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(Received March 14, 1977)

Patterned after the theory of modules over a ring, P. BERTHIAUME [1] introduced
the concepts of injective and weakly-injective S-systems. He exhibited examples of
such S-systems and showed that properties holding true for a right ring module
need not hold for a right S-system. For example, a weakly injective S-system need
not be injective; in ring theory, this is part of Baer’s Theorem. In this paper, we study
another weak form of injectivity called quasi-injectivity. Quasi-injective modules
have been studied by JoHNsSON and WoNG [6], FAITH and Utumi [3], and B. OsoFsKY
[8], among others. Recently M. SATYANARAYANA [9] investigated quasi- and weakly-
injective S-systems. Our paper is a study of quasi-injective S-systems and their
S-endomorphism semigroup. We characterize the smallest quasi-injective essential
extension of an S-system M contained in I(M s)» its injective hull. Further we give
conditions for Homg (M, M) to be (VON NUEMAN) regular and obtain as corollaries
a result of M. BoTERO DE MEzA [2] dealing with the regularity of the maximal right
quotient semigroup Q(S) of a semigroup S, and a generalization for S-systems of
Faith and Utumi’s result on the regularity of the endomorphism ring of a quasi-
injective module.

1. PRELIMINARIES

Definition 1.1. 4 right S=system M with zero, denoted My, is a set M, a semigroup S
with zero, and a function M x S - M such that (m, s) — ms and the following
properties hold:

(i) (ms)t = m(st) for me M and s, teS.
(ii) M contains an element @ (necessarily unique) such that 0s = @ for all s€ S.

(iii) for all m € M, m0 = 0, where 0 is the zero of S.

Dually we can define a left S-system with zero. In this paper all our S-system will
be right S-systems with zero.
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Definition 1.2. A subsystem N of Mg, denoted Ny = My, is a subset of M such that
nseN forallneN and se S.

Definition 1.3. 4 (right) congruence o on Mg is an equivalence relation defined
on M such that if a « b then (as) « (bs) for a, be M and all s€ S.

Definition 1.4. An S-homomorphism f : Ag — Bg is a mapping from A to B such
that for any ae Aand s€ S, f(as) = f(a) s.

The set of all S-homomorphisms from Ag to Bg is denoted by Homg (4, B).
Under composition of functions Homg (M, M) is a semigroup called the S-endo-
morphism semigroup of M. If the elements of K = Homg (M, M) are regarded as
left operators then M is a (K, S)-bisystem; that is to say, M is a right S-system and
a left K-system such that h(ms) = (hm)sfor he K, me M, and s€ S.

Definition 1.5. An S-system M is injective if for each one-to-one S-homomorphism
g : Ps > Rg and each S-homomorphism h : Pg — Mg, there exists an S-homo-
morphism h : Rg = Mg such that hg = h.

Definition 1.6. An S-system Mg is weakly-injective if for any right ideal R of S
and f € Homg (R, M) there exists an element m € M such that f(r) = mr for all r € R.

Definition 1.7. An S-system My is quasi-injective if for Ny & Mg and f € Homg
(N, M) there exists an S-homomorphism f: Mg — Mj such that f|y = f.

In [1], Berthiaume showed that a weakly-injective S-system need not be injective.
However, the converse is true. Also, it is clear that M being injective implies that Mg
is quasi-injective, but the converse here is false. In fact, quasi-injective does not imply
weakly-injective, as shown by the following example adapted from [9].

Example 1.8. Let S be the semigroup {0, a, b} withab = a*> = aand ba = b*> = b.
Now S considered as an S-system over itself is quasi-injective but it is not weakly
injective since the identity map is not determined by left multiplication by an element

. of S. Consequently, it is not injective.

Definition 1.9. A subsystem N is large (or essential) in My if for any Py and any
S-homomorphism f : Mg — Pg whose restriction to N is one-to-one, then f is itself
one-to-one. In such a case, we say that My is an essential extension of Ng.

The main result of Berthiaume’s work in [1] is that every S-system has a maximal
essential extension which is injective and unique up to S-isomorphism over Mj.
This maximal essential extension which is injective is called the injective hull of Mg
and is denoted by I(Ms).

Definition 1.10. A nonzero subsystem N of Mg is intersection large ((\-large) if for
all nonzero subsystems X of M, X (N # 0. This will be denoted by Ny =’ M.
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Equivalently, a nonzero subsystem Ng &' My if and only if for all 0 + me M
there exists s € S* (an identity adjoined) such that @ #+ ms e N. FELLER and GANTOS
in [4] proved that every large subsystem of My is ()-large. The converse is false.

Definition 1.11. The singular congruence 1,y on My is a right congruence defined
by ay,b if and only if ax = bx for all x in some ()-large right ideal of S.

In [5], HINKLE showed that when Y, = i, the identity congruence on M, the
concepts of large and ()-large are the same. He also showed that Mg being weakly-
-injective and Y,; = i imply that My is injective. Example 1.8 shows that Mg being
quasi-injective and Y,, = i does not imply that My is itself injective.

