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Czechoslovak Mathematical Journal, 29 (104) 1979, Praha 

THE CHARACTERIZATION OF m-COMPACT ELEMENTS 

IN SOME LATTICES*) 

JANA RYSLINKOVÂ, Praha 
(Received October 10, 1977) 

The present paper is a continuation of the papers [1], [4] and especially of [5 — 6]. 
It characterizes the m-compact elements in the lattice of all congruences on a poset 
(let us denote it by (Л; ^)) and in the lattice of all convex equivalences on [A; ̂ ) . 
Under a congruence on (Л; ^ ) we understand a kernel of an arbitrary isotonic 
mapping with the domain [A; ^ ) ; under a convex equivalence we understand such 
an equivalence on A, each equivalence class of which is a convex subset of [A; ^ ) . 

I wish to thank my collègue Dr. TEO STURM for his numerous remarks and en­
couragement which helped me to carry out this work. 

1. INTRODUCTORY REMARKS 

Throughout this paper the symbol {A; S) shall be reserved for an ordered set 
with the support A. The set of all non-negative integers will be denoted by N, i.e. 
iV = {0,L2, . . .} . 

1.1. Notation, (i) By the symbol [a, b], where a, b e A, we denote the set [x e A; 
a ^ X S b} и {x e A; b S X :^ a} и {a, b}. 

(ii) By the symbol E{A) we denote the set of all equivalences on A. 
(iii) By the symbol G(A; ^ ) we denote the set of all congruences on (A; ^ ) in the 

usual category Ord of all ordered sets in the sense of [1], Section 1Л. b**). 

*) This paper has originated at the seminar Algebraic Foundations of Quantum Theories, 
directed by Professor JIRI FABERA, 

**) I.e. G{A; ^ ) is the set of all kernels of isotonic mappings with the domain (A; 5 )̂ (see [4], 
Sections 18 and 49). 
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(iv) The set of all convex equivalences on (A; ^ ) *) will be denoted by C{A; S)-

In the whole paper, the symbol B{A; ̂ ) will mean one of the sets G(A; ^ ) , 

C(A; g ) , fixed for the respective consideration. 

1.2. Theorem. (See [5], Section 30 and [6]). The set E{A), as well as the set 
B(A; S ) , forms with respect to the inclusion an algebraic lattice. 

1.3. Definition. We define a relation ^ on the set exp A = {X; X Ç A] as follows: 
if X, 7G exp Л, then 

X й Yo^.X = 7 = 0 wd{3xeX){3yeY){x й j ) • 

1.4. Remark. The set (G(A; ^ ) ; c ) is an algebraic closure system in {E{Ä); ^ ) . 
The algebraic closure ä in {G(A; ^ ) ; £ ) (see [4], Section 22') of the equivalence a 
can be characterized in terms of the relation ^ like that: if a, b e A, then 

(a, b)e ä о (3Zo, ..., X„ e Aja) (a GXQ et be Xi for some 

^ u i u n et Xo%X^< ...<X^< Xo) . 

(For the proof see [4], Sections 17, 19.) 

1.5. Definition. By induction, for every neN we define functions i/̂ „ : E{A) -^ 
-> exp A^ in this manner: 

'Ao(cr) =df Ö-- id^-

Having defined IA„(Ö'), we put 

Фп + ii^) =df U{[:x:, yf о (idx u IA„(Ö-)); (X, y) e \l/J^o)] . 

1.6. Remark. In terms of these functions, the closure operator и : E{À) -^ C{A\ ^ ) 
induced by the algebraic closure system С(Л; ^ ) can be characterized as follows: 

C30 

u{a) = i d ^ u и ^n{<^) • 
n = 0 

For the proof see [6], Remark 8a. 

1.7. Lemma. Let С £ B{A\ ^ ) and a, b e A. If (a, b)esupBiA;s) С then there 
exists a finite subset С ^ С such that (a, b) e sup^^^.^) C\ 

Proof. For B(A; S) = G(A; ̂ ) the assertion is proved in [5], Corollary 26. 

*) An equivalence a e E(A) is called convex on (A; ^ ) , if and only if every X e AJa is a convex 
subset of (.4; ^ ) , i.e. X = \J{[x,y]; x,y e X]. 
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Let us give the proof for B{A; й) = C{A; ^ ) : 
Given T e E{A) with 

(1) T = sup£(^) С and W(T) = f = supc(^.g) С , 

we have — by Remark 1.6 — 

(2) f = Û .A„(T) U id^ . 
n = 0 

Hence it holds for any a, b e A, that 

(a, Ь)ет o(3neN) ((a, b) e ilyjj)) vel a = Ь . 

