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A MODIFICATION AND COMPARISON OF FILIPPOV
AND VIKTOROVSKI] GENERALIZED SOLUTIONS

JAROSLAV PELANT, Praha
(Received June 3, 1976)

This paper is an immediate continuation of Chapter III of the first part [3]. We
present here the main result, which consists in such a modification of Viktorovskij’s
definition that the equivalence with Filippov’s definition [1] in terms of differential
inclusions can be established.

Theorem 7. (MV => CF). If an absolutely continuous function x(t) is an MV-
solution of the equation % = f(t, x) from Remark 5 on an interval T = {t,, t,),
then the condition CF from Definition 7 holds for x(t) on T.

Proof. Let an absolutely continuous function x(f) be given on the interval T and
let x(f) be an MV-solution of % = f(t, x) on T. Hence for every & > 0 and every
N < G, p(N) = 0, there exists a function § on T which satisfies (6)—(10) with the
norm ”xH = {max |x;|: i = 1, ..., n}. The condition CF can be written in the form

V(B) V(i) AT, = T: (Ty) = w(T))¥(t e T;) {& v B} (cf. Remark 6).
The negation of this condition has the form:
IB) )T, = T: w(T,) = u(T)Ate T;) {non(x v B)}.
This is equivalent to the condition
3A(B) I) AT = T: pXT") > 0)V(te T') {non(x v B)},

where p* is the outer measure.
The remaining part of the proof is identical with the proof of Theorem 6, where
we insert (6) — (10) instead of (1) —(5). The contradiction obtained proves the theorem.

Remark 7. For brevity, let us introduce KY(f, t,x) =N N f(t,U(x,8) — N)

5>0 N,u(N)=0
for an arbitrary (¢, x) € G analogously to K*(f, ¢, x) in Remark 2.
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Lemma 9. Let us suppose that x(t) is a continuous function on the interval T =
= {t;, 1,y and (t, x(t)) € G holds for every t € T. Then there exists a subset T, < T,
W(T,) = u(T) such that K¥(f, t, x(t)) is compact and nonempty for every te T,.

Proof. Let us choose J, > 0 small enough so that the compact set
U (1, U(x(t), 4)) = G. For this set there exists a subset T = T, u(T}) = u(T) and
teT

a function m(t) defined on T} with the properties from Remark 5.

Consequently, KY(f, t, x(t)) is compact for every te Ty. Further, there exists
a subset Ty <= T, u(T5) = p(T) such that KY(f, 1, x(t)) & 0 on T, because we can
prove a lemma analogous to Lemma 6 for closures. Now, we choose T, = T; n T
and the proof is complete.

Corollary 2. Lemma 9 holds also for the sets K*(f, t, x(t)).

Remark 8. Let a function z(f) be defined and measurable on T and let
z(t) e K*(f, t, x{t)) a.e. on T for a given continuous function x(¢) on T. Then the
function z(¢) is integrable on T. This assertion follows from Remark 5.

Lemma 10. For every (t, x) € G we have the following equivalence: y € KY(f, t, x)
if and only if

V(e > 0,4 >0)u{zeU(x,5):||y —f(t,z)” <eg >0.

Proof. Let V(e > 0,8 > 0)u{zeU(x,8): |y — f(t,z)| <&} >0 be satisfied.
Let us fix & > 0; then the preceding condition yields U(y, &) n f(t, U(x, §) — N;) + 0
for every ¢ > 0, where the set N of measure zero has the same meaning as the set N,
in Lemma 5. Consequently, yeKY(f,t, x) holds because ye f(t, U(x, 6) — N;)
for an arbitrary 6 > 0. Now let us suppose yeKY(f,t, x). This yields that
y € f(t, U(x, 8) — Nj) for an arbitrary 6 > 0. Let us choose a neighbourhood U(y, &)
for a certain ¢ > 0 and let us choose a certain 6 > 0. This neighbourhood contains
at least one point j € f(1, U(x, §) — N;). Then there exists a point X € U(x, §) — N;
such that j = f{t, X) and the function f(t, z) is weakly asymptotically continuous
(cf. Definition 1) at the point X with respect to the variable z (cf. Lemma 4). Then
it holds:

Ve > 0) V(8" > 0)3(0 < 3 < &) AN’ : u(N') < u(U(X, 8,)))
{lz = %] <00, z¢N" = |f(t,2) = (1, 3)] < ¢}

Let us choose ¢’ > 0 and &' > 0 such that U(X, 6') = U(x,8)and U(j,¢') = U(y,¢)-
Then it can be proved that u{z e U(x, 8) : |y — f(t, z)| < &} > 0.

