut)u(t) >0 for j=0,1,2,...k and t>1t,,
(=) u)u(t) >0 for j=k+1,k+2,...n—1 and ; 21,
3) either
7) u(s) 'lim ut) >0 for j=0,1,2,....,9 and s=t,,

limu) =0 for j=q+1,9+2,...,n—1,

t—= o0

where q = k if u(s) . lim u®(t) > 0, and q = k — 1 if k > 0 and lim u®(t) = 0, or
t— oo

t— oo
(8) imu(t) =0 for j=01,2,...,n—1
t— o0
if k = 0 and lim u®(¢) = lim u(t) = 0. -
t= o0 t— o

Proof. We give a proof for the case when (4) holds. The case (5) is treated similarly.
Now suppose (4) holds. Then u®~X({) is a nonincreasing function for ¢ > t, and

is not constant in any neighborhood 0(o0). This implies that exactly one of the fol-
lowing is true:

a,) WD) >0 for t=t,,
b,) D) <0 for t=TM Y >4,.

From b,) and (4) it follows that there exists a number T2 = T Y such that
u" (1) <0 for t 2 T{"~2), Likewise, we have u®™3(t) <0 for t = T~ >
2 T, .., u(t) <O0for s 2 T{® > T, which is a contradiction, since u(t) > 0
for t 2 t,. Thus a,) holds.

Now we know that u®=2)1) is increasing and concave for t > t,. Therefore
exactly one of the following possibilities holds true:

a,) w0 >0 for 12 TP 21y,

b,) U <0 for 121,

From a,) and a, ), we obtain that u‘"*”(, > 0fort > T{"® = T{"~ . Analogously
we get ut™H(1) > 0fort 2 T > 70-3 () > 0for t 2 I 2 T4, Thus
the functions u(r) (j = 1,2, ..., n — 1) are of constant sign for ¢ sufficiently large.

270



(h-3) .
If b%) hqlds, then u-3) j¢ decreasing and convex for ¢ 2 t,. Then exactly one of the
following is true:

a,) u=3(1) > 0 for ¢

v

t,

bs) u" (1) <0 for t

v

TV >t .

Here we can repeat the whole argument and show in this way that the functions
uP(t) (j =1,2,...,n — 1) are of constant sign for ¢ sufficiently large (e.g. for
t = t,), and the first part of Lemma 2 is proved.
The second part of Lemma 2 follows from the proof of the first part.
Now, we prove the third part of Lemma 2. By (6) we have lim u®() > 0 and if
1= 0
k>0, then limu"(1)>0 for j=0,1,2,....k — 1. Moreover, (6) implies

t— o

limu®*9(t) < 0. Suppose lim u**1(t) = —a® (a +0). Then u™(t) <0 for

t— o0 t—

t(= t,) sufficiently large, which is a contradiction, since u®(f) > 0 if ¢ =1, So

lim u***)(t) = 0. Further, (6) implies lim u®**?X(t) > 0. If we assume lim uk*2)() =
t— o

t— oo t—>co

= a’ (a * 0), we obtain u**1)() > 0 for t (2 t,) sufficiently large, which is a con-
tradiction, since u**"(t) < 0 if t Z ,. Thus lim u**2)(¢) = 0. Analogously we get

t— 0

lim u®*D(f) = lim u** (1) = ... = lim u®" () = 0.,

t— t— o0 t—> o

This completes the proof.

Theorem 1. Let 0 < @ < 1, n > 1 being a natural number.

a) Let n be even. Then a necessary and sufficient condition for all solutions
of (1) to be oscillatory is

) | j "I . pli) dt = oo

b) Let n be odd. Then condition (9) is necessary and sufficient for every solution
of (1) to be either oscillatory of tending monotonically to zero together with its
first n — 1 derivatives as t — co.