If a = b we take С = 0. If a ф b, we continue by induction over n: 

let {a, b) e i/̂ oW = т — id^. By the well-known properties of the lattice (£(Л); ^ ) , 
there exists a finite set С ç С such that 

(3) (a, b) e sup£(^) С я supc(^;^) С . 

Assume, for all /c g n, к e N, that the condition 

(4) (V(x, y)) ((x, y) e ф,{т) => (aC'(x, y) finite) (C'(x, >;) ^ С 

et {x,y)esupciA;^)CXx,y)) 

is valid and let (a, b) e I/^„4.I(T). 

By the definition of i/̂ „+i we have: there exist x, y e A so that 

(x, j ) e I/^„(T) 

and there exists also ce A such that 

(a, c) 6 [x, j ; ]^ et (с, b) G id^ u I/^„(T) . 

From (4) it follows that there exists a finite set C'(x, y) ^ С so that 

(5) (x, y) € supc(A;^) C'(x, y) ^ T . 

Since supc(A;^) C"(x, >') is convex, we have also 

{a,c)empciA;^)CXx,y). 

This completes the proof for с = b. So, let с Ф b. Then (4) implies again that there 
exists a finite set C{c, b) Я С such that 

(7) (c ,b)€supc(^;g)C'(c ,b) . 
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Then (6) and (7) yield 

(8) (a, b) e (supc(^;^) C'(^' УУ) ° (^"Рс(Л;^) С'(с, b)). 

It is 

(9) (supc^;^) C'ix, y)) о (supc(^;^) C{c, b)) Ç 

^ (supc(^;^) {C'{x, y) u C'(c, b))) о (supc(^;^) {C\x, y) u CXc b))) = 

= supccA;^) (cXx, y) u C'(c, b)) . 

We put с = C'(x, y) u C'(c, b). 
Then by (8) and (9) we have 

{a, b)ESUpciA;^)C' , 
where С is a finite set. 

1.8. Remark. The assertion of Lemma 1.7 for B{Ä; й) = C{A; ^ ) is a direct 
consequence of Theorem 37 in [5]. However, the axiom of choice is essentially used 
in the proof of this theorem. This is why the proof of this special case in which the 
axiom of choice does not appear is introduced here. 

1.9. Lemma. Let a e B(A; ^ ) and let т ^ er be any equivalence on A. Then 
T e B(A; ^ ) if and only if for every XeAJa the partial relation x n X^ is an 
element of B{X; ^ ) . 

Proof. For B(A; ^ ) = G(A; ^ ) the assertion is proved in [5], Corollary 40. 
If B{A, S) = C{A, ^ ) , it is trivial. 

1.10. Definition. Let a e E(A) and let X e Aja be such that |ZJ ^ 2; we denote 
by ax the equivalence 

and by E the set 
E=^,{ax;XEAla ct \x\ ^ 2} . 

1.11. Lemma. Let a e B(A; ^ ) and X e A\a\ then 

(i) E Ç Б(Л; й). 
(ii) for every С such that 0 ф С ^ £ we have 

supß(^.^)C = U C , 
(iii) a = U^. 

Proof. It follows immediately from Lemma 1.9 because U ^ is an equivaleiice on A, 
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1.12. Definition. Let a G E[À) and X e Aja. Suppose that Y and Z are arbi­
trary non-empty subsets of X. For every y e У and z eZ define 

(^yz =df Vy. Zf "-J idx U ((7 n (Л - Xf) . 

The set of all such equivalences will be denoted by D(Y, Z ) (or shortly by D), i.e. 

D-= D(y,Z) = K , ; yeY, z e Z} . 

1.13. Lemma. Suppose a e B[A; ^ ) ßnJ XeAJcr. Then for every non-empty 
subsets Y ^ X and Z ^ X the following condition holds: 

(i) D{ZZ)^B{A,u). 

If, moreover, Y is confinai with X and Z coninitial"^) with X, then 

(ii) a = SUPB(A;^) D{Y, Z). 

Proof. The assertion (i) follows immediately from Lemma 1.9 because [y, z]^ u 

u i d x 6 B ( Z ; ^ ) . 