Lemma 11. If a set A = E, is open, then the set {t e T : K(f, t, x(t)) n 4 + 0} is
measurable for any measurable function x(t) defined on the interval T, where
(t, x(t)) € G for every teT.
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Proof. An open set 4 can be written in the form 4 = U Qn-1, Where Q,,_, are
m=1

closed sets fulfilling Q3 = Qy = ...c Q2 = Q,, = Q°,, = ... where 00 is the
interior of Q,. Let us denote A, = {te T:KY(f, 1, x(1)) 0 Qu-1 + 0} and 4 =

={teT:KY(f,t,x(t)) n 4 % 0}. Then 4 = EOJ Ape
m=1

Now we must prove that the set 4 is measurable. Let us choose a fixed index m.
The sets {x e U(x(1), 6) : (¢, x) € Q,,} are measurable for almost all e T. First of
all we shall show that the sets T = {te T: u{xe U(x(), 8) : (1, x) € Q,,} > 0}
are measurable for an arbitrary 6 > 0. The set T x E, is measurable in the space
E,;y and M = {(t, x)e T x E, : xe U(x(t), 8), f(t, x) € Q,,} is a measurable set in
E, ., as well. M(¢) is the projection of a section of the set M into E, with a fixed t.

Hence we can write T, = {te T: y(M(t)) > 0} and this implies that T}, is mea-

surable set because M is a measurable set in E,, ;. There exists a limit T,, = lim T3,
-0+

it is measurable and T, = )\ 7. holds. Let t€ A4,, then for this t there exists
>0

yeKYf, 1, x(t)) 0 Q,_, and from Lemma 10 we obtain that t € T}, for an arbitrary
6 >0andalsote T,sothat 4,, = T,.

Now, on the contrary, let te 7,. This means that V(5 > 0) u{x € U(x(1), 6) :
:f(t,x)€ Q,,} > 0 and that f(1, U(x(t), §) — N5) 0 Q,, & 0 for an arbitrary é > 0
and also KY(f, t, x(t)) N Q,, #+ 0. This implies t € A4,,4, and we obtain T,, = A, ;-

This yields that 4 = U A,, = U T, is measurable.

m=1 m=1

Lemma 12. Let a measurable function z(t) be defined a.e. on T so that
2(t) e K*(f, t, x(t)) a. e. on T, where x(t) is a continuous function on Tand (t, x(t)) € G
for every teT. Then there exist p functions y(t), i =1,...,p < n + 1, defined
a.e. on T, measurable and locally integrable, with these properties: y{t) e

e KY(f, t, x(1)) holds a.e. on T for each index i, z(t) = Z aft) y{(1) a.e. on T,

where o(t) are measurable real functions satisfying 0 < at) £ 1 and Z aft) =1
=1

a.e.onT.

Proof. Let z(t) e K*(f, t, x(¢)) and let K*(f, t, x(¢)) be a compact set for every
te T, = T, where u(T;) = p(T) (cf. Corollary 2). We shall find measurable functions.
yi() on this set T, with the properties of this lemma.