Proof. Sufficiency. — Let u(t) be any nonoscillatory solution of (1), i.e. there
exists T 2 t, such that u(f) + 0 for t = T. Without loss of generality we may suppose
further that u(?) is positive on [7, o). Then (see (ii)) there exists t;, = T = t, such
that u(7(z)) > 0 for ¢ 2 t,. Now, by (1), we have u™(t) < 0 for ¢t = t,, but u®(r)
is not identically zero in any neighborhood 0(co) (see (i)). It is clear that this function
u(t) satisfies the conditions of Lemma 2. So we can use the assertions of this lemma.
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Now suppose that (7) holds. Integrating (1) successively n — g — 1 times from
t (2 t,) to oo we have

(10) ue= (1) = j "plx) w(x()) dx

—u"" (1) = fw(x = 1) p(x) u*(x(x)) dx ,

() (e 9 = et [ e o) ax.
Integrating (11) from v, to v,(t, < v, < v,) we obtain

1) - (1) (,) =

j (x = 0™ p(x) w(e(x)) dx +

M—q—l
1 “ n=a=1 _ (x — )"~ 9717 p(x) u%(z(x)) dx
+mL[(x_vl) (x = 0771711 p(x) w(x(x)) dx .

It is easy to verify by induction that
(13) (0 =0 S (x — 07T — (x — )Tt

forv, < v, £ x.
Therefore (12), together with (13) implies

(14) (=" %@ (v;) = (=1)""%? (v;) 2
F———ﬁj@—myq‘@)rwﬁx+

v

L (s, — oy J ” p(x) u(e(x)) dx .

+@—q—U'

Let n — ¢ be an even natural number. Then we see from (6) that k is odd if n is
even and k is even if n is odd. For this reason n — k is always odd. Thus q + k. But
then ¢ = k — 1 (by Lemma 2). Now (6) yields

() = u®(t) >0 for t=1,
and
u®D(t) = u*"D(1) >0 for t2t,.
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Hence u'@(1) is an increasing and positive function if ¢ > t,. It is clear that the first
integral on the right-hand side of (14) is positive. Therefore we have from (14)

1
(n—4q-

(15) u@(v,) > 0 (v, — vyt pr(x) u*(7(x)) dx .

Let g > 0. Integrating (15) from v, to #(t, < v; < 1) we get

[(z = o7 [ A ) ax +

u(q—l)(t) — u(q—'l)(vl) >

(n —1 q)!
[ o = e ) e av, |

The second integral on the right-hand side of this inequality is nonnegative and
u@ D(v,) > 0 (by (6)). Thus we can write

(t = o) f o) w(e()) dx .

(16) wr%g>

)l
Analogously, an integration of (16) g — 1 times from v, to ¢ yields

(17) u“'”ﬁ)>-—-l;—-(t—-UJ””+1pr@ju«dx»dx
n—gq ! :

N fw p(x) u*(z(x)) dx .

- V

Note that for ¢ = 0, the inequality (17) reduces to the inequality (15) (just replace
v, by t). Therefore, for n ~ g even, we can consider the case g > 0 together with

the case g = 0.
Since (17) holds true, we get for t = y(v;)

) > o () = e j f)p<x> u(e(x)) dx
this implies directly ’

(17) u(=(1)) >

m

TR [“Hwttepas

Raising both sides of the inequality (17’) to the power o and multiplying by p(t), we
obtain

L e

273



Integrating the last inequality from y(v;) to ¢ (t = y(v,)) we conclude

g {[ j :.,‘)"(") w(x(x) d] - [ j () d]} >

We already know that u~*)(¢) is a positive nonincreasing function. Therefore, (10)
implies that

0< pr(x) u(r(x)) dx < oo .

t

Thus from (18) for t — oo, we get

1 [r) p(x) u*(x(x)) dx]l_“ g[ 1 ]“Jw (e(x) = 0, @D . p(x) dx..

l—a y(v1) (n - 1)! y(v1)

The left-hand side of the last inequality is a positive and finite number. Since the
right-hand side is nonnegative, it is also finite, which yields a contradiction with (9)
So, if (7) holds and n — g is an even number, we have a contradiction.