To prove the assertion (ii), it is sufficient to establish the following imphcation: 

if a,beX, then {a, b)e supBU;^) I^ -

To this end take a, b eX. The set У being confinai and Z coninitial with X, there 
are y I, y 2 e У and z^, Z2 e Z such that 

Û e [zi, j i ] and Ь e [z2, У2] • 

Then 

(a, fe) G 0-3,,,̂  о Gy^,^ о Gy^,^ Ç sup£(^) D Ç sup5(^.^) D . 

The assertion (ii) is now easily seen. 

1.14. Lemma. Let (!^ ^ X ^ A and V ^ X be such that cf F < cf Z **). 
Then there exists aoeX such that no v G V satisfies ao ^ v. 

Proof. Let us suppose to the contrary that for every a e Z there exists v e Fsuch 
that a S V. Then Fis confinai with X which contradicts the assumption cf F < cf X. 

*) The set Z is called coninitial with X (more exactly with (X; 5 )̂, but in the whole paper the 
ordering "^'* is given) if (VJC G X) (3z G Z){z^ x). The term "coinitial", is also used in literature, 
however, it is perhaps less suitable owing to the strictly limited sense of the prefix "со" in the theo­
ry of categories. 

**) The symbol cî X (or more exactly cf (A"; ^)) means the least cardinal number x such that 
for some У с X confinai with (X; £) it is | У| = >c. 
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1.15. Definition. Let a e E[Ä), Xe Aja and let У, Z be any non-empty subsets of Z. 
For every С ^ D{Y, Z) we define 

Vc =df [u eX-{3veY^ Z) (tT„, e C)} . 

1.16. Lemma. Let ae C{A; ^ ) , let m Ъе an infinite cardinal and X e Aja with 
cf X ^ m. Suppose that Y ^ X is confinai with X and Z ^ X is a non-empty 
subset. Then for every С ^ D(Y, Z) with | c | < m there exists ageX such that 

{flo} e Ajsup^^y С 

and no V E Vc satisfies aQ ^ v. 

Proof. According to the assumption we have 

(10) | y | è r n 

and so 

(11) l ^ l ^ m . 

Let С be any subset of D with \c\ < m. It is \Vc\ й \c\^ < v^^ = ^' Especially, 
we have \Vc\ < cfX and hence 

(12) c f F c < c f X . 

According to Lemma 1.14 there exists aoeX such that no i; e F^ satisfies ao й v. 
Hence for every у e У and every z e Z WQ have ÖQ Ф 1У, ^\ i-e. 

(13) {öo} e ^/sup£(^) С . 

2. CHARACTERIZATION OF m-COMPACT ELEMENTS IN {G{A; <)] ç ) 

AND {C{A\ ^ ) ; ç ) FOR m REGULAR 

2.1. Theorem. Let m be an infinite cardinal and let G e B[A\ ^ ) be m-compact 
in (B(A; ^ ) ; ^ ) . Then the cardinality of the set 

Ji =^{Xe A\a\ \X\ ^ 2} 

/5 smaller than nt. 

Proof. Let ere B{A\ ^ ) be m-compact in [B{A\ g) ; ^ ) and suppose 

(14) \ji\^m. 

By Lemma 1.11, the set 
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(see Definition 1.10) forms a covering of cr in {B{Ä; ^ ) ; ^ ) and (14) yields 

| £ : | ^ m . 

Let С by any non-empty subset of E with 

(15) \C\ < m 

and let T denote 

T: = supß(^.^)C. 

According to Lemma 1.11 we have 

(16) T = (JC 2ind (T = \JE . 

Due to (15) there exists X^e Ji such that 

hence 

i.e. (with respect to (16)) 

T c: (T , T Ф Ö". 

This contradicts the assumption that a is m-compact. The theorem is proved. 

2.2. Theorem. Let m he an infinite cardinal and aeG{A\ ^ ) an m-compact 
element of {G{Ä; ^ ) ; ç ) . Then for every X G Aja it holds 

( i ) c f X < m , * ) 

(ii) ci X < ш ** ) . 

Proof, (i) Suppose that there exists X e Aja such that 

(17) c f Z ^ m . 

Let У Ç X be confinai with X, We have 

|y | ^ m . 

Let Z Ç X be coninitial with X. According to Lemma 1.13 the set 

D = {(7,,; yeZ zeZ} 

*) See the footnote on the page 256. 
**) The coninitial of (X; ^ ) denoted by ci X or more exactly ci (X; ^ ) is the confinai of the 

dually ordered set X 
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covers the congruence a. Given С ^ D with | c | < m denote 

^ = sup£(^) С . 