It is sufficient to find measurable functions, then the integrability follows from
Remark 8. The function z(z) is integrable on T as well. There exist p points z(t),

p
i=1,..,pin KYf, t,x(t)) for every te T, such that z(r) = ) B(t) z(t), where
i=1

p
Bi(t) are real numbers satisfying ) B{(f) = 1 and 0 < B(t) < 1
=1
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Let us introduce the following sets. Let H, be the set of all rational points from
E, and H, the set of all p-tuples ay, ..., «, of rational numbers. Now we introduce
the cartesian product H} x H,, where the points of that product have the form
(resoees Pps Opy vens ap) and r;, i = 1,..., p are points from H,;. We define a subset
C < H} x H, by

p
C={(r,..orpag,...a)eHy x Hy:Yo;=1,0<0; <1,i=1,...,p}.

i=1

The set C is countable. Hence we can arrange its elements into a sequence, say C =
= {(Fijs coo pjs %1js oo %)} =1 Let us choose any fixed positive integer k. Now
we define the following sets for each positive integer j.

D 1
T, = {t e Ty [al0) = 3 ayr| < i}’

Tn; = {te T, : U(rmj, ;{) N KY(f, t, x(1)) + (0} )
where m = 1, ..., p. The sets T; are measurable because the function z(t) is mea-
surable on T;,. According to Lemma 11 the sets T" are measurable. We introduce
sets TF = {{] T,x; for each j and we prove that T, = U T¥. We choose any te T,
To that tmt;(;re exist points z(f), i =1,...,p from K Y(f, t, (1)) so that z(t) =
=.Zp:15i(t) z(t), where B{t), i =1,..., p satisfy ziﬁi(t) =1and 0 B(t) <1

Moreover, this ¢ satisfies the inequality

(23 lﬁﬂjgmeWQﬂwdoii%mks

< Y 180) = ol [z40] + ¥ fo

Now we can choose such an index j that the element (ryj, ..., rpj, %yj, ..., %,;) from
the set C satisfies the inequalities ‘

J2(0) = ]l < 21840 = ] Jzd0)] + o 40 = ol < ;

and

—

=) — ] <

|

i =1,..., p. For this index j it holds te Tf. Hence T, = U T} holds. Let us set
ji=1
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ji—1 ©
successively Ty =T, Ts = T5 — T, ..., Tf = TJ" —UTE Then T, =U T} is
i=1 i=1

a disjoint covering of the set T, by measurable sets. The following formula defines
measurable functions z§(¢), «f(t) on Ty, i=1,..., p: z§(t) = ry, of(t) = «; for

14 14
t € T} These functions fulfil |z(r) — ¥ of(t) 2¥(1)|| < 1/k, Y. o(t) = 1, 0 < off(r) < 1,
i1 =1

i=1,..,p and z{(t) e UKY(f, 1, x(1)), 1/k) on T,. We have found measurable
functions z{(¢), «f(f) which form a sequence {(zi(t), ..., z&(t), af(t), ..., ob(t))}i%s-
Let us denote y,(t) = (z3(?), ..., zu(1), a}(t), ..., «&()), where y,(t) € EZ x E,.

Now we shall introduce. the sets M(t) = {y(t)}is and Q(f) = N M) =
s=1

=N (U {»(1)}) on T,. The sets Q(t) are nonempty for every te T, because the
s=1 k=s

sequence {y(f)};%; is bounded for every te T,. Further, M(t) are compact sets
for every te T,. This implies that the sets Q(f) are compact as well. If y(f) =

= (z,(1), ...y z(1), 04(1), ..., 0, (1)) € Q(¢), then z(r) e KY(f, 1, x(¢)) for i =1, ..., p
and 0 < aftf) < 1fori=1,...,pand .i at) = 1. It holds z(t) = _‘2 a(t) z{(t) on

T, as well. We shall prove that the set function Q(r) is measurable on T,. It suffices
to show that the set B = {te T, : Q(t) n F = 0} is measurable for every closed set
F in the space E- x E,. We introduce the auxiliary set

A=ﬁiﬁﬁ{wzﬁw@eu(a3}

n=1i=1 j=i

which is measurable. Now we shall prove that 4 = B. First, let e 4, then V(n)
V(i) 3(j = i) such that y,(t)e U(F, 1/n) and y,(t) e M{(t). Hence for each index n
there exists such an index j, that y;(t) e U(F, 1/n) and hence Q(t) n F # 0. Con-
sequently, it is t € B which proves A < B.