Again, let (7) hold. Now let n — g be an odd natural number. Then, by Lemma 2,
we obtain g = k. Thus from (6) we have

u () = u** (1) <0 for t=1t,
and
u@(t) = u®() >0 for t=1,.

Hence u‘?({) is a positive decreasing function for ¢ > ¢,. It is easy to see that the
second integral on the right-hand side of the inequality (14) is positive. Therefore
from (14) we get

u(q)(vl) — u“"(vz) > ,___1___ (x _ vl)n—q—l p(x) ua(‘c(x)) dx
(n - 49— 1)! vy
and for v, - ©

(19) u@(v,) > . qul,)-' '[:(x — v,)" 77 p(x) u(z(x)) dx .

Let g > 0. Integrating (19) from v, to ¢ (t, < v; < t) yields

(20)  we (i) — u@ V(o) > L j (= 0s)"™ p(x) u(e()) dx +

(n = g)!
,[ "L = oo — (x = 077 plx) w(e()) dx

1
(n — q)!

+
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It is easy to see by (13) that (t — v3)" 1 < (x — v3)" "% — (x — t)" “forv; <t £
The first integral on the right-hand side of (20) is positive, and by (6), u'9™(v;)
= u*~Y(v,) > 0. Thus from (20) (replacing v, by v;) we obtain

X.

@1) u@=1(f) >

(1 - ul)"-qr p(x) u(x(x)) dx .

t

(n—q)!

The inequality (21) coincides with the inequality (16). So continuing as above we
successively get the inequalities (17), (17') and (18), contradicting again (9). Thus
we have a contradiction with (9) for n — g odd, g > 0 provided (7) holds.

Now let ¢ =0, n — g = n being odd. Since ¢ = k so the inequality (6) gives
u'(t) < 0 for each t = t,. This means that u(¢f) is a positive decreasing function for
t = t,. Because the conditions (7) still hold true, so lim u(f) = ¢ > 0. Hence 0 <

< ¢ < u(t) = u(t,) for each t = 1,, and for t = (t,) \:ewget
0 <c<u(t)<u(e(t)) < ulty).
These inequalities imply that
0 < ¢ p(t) < p(t) u(z(r)) = —u™(1).

Integrating the last inequality n-times from ¢ to oo (¢ = (t,)) and using (7), we
obtain

(n -c—a 1)!_‘7“ — 1"t p(x) dx < u(t) — c.

Since this inequality holds for ¢ = y(t,), we get

a

(n - 1)! j " (e = o) plx) dx < uo(ts)) —

y(t2)

and also

c(z

(n — 1)! jyz(tz)(f(x) — ()t p(x) dx < u(y(ty)) — ¢

where 7,(1,) = 9(y(t,)). Since a(n — 1) < n — 1, we conclude that

@ ] e ) d < ) — e

We already know that u(y(t,)) — ¢ is a positive and finite number. Because the
left-hand side of (22) is also positive, it is finite, i.e.

J‘w(r(x) - V(tz))z("_l) p(X) dx < w0,

2175



but this is a contradiction with (9). Then we have a contradiction with (9) if ¢ = 0,
n — q = nis odd, and (7) holds.

Now consider the case when conditions (7) are not satisfied. But then conditions
(8) are satisfied. This means that if (9) holds and (1) has a nonoscillatory solution,
then this solution satisfies (8). We know (sece Lemma 2) that conditions (8) are
satisfied only when k = 0 and if lim u(f) = 0 and, further, that k = 0 only if n is odd.

t— 00
Hence the proof of sufficiency is complete.
Necessity. — Let

j L] pli) di < oo

Then there exists a number t; > f, (we can assume ¢, = 0) such that

@3) = ] oo yax < 1.