According to Lemma 1.16 there exists ÜQEX such that 

(18) W e Л/т 

and no veVc (see Definition 1.15) satisfies QQ ^ v (by [4], Section 36 we have 
G{A; S) ^ C{A; ^ ) ; hence cr e C{A; ^ ) and we can apply Lemma 1.16). It remains 
to prove that cr $ f, where т is the algebraic closure of т in G(A; ^ ) . Since ere 
•e G{A; S ) , we can — with respect to Sections 1.4, 1.9 - restrict our proof to X: we 
have T ^ (J and, therefore, f ç cr as well. 

Denote 
ft = T n X^ , n = T n X^ . 

Let there exist VQ e VQ with 

(19) {vQ,ao)en, 

Then by Remark 1.4 there exist subsets XQ, ..., X„ {n eN) such that X^ eXJn for 
each k = 0, ..., n and 

(20) ХойХ,^...^Х„ = Хо. 

Moreover, 

(21) z;o e XQ et (3j) (l g j ^ и - 1 and ag e Z,-). 

By (18), we have X .̂ = {ao}. Let /c be the smallest of the natural numbers j + 1, . . . , и 
such that 

(22) |X,| ^ 2 . 

Such к must exist since, assuming the contrary, one obtains 

ao й Xj+i è '•' йх„ = Vo {{xj + i} = X̂ - + i, ..., {x„} == X j 

— a contradiction. Denote by x^ the element of Х;̂  with 

ao UXk. 

According to (22), there exists v e Vc such that Xf, ^ v, hence «o ^ ^̂  — a contradic­
tion again. 

Thus 
{ao} e Х / я , 

i.e., 7Ï Ф X^ and, therefore, also f c: a, f 4= cr. 
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The inequality (ii) can be proved dually. 

2.3. Definition. Let a e E(Ä). The function 

w^ : Л -> TV u { —1} 

is defined in this way: Let x e A. If there exist n eN and у e A such that 

(23) {х,у)еф„{'г)^{Фп{ст)Г\ 

then тДх) is by the definition equal to the smallest of n's satisfying (23). If there is 
no such n, we set m^(x) =df — 1. 

2.4. Lemma. Let a e E(A) and x e A such that 

m^(x) ^ 1 . 

Then there exist x^, X2^ A such that (x^, X2) e i/rm„(x)-1 (cr) and x^ < x < X2. 

Proo f See [6], Section 8b. 

2.5. Theorem. Let m be an infinite cardinal and a e C(A; ^ ) ah m-compact 
element of {C{A\ ^ ) ; ç ) . Then for every X e Aja it holds 

(i) cf Z < m, 

(ii) c iX < m. 

Proof. Let, to the contrary, there be Z G Aja such that cf Z ^ m. Let У ç Z be 
confinai with Z ; then 

(24) | y | ^ m . 

Let Z Ç Z be coninitial with Z . According to Lemma 1.13, the set 

D = {(Ту/, ye Y, zeZ} 

covers the equivalence a in {C{A; ^ ) ; ^ ) and in virtue of (24) we have 

\D\ ^ m . 

Let С Ç D be such that 

(25) |C| < m 

and let us denote 

^ = sup£(^) С . 
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т 

By Lemma 1.16 there exists ÜQE X such that 

(26) {ao} E A\i 

and no V E Vc satisfies ÜQ S •̂ 
It remains to prove that 

{ao} e AJT , 

where т is the convex closure of т. By Remark 1.6 we have 

^ = и Фп{'^) ^ id^ • 
71 = 0 

If [ao, VQ) E T for some VQ E VC, then there must exist Ъ EN such that 

(«0, vo) e II/„{T) 

and П ^ 1, because (26) yields («o, VQ) ф т. Hence 

m,(ao) ^ 1 . 

By induction we shall prove this assertion: If x E X with m^x) ^ 1, then there exists 
V E Vc such that x -^ v. 

Let / = m^(x) ^ L Then by Lefnma 2.4 there exist x^, X2 ^-^ such that 

(27) (XI,X2)GI/^, ._I(T) 

and 

(28) Xi < X < X2 . 