On the other hand, let t € B. It means that Q(f) n F # (. This implies that there
exists y € Q(f) n F. With respect to the definition of Q(z) there exists a subsequence
{Vis(D)} 1 whose limit is y. For each n and i there exists an index k(s) = i such
that y,(t) € U(F, 1/n), and this yields t€ A. Thus we have proved that 4 = B.
This is sufficient for the measurability of the set function Q(f) on T;,. Now we shall
find a measurable function ¥(t) € Q(t) on T, and the proof will be complete. The
set Q(1) is compact and nonempty for every t € T, and Q(t) = E,, = E}, x E, of the
dimension m = np + n. Let us write the points y of the space E,, in the form y =
= (¥', ..., y™). We introduce the function ¢'(t) = sup {y'(¢) : (y'(1), ..., y"(t)) € Q(2)}
on T,. We show that the function ¢'(f) is measurable on T,. This immediately
follows from the measurability of the set

(o' 24 = (11000 0 {0 o0y i 2 4} +0)
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for every real value 1. Further, we define the set function

2 = (0003 13" 2 00, o] S 0]
This set function is measurable and Z,(¢) is nonempty for ¢(f) = max (m(t), 1) with
the norm | y|| = max {|y'| : i = 1,..., m}. The sets Z,(t) and Q(t) have a nonempty
intersection for every te T,. Hence the set function Q,(f) = Q(t) N Z,(¢) is mea-
surable on T, since both Q(¢) and Z (r) are measurable set functions. Let us introduce
analogously the function ¢*(f) = sup {y*(¢) : (*(¥), ... ¥™(1)) € Qs(¥)} on T,. The
function ¢?(t) is measurable on Ty, as well as the function ¢'(¢). Further, we define

Zo(t) = {0 - y™) 07 2 0%(0), [y] = (9}
and Q,(f) = Q,(f) N Z,(¢). In this way we can obtain functions ¢(f) on T;, for each

index i = 1,...,m in the form ¢¥(t) = sup {y(¢) : (»'(¢), ..., y™(¢t)) € Q;-1(¥)} and
measurable set functions

Z{(1) = {(0" s v ¥ 2 0'(0), [y] = (1)}
and Q1) = Q,_,(t) n Z (1) with Qy(f) = Q(t). The set functions Q(t) are measurable

on Ty. This construction implies that the function ¢(t) = (¢'(?), ..., ¢™(t)) € Q(t) for
every t € T, is the desired measurable function.

Theorem 8. (F == MV). Let a function x(t) be defined and absolutely continuous
on T = t,, 1,), let it map the interval T into E, and let (t, x(t)) € G for every te T,
where G < E, . is an open connected set. If the function x(t) is an F-solution of the
equation X = f(t, x) from Remark 5 on T, then x(t) is an MV-solution on T.

Proof. Let us choose & > 0 small enough so that the compact set U (t, U(x(t), &))
teT

is a subset of G and let us choose an arbitrary set N = G, u(N) = 0. We shall find
a function Y(#) on T with respect to ¢ and N such that the function y satisfies the
following properties:

(24) (t¥()eG on T,

(25) £(t, ¥(1)) is integrable on T,

e () () <5 on T,

27) *{f) — (x(ts) + f few(@) do)| <& on T,
and

(29) (4, (1)) ¢N  almost everywhere on T

Let T' = T, y(T’) = u(T) be a set, where x(t) € K(, t, x(t)) and K*(f, ¢, x(¢)) are
compact sets. According to Lemma 12 the function %(f) can be written on T” in the

L)
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4 p
form %(1) = Y a(t) y(t), where 0 < a(f) £ 1, Y ot) = 1, p £ n + 1 and «t) are
i=1 i=1

real measurable functions defined on the interval T while y() are local integrable
on Tand y{t) € KY(f, t, x(t)) for every t € T". First of all we shall find an approxima-

P
tion of the function x(f) on T’ which has the form Y’ B(t) gi(t), where B (1) are simple
i=1
measurable functions defined on T with rational values satisfying 0 < Bi(t) <1,

p
Y. B{t) = 1 on T’ while the functions g(t) are step functions on T.
=1

Now we shall construct the functions B(f) and g(¢) with these properties so that
the inequality