2. THE INJECTIVE HULL

Let Mg be an S-system with zero, let I = I(Mj), its injective hull, and let H =
= Homy (I, I) the S-endomorphism semigroup of 1. We know that I is the minimal
injective essential extension containing Mj. Is there a minimal quasi-injective essen-
tial extension of My contained in I as in ring theory?

Lemma 2.1. If M is an (H, S)-bisubsystem of I, then M is quasi-injective.

Proof. Let Ny & Mg and f:Ng — Mg an S-homomorphism. Since Mg & I,
f can be extended to an S-homomorphism f e H. But f(M) = M so f can be extended
to an S-homomorphism of M into M, namely f]y.

Lemma 2.2. If Yp; = iy then Yy = ij.

Proof. This follows immediately from the fact that My is large in I and Theorem 7

in [1].

Lemma 2.3. Let f, g € Homg (M, M) and suppose f and g agree on an (\-large
subsystem Ng of M. If Yy = i, then f = g.

Proof. Let x € M, then for cex !N = {se S : xs €N}, an (\-large right ideal
of S, we have f(x) ¢ = g(x) c. Since Y5, = i then f(x) = g(x).

Theorem 2.4. If My is quasi-injective and Yy, = i, then M is an (H, S)-bisub-
system of I.

Proof. Leth € H.Since Mg ' I'thenh™*(M) ='Iandso 0 + h™'(M)n M <'1.
Let N = (M) n M and define an S-homomorphism a : Ny - Mg by x — h(x).
Since Mg is quasi-injective there exists b € Homg (M, M) such that b(x) = a(x) for
all x e N. Since I is injective, there exists ¢ € H such that ¢(x) = b(x) for all x € M.
Hence c¢(n) = b(n) = a(n) = h(n) for all n € N. Since Yy = i then §; = i by Lemma
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2.2, and so ¢ = h by Lemma 2.3. But ¢(M) S M so h(M) = M. Hence M is an (H,
S)-bisubsystem of I.

Corollary 2.5. Let Mg be an S-system for which Y, = i. Then Mg is quasi-
injective if and only if M = HM where HM = {f(m)el|fe H and me M}.

Proof. We note that HM is the smallest fully invariant (H, S)-bisubsystem of I
containing M and it is quasi-injective.

Note that if My is quasi-injective and K = Homg (M, M), then any K-invariant
subsystem of My is also quasi-injective.

Theorem 2.6. Let Mg be an S-system for which ), = i. Then Mg is quasi-injective
if and only if Homg (M, M) ~ Homg (I, I).

Proof. Let K = Homg (M, M). If H ~ K then M is an (H, S)-bisubsystem of I
and so by Lemma 2.1 must be quasi-injective. Conversely, consider ¢ : K - H
defined by a — a where a : I — I is the quasi-injective extension of a : M - M < I.
Since Y, = i this mapping is well defined, one-to-one and a semigroup homo-
morphism. Furthermore, Mg being quasi-injective implies by Theorem 2.4 that M
is an (H, S)-bisubsystem of I.

We now show that HM is the smallest quasi-injective essential extension of M
contained in I.

Theorem 2.7. Let Mg be an S-system with ,, = i. Then HM is the intersection
of all quasi-injective S-subsystems of I containing M.

Proof. Let P be a quasi-injective subsystem of I containing M. We must show
that HM < P, but it is sufficient to show that aP < P for all a € H. To this end then
let ae H. Since M <’ I and M < P < I then both P and a™'(P) are ()-large S-
subsystems of I and so 0 # a™!(P) n P is an (\-large S-subsystem of P. Consider
the mapping a~'(P) n P — P defined by x — a(x). Since P is quasi-injective then
there exists an d € Homg (P, P) such that d(x) = a(x) for all xea™*(P) n P. Since
I is injective there exists @ € H such that a(y) = d(y) for all y € P. Thus aP < P.
But by Lemma 2.2 and 2.3, a(x) = d(x) = a(x) for all xea™*(P) n P <'I implies
that a = a, and so aP < P.

Since there are S-systems which are quasi-injective but not injective (Example 1.8)
we can have HM < I, HM = I. The condition that ¥, = i cannot be omitted in the
previous theorem as the following example demonstrates.

Example 2.8. Let Q* represent the noncomplete chain of rationals with largest
element +o00 and q . q' = g if and only if g < q'. Thus QZ. has for its injective hull
the chain of extended reals R*. Berthiaume [1] showed that every noncomplete chain
is weakly injective. Satyanarayana [9] showed that since Q};* has an identity it must
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also be quasi-injective. Here Yo, + i because if Yo+ = i then the maximal right
quotient semigroup Q(Q*) ~ B(Q*), the bicommutator of the injective hull of @*,
[7; Corollary 3.1] which is a contradicition since Q* = Q(Q*) and R* = B(Q¥).
Hence Q. is quasi-injective and Yo« * i.In this case, H = Homg.(R*, R*) and con-
sidering the mapping f : R* — R* defined by r — (y/2) . r, we say that HQ* & Q*.
Hence HQ* is not the smallest quasi-injective essential extension contained in R*.