Let m^(x) = L Then (xi, X2) e т - id^, which means there exists {w, r} ^ Vc such 
that 

w ^ X2 ^ у 

and in virtue of (28) we have 
X ^ V 

as well. 
Let /c G AT, /c ^ L Suppose that for every y EX with т^у) й к there exists v E Vc 

such that 

(29) у S V 

and let m,(x) = /c + L Then there exist x^, X2 e X such that 

(27') (^1,^2)е^А,с(т) 

and 

(28') Xi < X < X2 . 
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By (27') we have m^(x2) ^ k. According to the assumption of induction there exists 
V € Vc such that 

and so 
X ^ V . 

Particularly, for ÜQ there exists VQ e Vc such that 

This is a contradiction. Thus, necessarily, т^(ао) = — 1, i.e. 

{ао}еА1т 

and therefore т c: a-, т Ф a. We have again obtained a contradiction — a is m-
-compact. 

The inequality (ii) can be proved dually. 

2.6. Theorem. Let m be an infinite regular cardinal and a e B[A; ^ ) . Suppose 
thai the following conditions hold: 

(i) the cardinality of the set 

Ji = {XeAla; \x\ ^ 2} 
is smaller than m, 

(ii) cf X < m for every X E Aja; 
(iii) ci X < m for every X e Aja. 

Then a is m-compact in {B{A; ^ ) , c ) . 

Proof. Let a e B{A; й) and С Ç В(А; ^ ) be such that 

a Ç supß(^.^)C. 

Let X 6 Л/(т with | x | ^ 2 and let У, Z be subsets of X such that Y is confinai with X, 
| F | = cf X and Z is coninitial with X, | z | = ciX. By assumptions we have 

(30) \Y\ < m et | Z | < n t . 

According to Lemma L7, for every y e Y and every z e Z there exists a finite set 
C'xiy, z) ^ С such that 

{y,z)esupB^^,^yCx{y,z), 

By (30) we have |У x Z| < m. 
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Denoting 
C'^ = U{Cx{y,z); yeY, Z6Z}, 

we obtain — taking into account the regularity of m — 

(31) \C^\ < m 

and for every {y, z) e Y x Z, 

(32) {У,^)^^liVвiA;è)Cx^ 

Further, for every (a, b) e X^ there exist y^, У2 e Fand Zj, Z2 e Z such that 

^ e [ j i , z i ] and Ь G [3/2, г^] . 

Thus 

(33) (a, b) e Gy^,^ о Gy^,^ о (7y^,^ Ç sup£(^) С . 

Hence, we obtain 
a Ç supß(^.^)(U C^). 

XeJC 

Combining (31) with the assumption (i) we obtain the inequality 

I и C l̂ < m, 
XeJi since m is regular. 

This completes the proof. 

2.7. Theorem. Let m be an infinite regular cardinal and a e B(A; ^ ) . Then a 
is m-compact in {B{A\ ^ ) ; ^ ) if and only if the following conditions hold: 

(i) the cardinality of the set 

Ji = {Xe A\G\ \X\ ^ 2} 

/5 smaller than m; 

(ii) cf X < vxfor every X e Ajcr; 
(iii) ci X < m for every X e Aja. 

Proof. The assertion of this theorem follows immediately from 2.1, 2.2, 2.5 and 2.6. 

2.8. Remark. If m is an infinite regular cardinal and G e G{A', ^ ) , then a is m-
compactin(G(yl; g ) ; c ) i f and only if e is m-compact in (С(Л; ^ ) ; s ) . This follows 
from Theorem 2.7 and from the fact that G{A\ й) ^ C[A\ ^ ) . (See [4], Section 36.) 
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3. THE CHARACTERIZATION OF m-COMPACT ELEMENTS IN 
(G(A; й); ç ) AND (C(A; < ) ; ç ) FOR m IRREGULAR 

The following example shows that Theorem 2.7 does not generally hold for m 
irregular. 

3.1. Example. Let m be an infinite irregular cardinal and let m denote simulta­
neously the initial ordinal of the cardinahty m. Let / be a set of indices with | / | = 
= cf m. 

Then 

(34) \I\ < m , 

(35) (V/ G /) (Зш^ < m) (sup in,- = m et m^ are regular cardinal numbers). 
16/ 

(As above, the symbol m^ denotes at the same time the initial ordinal of the cardi­
nality mi.) 

Let {{Mil ^i); i el] be a disjoint system of posets such that (M^, ^^) is of the 
type m^ for all / e I. We define a poset (M; S.) as the cardinal sum of all (M -̂; ^ i): 

M = \j{Mi; iel} 

and for a, Ь G M we set 

a S b Odf (3/ G /) (a G M^ et Ь G M^ et a Sib) 

(see [2], page 55). 