(l’l - 1)' (1)

We show that if (23) holds then there exists a nonoscillatory solution of (1) which
does not tend monotonically to zero together with its first n — 1 derivativesast — op.
Let us consider a solution u(7) of (1) which satisfies the initial conditions

(24) u(t)=0 for teE,, = [t,y(t)],
w(y(t,) +0) = u'(y(t;) + 0) = ... = u""D(y(t;) + 0) =0,
u® Bp(t;) +0) = 1.

Let 1, be the first zero of u(r) greater than y(t,). Then u(t) > 0, and u(r(t)) 20
for t € (y(1,), t,). Looking at (1), we see that u™(t) < 0 for t e (y(t,), t,), i.e. =1y
is nonincreasing on this interval. It is easy to show, using (24), that there exists
&e(y(t1), 12) such that u®=1(&) = 0 and u®~(1) > 0 for te(y(11), €). According
to the Taylor theorem, we have by (24)

u(t) = ”("_(:(?fttl))!*'_q) (t = Y1)yt + (t —:‘(11))" u™(y)

for 1t e [¥(t1), t.], where n = (t;) + 9(¢ — 3(t,)), 0 < § < 1. Hence (1) anq (24)
imply
u(t) = (1 _(__7’_(’ ');"_1 _ =)y p(n) u(z(n))
n— 1)! n!

IS (et (1) PR S
(25) (1) < o 1) oo for te[y(t;) t2].

IIA
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We know that () € [¢,, t,] for t € [3(t,), 1,]. Because t; = 0, then also (using (24))

(26) u(t) £ ——— 1 for te [y, o(t)].

T (n=1)

From (25) and (26) we obtain

(27) u(«(1)) <

(n _1 ! L))"~ for te[y(ty), t,].

Using (27) in (1) we have

(28) —u™(1) = [ ]a p(t) [«()]* "~V for te (}(tl), f] .

1
(n— 1)

Integrating (28) from y(¢,) to & we have

(29) —u"V(E) + u"P(y(ty) + 0) <
1

_ .
(£)]*"~V p{t) dt .
o] [, wore s

Since u”" (&) = 0, we have from (29), by (23) and (24),

IIA

1

[(n — 1)

[(n _11_)']"‘ J:tl) (0] p(2) di < 1,

i.e. 1 < 1 and this contradiction completes the proof.

As we have said, Theorem 1 is an analogue of Theorem A. Moreover, it is a ge-
neralization of Theorem 3.6 in [1], of Theorem 2 in [2], and also of those parts of
Theorems 1 and 2 in [4] which hold true for 0 < o < 1.

I\

a &
]j ()] ple) i <
y(t1)

IIA

II.
We start the second part of this paper by two definitions.

Definition 3. We shall say that the equation (j) (j = 1, 2) has the property 0, iff
at least one of the following conditions is satisfied:

a) All solutions of (j) (j = 1, 2) are oscillatory.

b) Every solution of (j) (j = 1, 2) is either oscillatory or tending monotonically
to zero together with its first n — 1 derivatives as t — oo.
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Definition 4. Let the equation (2) have the property @. We shall say that an argu-
ment delay 7(7) influences the property @ of the equation (1) if for this () the equation
(1) has not the property 0. On the other hand, if for some argument delay 1(t) the
equation (1) has the property @, we shall say that 7(¢) does not influence the property
0 of the equation (1).

It is clear that if [* p(r) df = oo, then the conditions (3) and (9) are satisfied, i.e.
the cquations (2) and (1) have the property @. Thus in this case the argument delay
does not influence the property O of (1) We shall therefore assume in the sequel
that [* p(t) dt < 0.