) ICCRRCPOL

< g

is satisfied for every t e T, where ¢, = ¢/3. The inequality (29) can be expressed in
the form

<

M :l(x(z) - ;Bi(f) g{(x)) dr <

= \U:l(élai(r) »{o) _é aft) f(z, Yi(2))) def| +
# | (Eao vt - L ok oo +

" ‘U :l(éd;(r)g,.(r) "élﬁi(f)g.-(r)) de| +
i “K él(ﬁ () = Bi(") gi(x) de| < g0

We must find functions y(f) on T, i = 1, ..., p such that the inequality

(30)

H | ( i 1) 3i2) = 3 ) fx, Y() e

£ 171 i=1

<&
4
is satisfied for every t € T'and, at the same time, the functions y/* satisfy the conditions

(24), (25), (26), (28). Let us choose & = &. According to Lemma 10 it holds
V(¢ > 0) p(MY$) > 0 on T’ for each i = 1, ..., p, where

M2, = (x U, 9): [v) = £ 0)] < e}

Let ¢ > 0 be such that u(T) ¢’ < &/4p. Lemma 8 implies the existence of functions
Yi(t) on T which for each i = 1, ..., p fulfil the following condition: f(t, y/(t)) is
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integrable on T, (t, ¥/(t)) ¢ N a.e. on T, ¥(t) e M}$), on T’ and y/(r) e U(x(1), 6)
on T — T'. Since § = &, the functions /() satisfy (24) and (26). Hence the functions
(1) satisfy the conditions (24), (25), (26), (28). We can write

s

(31)

’ﬂiwww—mwwm

= J't ig’l "a;(f)” “y,-(r) —f(r, '//:(T))” de =

-2 [ 10 Iot6) = e W a5 S umy e <.

We have proved that the inequality (30) holds for every te T. Further, we can
find an approximation of f(t, Y/¥(¢)) by step functions g(t) on T such that

| f £, ¥i(2) — g,(0)] de < 22
t; 4p
holds for every t € T. Hence

,[ | éxa"(r) (f(z ¥(@)) = gi(x)) de

<

(32)

<3 [ I 1 #0) — 000 '

o[ i ‘v g0 _ €

=2 | (@) =g de <y ==

i=1],, i=14p 4
To each function a(t) there exists a sequence of simple measurable functions {e(#)} 2 ;
defined on T which converges uniformly to ai(t) on T. It is sufficient to introduce
a function B(t) equal to a certain member of the sequence {o)(#)}:%, so that the ine-
quality

’ 3

(33) |et) — Bi(1)] < e

1
2" 4pk u(T)

holds for every t € T where k = max {1, ||g,(t)” ti=1,..,p, te T}'. Hence

60 |] e - o

<y k‘['|a,(z) - Bl as < 2.

m

Let us choose sets Ty, ..., T,,, U T; = T such that the functions (f) are constant
i=1

on each Tj, j = 1, ..., m. These sets are measurable. We shall find functions B )

.

226



P
assuming rational values on each set T} such that B(t) are constant on T}, ), B{t) = 1,
i=1

0 < Bt) < 1on T and, at the same time, the inequality

€
(35) B(e) = BA1)| < —=
4pk p(T)
holds on T. It is sufficient to define auxiliary functions B (f) = a,(t;) on each T; for
i=1,..., p, where t; is any fixed point in each Tj. It holds
14

(36) YR =1, 0LB(t)S1 on T NT;

i=1
and (33) implies the inequality

(37 |B(1) — BE(1)] <

1 ) on Tj,
2 4pk u(T)

wherej=1,..,mandi=1,...,p.

