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Czechoslovak Mathematical Journal, 29 (104) 1979, Praha 

A NOTE ON A RESULT OF KENDALL 

K. DAYANITHY, Kuala Lumpur 

(Received November 11, 1977) 

In this note we shall be concerned with continuous-time Markov processes which 
are homogeneous in time and have a countable number of states. Such systems may, 
be described by a collection {P(r) :0 ^ t < +00} of matrices, where P(r) = {pjk(t) 'j, 
/c = 1, 2, . . .} (0 ^ ^ < +00) satisfies the following conditions: 

+ 00 4- 00 

Pjk{t) ^ 0 ; X PÀt) = 1 ; Z PÀ^) Pockit) = Pjk{s + t) ; and 

lim pjj,{t) = ôjk = pjj,{0) 
t=o + 

(the above relations are to hold for all positive integers / and к and for all real non-
negative 5 and t). We shall restrict ourselves to irreducible processes. 

It is shown in [2] that every irreducible Markov process has at least one positive 
sub-invariant measure {nij :j = 1, 2, . . . } ; thus 

+ 00 

a = l 

for each positive integer к and each real non-negative t. This sub-invariant measure 
allows us to define, for each Г ^ 0, a bounded linear transformation T(t) on l^ in the 
following manner: 

+ 00 

a = l 

for each x = (x^ : a = 1, 2, . . .} e /^, where [T{t) x\ denotes the Ä:-th component 
oïT{i)x{k = 1,2,...). 

Then {T{t) :0 S t < +00} is a weakly continuous one-parameter semi-group of 
contractions and hence is strongly continuous on [0, +oo[. KENDALL [2] uses this 
fact and Sz.-Nagy's theorem on unitary dilations to obtain a unitary representations 
of the transition probabilities of irreducible Markov processes [2, Theorem II] . 
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A further representation is obtained by Kendall [2, Theorem IV] for a narrower 
class of Markov processes which may be stated as follows: 

If the operator T{t) is self-adjoint for each t ^ 0, then the transition probabilities 
may be uniquely represented in the form 

л + 00 

Pj,{t) = (т,1т^У'Ч e-"G,,(dt) (̂  ^ 0) , 
0 

where {G^ : j \ k = 1, 2, ...} is a symmetric system of real-valued functions of 
bounded variation on [0, -Ьоо[. 

Theorem VII thereof gives a set of necessary and sufficient conditions for this to 
be so. This condition is stated in terms of the Doob-Kolmogorov limits 

and is that they should satisfy the "reversibility" condition: 

In this case each of the matrices P(t), where f ^ 0, satisfies the reversibility condition 
with respect to the same sub-invariant measure, which now becomes an invariant 
measure. In general, the Doob-Kolmogorov limits do not determine the process 
uniquely and a set of conditions, called conservation conditions, sufficient to ensure 
unicity of the generated process is as follows: 

0 ^ ^д < +00 (j, /c = 1, 2 , . . . ; J + /c) ; 

+ 00 

Z qjoc = - ^ л (= ^j) < + ^ 0 = 1' 2,...) ; 
a = l 

and the set of equations 
+ 00 

Z^ ja^ = ^yj 0* = 1, 2, ...) 

possesses no non-zero bounded solution у = {yj : j = 1, 2, ...} for some, and hence 
for all, positive A. 

The present note endeavours to give a similar but weaker representation under 
the milder hypothesis that just one of the matrices P(t), where t > 0, satisfies the 
reversibility condition with respect to a sub-invariant measure of the process. Without 
any loss of generality we may assume that P(l) satisfies this condition, thus making 
r( l) a self-adjoint operator on /^. We observe that, in this case, the discrete-time 
Markov chain {P{n) : n = 0, 1, 2,...} thus defined is reversible. Hence what we are 
concerned with are non-reversible Markov processes which have a reversible skeleton. 
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Theorem. Let {THJ :j = l,2,,..}bea positive sub-invariant measure associated 
with an irreducible Markov process, and suppose that 

m jPjM = ЩРк]{^) (Л /с = 1, 2 , . . . ) . 

Then there exists a system {Gß^^ :j, к = 1,2,...; n = 0, ± 1 , ± 2 , . . . } of complex-
valued Borel measures on the positive half-real-line [0, +oo[ such that 

Ы0 = *i '̂"'" f*""̂ '" Gf{à^) {f^\), 
«=-00 Jo 

for each pair j , к of positive integers, where the summation of the above Fourier-
type series is to be performed using a suitable kernel. 

Moreover, for each pair (j , /c) of positive integers we have 

Gk"%) = G«( . ) (n = 0 , ± l , ± 2 , . . . ) ; 

hence С/д^(.) is real-valued. 

Proof. Suppose that the conditions of the theorem are satisfied. Then {T{t) : 0 g 
^ f < +00} is a one-parameter semi-group of contractions on ï^, strongly con-
tinous on [0, +oo[, and such that T(l) is self-adjoint on ï^. Let us write P for T(l) 
and let the unique resolution of the identity for P be FQ- Further let Я+ = PoQ^» 
+ oo[) F, H_ = Po(]-oo, 0[) f and Ho = Po({0}) /^ Then P = Я_ e Яо 0 Я+ 
is an orthogonal decomposition of /^; and this decomposition reduces the semi­
group, since P commutes with the semi-group. Let the corresponding decomposition 
of the semi-group be 

T{i) = T_{t) © To{t) e r+(f) (̂  ^ 0 ) . 