Theorem 2. Let 0 < o < 1 and let an argument delay 1(t) influence the property
0 of the equation (1). Then

(30) lim infit) =0.

t— o0 t

Proof. Let (30) be false, i.e.

liminfit)=25 >0 forsome ¢6>0.

t—= o

Then there exists an infinite sequence {f}i%, #, = o for k — co such that the
sequence
{1(t,‘)}°°
Ie Jk=1

tends to 26. Therefore there exists T(5) such that

it)>2<5—c3=5 for every t > T(9).
t

Hence

0<5<1(£)§1 for t > T(9)
t

which yields

6a(n— 1)

lIA

[@]z(n—l) <1 for t> T(5).

t

Now we have

0 0 @
5a<n—1>.j 0D p() dr gj [ . p(r) i gf 00 p(d) dt
and from this we see that [* [7(¢)]*"~" . p(f)dt = co holds true if and only if
[ =D p(f)dt = co. Now, using Theorem A and Theorem 1, one can see that

the equation (1) has the property 0 if and only if the equation (2) has the property 0,
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i.e. the argument delay does not influence the property @ of (1). This is a contradiction
with the assumption of the theorem and our proof is complete.

The following example shows that the condition (30) is not sufficient for the
property O of (1) to be influenced by the argument delay (z).

Example 1. Consider the equation
(31) w'(t) + 7110 132y = ¢,
Then [* p(t) dt < oo, lim [7(¢)/f] = 0, [* %) p(t) dt = co. Now we see that (30)
holds true, but both (352nd the equation

w(t) + 71110 411 = 0
have the property 0.

Theorem 3. Let 0 < o < 1 and [* p(t)dt < co. Let [* ¢* p(t) dt < oo for some
Be(0,e(n — 1)) and let (3) hold true. Then every argument delay t(t) which satisfies
(for t sufficiently large) the inequality

(32) () S K.#F0=D ) K >0
influences the property O of the equation (1)

Proof. From (32), by (i), we have
(33) p()) [+ = K70 4 p(2)

for t sufficiently large. Integrating (33) from T (sufficiently large) to oo gives

0 <J [ "=V . p(1) dt £ K**=D I 1 p(r)dt < 0.
T T
Thus [* [¢(£)]*"~ V. p(t) dt < oo, which means by Theorem 1 that the equation
(1) has not the property 0. Since (3) holds true, so the equation (2) has the property
0 and the theorem is proved.
Before stating further results we establish the following lemmas.

Lemma 3. Let f(t) € Cpyq oy Then
lim inf /0 o
t— oo nt
if and only if there exists a number ¢ > 0 such that t* < f(1) for t sufficiently large.

Proof. Suppose that #* < f(f) for some & > 0 and ¢ sufficiently large. Then
elnt < Inf(z) or

&

In f() >

Int
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for t sufficiently large. Therefore also

tim inf 270 5 . 5 0

t— 0 nt
Conversely, if

iminf ™0 _ oS,

t— o h’l t

then for every &, > 0 (¢, < c) there exists T(g,) such that

]—r;—fl—t) >c—¢ or f(yzr™ for t> T(e).
nt
If we pute = ¢ — &, > 0, we have ©* < f(t) for t > T(g,). The lemma is thus com-
pletely proved.
Lemma 4. If f(t) € Ciry,0y f(2) £ t and limf(t) = 0, then

tim inf/® < lim l?f(”

t— o t t— o

Proof. The function F(x) = In x/x is decreasing for x > e because

F(x) = !

X
<0 for x> e.

Now we choose T so large that f(t) > e for t > T (this is always possible since
lim f(t) = o). Since f(f) < t, we have F(f(t)) = F(t) for t > T, i.e.
t— o

Inf(f) _ Int f(t) _ Inf()

i = ¢ T = Ty

For t > T. From this we obtain

II\/

lim mff(t) < lim Inf(t)

t= oo t t— o Int

and the lemma is proved.