If the function Bf(t) assumes rational values on T then we define Bi(t) = B (1)
on T;. Let ee {2, ..., p} be the number of irrational values of Bi(t) on a given T;
for i = 1, ..., p and let us change the order of indices so that the values ﬁf(t) are
irrational for i = 1, ..., e. We shall find B{) for these values Bf (), i =1,...,e.
Let &' = max {Bf(¢):i =1, ..., e}. Then the inequality 0 < §’ < 1 follows from
(36). Now we shall define rational values B(f) for each i = 1,..., e — 1 so that the
inequality

* . (1 & 6
(38) 0 < Bi(t) — B{t) < min {5 2K — VT) 7= 1}

14
holds. We shall construct B(tf) on T’ n T; in the form B(f) = 1 — Y B(t). It holds
i=1
' p i*e
Bi(t) =1 =73 Bi(t) on T' N T;. Further,

i=1
i*e

B — B20) = 5,670 = B(0) < 3, min [} "1

2 4pk(p — 1)u(T)’ p—1

13

= min 1—8°—~, 0 on T'nT;.
2 4pk (T)
We shall define the function B,(t) on T; n (T — T’) so that () assumes a rational
value and satisfies the inequality (38). Consequently, the inequality

NS o
(39) Br) — Bi()| < 2 apke u(T)
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is satisfied on each Tj, j =1,...,m and for each i =1, .., p, and Zﬁ(t

0=<pB{t) £1hold on T'n T}, j=1,..., m. The inequalities (37) and (39) yield
the inequality (35) for an arbitrary te T. Then it holds

f 3 (80 mg@dr<2kjmm B9l dr <.

From (30, (32), (34), (40) we derive that (29) is satisfied for an arbitrary te T.

(40)

p

We have found an approximation of the function %(f) on 7" in the form ). B(t) g (1)
i=1

defined on T. The functions g(t) are step functions on T, (1) are simple measurable
)4

functions defined on T and assuming rational values and 0 < B(f) < 1, Y, B(1) = 1
i=1

hold on T". Further, we must prove the inequality
t p .

(41) () = X 7)) (x. ¥(x))) de
ty =

for a certain t € T, where the functions y(t) are defined and measurable on T. The
functions y(¢) satisfy the following condition: for every ¢ € T there exists a single index
i,e {1, ..., p} such that y,(¢) = 1 and y,(t) = 0 for each ie {1, ..., p} — {i,}. The
inequality (41) can be expressed in the form

[ -Ereseven e < |[ s v - Enooe) &

t

[0t - 55 o) <e.

+ l
t

The first member on the right hand side of this inequality satisfies

”.[ :I(é:l),i(t) f(z,¥'(2) = zp:l)’i(f) g{7)) dr

#|[ (Ep0ae @

<80=

&
3
on T. To prove it, we proceed as in (32)‘ The third member is smaller than ¢, for
every te T (cf. (29)). This assertion has been already proved. Now it is sufficient
to construct the functions y() on T such that

t p
@) [ (506 = B 9 a

ty 1T ’

< g

holds on T. Then the inequality (41) will hold on T. There exist disjoint intervals
s
I,,z=1,...,s T=U]I, such that the step functions g,(t), i=1,..., pare constant
z=1

oneachl,z=1,...,s

228



The inequality (42) can be expressed in the form

’U :l(,-i()’i(r) — Bi7)) 97)) dr

=

<eg.

m s
=DND)
ji=1z=1 i=1

TinI:n<t;,t>

ﬁ S (o) - Blo) 9do) de

We shall find the functions y(f), i =1,...,p on each T, n I, N T, j=1,..., m;
z = 1,..., s so that

&,
<2
ms

) [0 5 6O-ppee

TjinIln<ty,t>

Then the inequality (42) will hold.

Let us choose a certain set T from the sequence {Tj, ..., T,,}. Let k < p be the
number of the indices i such that §(t) % 0. Let us change the order of indices so
that B(t) + 0 for each i = 1, ..., k. For k = 1 we define y,(r) = B,(t) on T;. Let
k > 1. The functions p(r) are constant on T;. We can write these functions Br)

k

without the variable 7. Then Y, B; g,(t) is an approximation of the function (1)
i=1
k

k
ontheset T; n T'. The function ). B; g{(t) is defined on the interval T, where ), B; = 1,
i=1 =1

i=
0 < B; < 1, p; are rational values and g(t) are step functions on T.
Now, let us choose a certain I, from the sequence {I, ..., I,} and g{t) = g; on I,
for each i. There exists a constant K, > 0 such that

g.(1) —é:lﬂi gl :v=1,...k} £ K,

max {

holds for every t € T. The last inequality implies

<

(44)

| ROESWPICILE

< f . |9(2) —izilﬁig,-(f)“ dr < Koft — 1)

for t; £ t, <t £ t,, where v, is an arbitrary simple measurable funciion on T and
v, €{l, ..., k}. Further, we choose 6, > 0 such that