Let a e G{M; g ) be such that 

M ja = {Mi; iel} . 

Every set M^ can be written in the form 

Ml = {аа}я<т, 

so that aix й ÖJ> if and only if /* = j and X ^ fi. Given any / el and x < m̂ - we 
denote 

Мы = {аа'Л <x} я Ml. 

On (M; ^ ) we introduce the congruences 

for every i e I and every x < m .̂ 
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Let 
Ei = {^ы. ^ < m j 

and 
E =U{£.-; ieî]. 

Then 

(36) S U P G ( M ; ^ ) ^ = 0-

and 

(37) for every / e /, the set Ei is a covering of idjvf u (о- n M?) and \Ei\ = m,-. 

Since m^ is regular, it is impossible to choose from Ei a subcovering of a cardinality 
smaller than m,-. 

If any subcovering С ^ E from E were chosen so that 

| c | < m , 

there would exist i e I such that 

[c| < m,- < m , 

and so С could not cover even a n М]. 
The same counter-example could be constructed in the set of all convex equivalences. 
The characterization of m-compact elements in Б(Л; ^ ) for m irregular is a con­

sequence of the following general theorem. 

3.2. Theorem. Let m be a limit cardinal"^) andn an arbitrary cardinal smaller 
than m. If (M; ^ ) /5 an arbitrary n-algebraic lattice and a e M an m-compact 
element, then there exists an isolated"^*) cardinal ï smaller then m so that a is 
î-compact. 

Proof. Let a e M be given. Since the lattice (M; ^ ) is n-algebraic, there exists 
В ^ M, В = {bi; iel} with 

(38) a = snp^B 

and such that bi is n-compact for every iE I. By the assumption a is m-compact, 
i.e. there exists J ^ /, | j | < m such that 

(39) a = supj^ {bj; JE J} . 

*) A cardinal number is called limit if it is uncountable and such that for every cardinal 
n < m there exists a cardinal Î so that n < f < m. 

**) A cardinal number is called isolated if it is infinite but not limit. An isolated cardinal is 
always regular. 
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Let С ç M be any covering of a, i.e. 

(40) a й sup^^ С . 

Then by (39) we have 

SUPM {bji jeJ}u sup^^ С , 

and in particular 

(VyeJ)(b , ^ s u p ^ C ) . 

Hence for every / e J there exists Cj ^ C, \Cj\ < n such that 

(41) bj й SUPM CJ . 

Altogether, from (39) and (41) we obtain 

« = sup^f {by, j e J} й SUPM {SUPM Cy j e J} = sup^ ( U Cj). 

Further, 
I и Cj\ = n . \J\ < (n . |J|)-^ < m 
JeJ 

since m is a Hmit cardinal. This completes the proof if we set ï = (n . |»^|)^- The fol­
lowing example shows that the requirement of n-algebraicity of (M; ^ ) in Theorem 
3.2 is really essential. 

3.3. Example. Let (M; ^ ) be a lattice with the following property: for every 
keN let (M;„ ^,^) be a poset of the type cOf^ and for any k^, кг eN, k^ ^ кг let 
^/ci (^ ^k2 = 0- We define a set 

(42) M = d f U M , u { o , ; } 
keN 

and an ordering ^ on M in this way: for every x G M we set о ^ x and x ^ j ; if 
X, J G и М^̂ , we define 

keN 

X s у <=>df (3^ G iV) (x G M t̂ et y G M;, et x ^̂ ^ Ĵ ) • 

Every element different from a of this lattice is К̂ ^̂  — compact but not ï-compact 
for any ï < K̂ ĵ since every Mj^ covers every element of M. Such a lattice obviously 
cannot be n-algebraic for any n < K^ .̂ 

3.4. Theorem. Let m be an irregular cardinal and a e B[A; ^ ) . Then a is m-
compact in {B(A; ^ ) ; c ) if and only if there exists a regular cardinal !, ï < nt 
such that a is î-compact in {В(Л; ^ ) ; ^ ) . 
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Proof. It is well-known that {G(Ä; ^ ) ; ^ ) as well as (С(Л; ^ ) ; ç ) are algebraic 
lattices (see [5], Section 30 and [6]). Thus, Theorem 3.4 is a direct consequence 
of Theorem 3.2. 
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