Lemma 5. Let (1) € Cyy, ) and f(t) > 0 on some neighborhood 0,(0). Then
nft) _ |
t

. 1
lim sup

t—= o0

if and only if there exists a number ¢ > 0 such that f(t) < t*7° for t sufficiently

large.
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Proof. Suppose that f(f) < ¢'~° for some & > 0 and ¢ sufficiently large. Then
In f(1) £ (1 — &) In ¢t or equivalently

Inf(?)

<1-c¢
Int

for t sufficiently large. This implies that

limsuplil-fﬂg 1—e<1.
t— o0 Int

Conversely, if

limsupwzd <1,
t—co Int

then for every ¢; > Osuchthatd + g, < 1 there exists a real T(El) (we can assume
T(e,) > 1) such that
In f()

Int

<d+e¢g or f(f)<ttn

for t > T(g,). This completes the proof since the number d + ¢, may be written in
the form 1 — & where ¢ > 0.

Theorem 4. Let 0 < o < 1 and [* p(t)dt < co. If [* ¢ p(t)dt = oo for every
¢ > 0, then an argument delay 1(t) which satisfies the condition

(34) tim ing 250
nt

t— o0
does not influence the property O of the equation (1).

Proof. Since [* ¢ p(t) dt = oo for every & > 0, the equation (2) has the property 0.

We know by Lemma 4 that both the conditions (30) and (34) can be satisfied
simultaneously. It means that the condition (34) alone does not ensure the validity
of the assertion of Theorem 4 if no further assumptions are made.

If (34) holds true, then by Lemma 3 there exists a positive real ¢; such that 1 < (r)
for each sufficiently large t. From this we have

#1200 p(t) < [0 . p(t)

and since [® 7D p(t)dt = oo (because [® ¢ p(t)dt = oo for every &> 0),
we get

J “THOTD  p(t) dt = oo,

i.e. the equation (1) has the property @. It means that the argument delay () does
not influence the property O of the equation (1) and our proof is complete.
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Theorem 5. Let 0 < « < 1. Let [* t**~ 1 p(f) dt = o0, and
(35) j A0~ p(1) di < oo
for every € > 0. Then every argument delay 1(t) which satisfies the condition

(36) lim sup In (1) <1

t—> o ln t
influences the property O of the equation (1)

Proof. Since [* "~ p(tf)dt = oo the equation (2) has the property 0. Now,
in order to prove the theorem we must show that the equation (1) has not the property
0 when (35) and (36) hold true.

If (36) holds true then by Lemma 5 there exists a positive real ¢; such that () <
< 7= for sufficiently large t.

Hence
[0 (1) £ 470D p(y).

Since (35) holds true we have

j T )t < o

and also

j IO . pl) dt < oo

From this inequality we conclude that the equation (1) has not the property ¢ and
the theorem is proved.

Theorem 6. Let 0 < o < 1 and [ ™~ p(t)dt = oo. Let
(37) j € (1) dt < oo

for some c€ (0, a(n — 1)). Then every argument delay 1(t) which satisfies the con-
dition

(38) lim sup In «(1) <=
t e Int  on-—1)

influences the property O of the equation (1).
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Proof. We know that the equation (2) has the property @ because [* 1"~ 1) .
p(t) dt = oo. As above we must show that the equation (1) has not the property 0
when (37) and (38) hold true and then the theorem will be proved.
From (38) we have

]imsupm —d< 5 .
= Int a(n — 1)

Then for every ¢ > 0 there exists T(¢) (we may assume T(g) > 1) such that

In 7(7)

<d+¢ for t>T(e)
Int

and
o(t) £ 4% for t> T(e).

From this we conclude that

(39) [T(t)]a(" n t) < td+ean—1) p(t)

for t > T(g) > 1. Now if we choose ¢ such that

0<es———d,
T an—1)

we obtain from (39) that
[2(5)]*" . p(r) < °p(t) for t> T(e)>1.
This implies by (37) that

J [«()] =P . p(t) dt < oo .
It means that the equation (1) has not the property 0. This completes the proof.
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