(43) Kob, < 22
ms
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holds. The interval T = (f, t,) can be divided into a finite system of intervals
(46)  (ty,ty + 8,), {ty + 0y 1y + 20,), .., by + (1 = 1) 65, 1, + 16,),

where the last interval contains the point ¢,. We divide each interval {t, + (u - I) 0,5,
t, + ud,), u = 1,..., 1 from (45) into the following parts:

If yl{T; n 1, n <t1 + (u = 1)6,, t; + ud,)} = y;,,, then we divide the 1nterval
(t; + (u — 1)8,, t; + ud,) into k parts

47) (y +(u—1)6, t; + (u—1)6, + 47), ...,

ty + (w—1)0, +ZA,, t+(u—1)6, + Y 49, ...,
i=1

{ty + (u—1)0, + ZA,, 1y + ud,).
The values 4%, r =1, ..., k; u = 1, ..., | are defined by the equations
w{T;n I 0ty + (u—1)0, + }:A,, ty+ (u—1)6, + ) 4} =
i=1

rﬂj,z,u .
We define functions 9,(¢) on T; N I, by
9() =0 for te(T;nl;) —<t; + (u—1)5, +

r—1 r
+ Y4t + (u—1)8, + Y 47),
i=1 i=1
9()=1 for teT;nl, Nt + (u—1)5, +
r—1 r
o+ YA+ (u—1)6, + ) 4Y),
i=1 i=1

where r = 1, ..., k. We define 9x+4(t) = ... = 9,(f) = 0 on T; n I,. We shall prove
that these functions 7,(¢) satisfy the inequality

| (3700 40) - 3. Bia o) as

jolzn<ty,t> i=

&
< 20
ms

(48)

for every t € T. First of all we prove the identity

j (Mr)m 0 - Zﬁ 09 ds

=0

(49)

inIzn<ty,t> i=
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at the points t = t, + ,, t, + 26,, ..., t; + (I — 1) §,. It holds

k u k
J. ?,-(‘C) gi(‘[) dr = Z gi .“lj.z,vBi s
Tjnl:n<ty,t;+udy> i=1 v=1i=1

k u k
f Bigi(‘f) dr = Z Zgi.uj,z,uﬁi
Tynlzn<ty,t;+udy> i=1 v=1i=1

foreachu =1,...,1 — 1.

This implies the validity of (49) for each t = ¢, + ud,, u = 1,...,1 — 1. From
(44), (45), (46) and (49) we obtain (48).

The functions 9t), i = 1, ..., p are defined analogously on T; N I, N T for each
j=1,...m; z=1,..,s Then the inequality (42) holds. Further, we get the ine-
quality (41) for 9(t) defined on Tfor i = 1, ..., p. Then it holds

U :,("‘(’) - .-Zp:,?f(‘f) S ¥'(2)) dr

for certain ¢e T, where 9(t) are measurable simple functions with the following
property:

For every t € Tthere exists an index j € {1, ..., p} such that §,(t) = 1 and §(¢) = 0
forie{l,..., p} — {j}. _

Now we define a function y(t) on T': §(t) = Y(t), where i is the index for which
9{t) = 1. We have constructed a function y(f) on T with the properties (24), (25),
(26), (28). Finally it holds

(i) - (xm) ¥ f :lf(f, J(0) dr)

<e

- U f t‘l(x(f) — f(=, §(x))) de

<e

_ “ f "1(;2(1) - L0V ) dr

for every te T. It means that the inequality (27) holds for the function ¥(f) on T.
This completes the proof.
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