Then To{t) = 0 (r ^ 1); Г±(1) = P±, where P± are the components of P in Я+ 
respectively. Further {T±{t) :0^t< + 00} are one-parameter semi-groups of 
contractions on Я± respectively, and are strongly continuous on [0, +oo[. 

Now consider the semi-group {T+(t) :0 S t < +00}. We have 

T^t) = Р\Г'Р^-'T^{t) ( r ^ l ) , 

where P^+^ is a bounded linear operator опЯ+ and P+~^ is a closed linear operator 
in Я+, both are defined using the familiar operational calculus for self-adjoint opera­
tors. Since P commutes with the semi-group, we have 

where P+""' T+(t) is a closed linear operator in Я+, for each t ^ 0. We next show that 
this operator is indeed bounded. 
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If о g г ^ 1, clearly P\. ^ T+{t) is a bounded Hnear operator on Я+. If Г > 1, 
let r = n + s, where n is the integral part of t and 0 ^ s < 1. Then 

p\r' T^t) = p\-' T^n) T^{s) = p^-'n T+(5) = p'r тф). 
Thus, for each t ^ 0, P+~* T+{t) is a bounded linear operator on Я+. Moreover, 
it is a periodic function of f, with period 1 (or a franction of it); and is strongly con­
tinuous on [0, +oo[, since it is strongly continuous on [0, 1]. 

For each integer n, let the corresponding Fourier coefficient be G^̂ "̂ : 

^ ( 2 . ) ^ I e~^"^"'PÎb~'T+(r)dr. 

Each Ĝ "̂̂  is a bounded linear operator on Я+ and we have 

+ 00 

P\r'T+{t)= X е -̂'-'б^^"» ( f ^ O ) , 
n = — 00 

where the summation is to be performed using a suitable sum'mabihty kernel, such 
as Fejér's or Poisson's, and in the strong operator topology of В(Н+), 

We next observe that P+ is a positive operator on Я+ and hence, for each f ^ 1, 

Р Г ' = r^e-'^'-'^ E^dX), 

where £+ is a self-adjoint resolution of the identity on Я + . Thus, for each ^ ^ 1, 
we have 

+ DC- Л + 00 

n=-cc J o 

where the summation is to be performed as before. But, since 6^ "̂̂  is a bounded linear 
operator on Я+, we have 

+ 00 Л + 00 

r i = - o o J o 

Similarly, by considering the semi-group {e"^^^ T_{t) :0 ^ t < +oo}, we have 

+ 00 л + 00 

"=-"» Jo 

If we now observe that To(f) = 0 (f ^ 1), we have 

n = — 00 
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where, for each positive integer f, we denote by e,- the element of /̂  whose i-th com­
ponent is 1 and whose all other components are zero; and 

G['%) = G^'"^E, 
{n = 0, ± 1 , ± 2 , . . . ) . 

Thus 

(*) 

F+ = FoO 0, + œ [ ) , F_ = f o(] - ^, 0 [ ) . 

+ 00 /* + 00 

Ы 0 = E e^'-'i e-̂ 'G«(dA) (ï ^ l) , 
/i=-oo J o 

where Ôf^idX) = {m,lmj)^'' e\ej, Ö^'(d2)> [j, к = 1, 2 , . . . ) . 
Adding (*) to its conjugate and dividing by 2, we have 

+ 00 /» + 00 

"= - °o Jo 

where 

Gj",'(di) = i{Of,>(dA) + G<.r>(dl)} , 

for each pair {j, k) of positive integers. This completes the proof of the theorem. 
If we are using Fejér's kernel in summing the series for T+{t) and T^{t), we get the 

following combined kernel giycn by: 

p,,(0 =lim Y 6 - Щ) ^^'' ['^^-'' Г̂Д̂ Я), 
п = <ю r=-2n \ r + 1 / J o 

where [r/2] denotes the integral part of r/2. 
We observe that GJĴ  = 0 for each non-zero value of n if, and only if, each matrix 

P(t), where ? ^ 0, is reversible with respect to the sub-invariant measure {nij : j = 
= 1,2, . . .}. 

An important question remains to be answered, that is, whether there exist any 
non-reversible Markov processes which possess a reversible skeleton. One such 
process was given by SPEAKMAN [3]. Here Speakman constructs two three-state 
Markov chains, one of which is reversible while the other is of the above description. 
The non-reversible process has infinitesimal matrix (that is the matrix of Doob-
Kolmogorov limits) Q given by: 

e = -1 1 0 
0 - 1 1 
1 0 - 1 
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the individual transition probabilities are given by: 

Piiit) = P22{t) = Рзз(0 = i + ie-"" COS Шф) ; 

Pi2{t) = Р2з(0 = P3i(0 = i + fe- ' '^ ' cos (V(30/2 - 27Г/3) ; 

Р1з(0 = P2i{t) = Рз2(0 = * + I e ~ ' " ' cos (V(3()/2 - 47t/3). 
and 

Q satisfies the conservation conditions stated earlier and hence the only Markov 
chain it generates is the above (which is thus the Feller minimal process associated 
with Q). Further [1, 1, 1] is an invariant measure for the process and the matrix P(t) 
is reversible with respect to this invariant measure whenever ^ is an integral multiple 
of 47г/лУЗ. But the process is reversible for no positive sub-invariant measure since, 
Q obviously is non-reversible with respect to any such measure. Finally we observe 
that the above expressions for the transition probabilities is already recognisable as 
a particular instance of our expansion theorem, with suitable Dirac measures for Gf^, 

I am very grateful to Professor DAVID KENDALL of the University of Cambridge 
for suggesting the above Speakman process as an illustration of a non-reversible 
Markov process with a reversible skeleton. 
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