3. THE S-ENDOMORPHISM SEMIGROUP OF A QUASI-INJECTIVE
S-SYSTEM

In addition to the notation of the previous section we let K = Homg (M, M) and
define for m € M the mapping 4,, : Sg = Mg by s — ms. Let
J(Ms) = {me M : 1, is one-to-one only on one element right ideals of S} .

Lemma 3.1. J(My) is an S-subsystem of M.

Proof. It is clear that J(Mj) is not empty since @ € J(Mj). Let m € J(Mj) and
s € S, we must show that ms € J(Ms). Let A be a right ideal of S with more than one
element, denoted |A| = 2. Consider the right ideal s4 of S. Either s4 = Oor [s4| 2 2.

Case 1. Suppose sA = 0 then for all a;, + a, € A, sa, = sa, = 0and so m(sal) =
= m(sa,) = 0. Consequently 4, is not one-to-one on A4 and thus ms € J(My).

Case 2. Suppose |sA| > 2 then there exists sa;, # sa, € s4 such that m(sa;) =
= m(sa,) because m € J(M;). Hence A, is not one-to-one on A and ms e J(My).
Lemma 3.2. J(Mj) is K-invariant.

Proof. Let fe K and m e J(Ms). Since f is an S-homomorphism then f(m) s =
= f(ms) = f(2n(s)) = f o An(s). Suppose f(m) ¢ J(M;s) then A, is one to one on
a right ideal R of S with lRI 2 2. Since m € J(Mj) then there exists ry # 72 € R
such that 4,(r;) = An(ry). But then f(1,(r;)) = f(Au(r2)) and so fo A,(ri) =
= fo Ay(ry). Thus Az is not one-to-one on R; a contradiction.

Thus J(Ms) is a (K, S)-bisubsystem of Mg and when Mg is quasi-injective, J(Mjs)
is also. Furthermore, When ¥, = i and Mj is quasi-injective, J(My) is an (H, S)-
bisubsystem of M. We now define the set ’

T(Ms) = {fe K : f~1(J(Ms)) = Ms}. '
Clearly the zero mapping 6 €K is in T(Ms) and {fe K :f~!(0) =’ Ms} = T(My).
Lemma 3.3. If J(M;) = {0}, then | |

T(Ms) = {feK:f7Y(0) =" Mg} = {6} .
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Proof. Let 0 # fe T(Ms), then there exists @ + m e Mg such that f(m) # 0.
Since J(Ms) = {0} then f(m)¢ J(Ms) so there exists a right ideal R of S with
|R| = 2 such that 4y is one-to-one on R. Consider now the S-subsystem mR and
note that |mR| > 2. Now f is one-to-one on mR and since f~1(0) =’ Mg then
f~Y(0) n mR * 0. This is a contradiction since if x € f (@) n mR, f(x) = 0 and
since x € mR, then f(x) = f(0) which implies that x = @ since f is one-to-one on mR.
Hence T(Mj) = {6}.

Theorem 3.4. Let Mg be a quasi-injective S-system. If Y5y = i and J(Ms) = {0},
then K = Homg (M, M) is regular.

Proof. Let 0 % fe K, then there exists @ % x € Mg such that f(x) & @ and so
f(x) ¢ J(My). Hence there exists a right ideal R of S with |R| = 2 such that A, is
one-to-one on R. Hence considering the S-subsystem xR we can say that fis one-to-one
on xR and lxR‘ = 2. By Zorn’s Lemma, there is a maximal S-subsystem on which f
is one-to-one, call it D;. Define the S-homomorphism g :f(D;) - D; by y =
= f(z) — z. Since My is quasi-injective then we can extend g to g € K such that
dlrw,) = 9. Let D, = f~Y(f(D,)), then for te Dy, f(t) = f(r) for some re D,.
Hence for t € D, we have

f31(0) = 1@(f) = f@( () = £(r) = f(2)-

Thus if D, =’ M, we have by Lemma 2.3 that fgf = f on Ms. Hence suppose D,
is not an (\-large subsystem of My, then there exists Ag S My such that IASI =2
and Agn D, = {0}. Let 0 * ae A such that f(a) + 0. Then f(a) ¢ J(Ms) so
there exists a right ideal Y of S such that |Y| = 2 and f(a) yy * f(a) y, for all
y1 * y, € Y. Hence f is one-to-one on aY = Mg. But D, < D, so Asn D, = {0}
implies D; N aY = {0}. Now D, U aY > D, so f is not one-to-one on D, U aY
by the maximality of D,. Hence there exists d € D, and ay € aY such that d + ay
but f(d) = f(ay). Thus ay e f~Y(f(D;)) = D,. But D; n aY = {0} since D; n As =
= {0} and so ay = 0. Thus f(d) = 0 = f(0) and d = 0; a contradiction since
ay # d. Thus D, &' Mg and K is regular.

Corollary 3.5. Let Mg be an S-system with H = Homg (I, I) where I is the in-
Jjective hull of M. If ype = i and J(Ms) = {0}, then H is regular.

Proof. It suffices to show that J(Ms) = {0} implies J(I) = {0}. Let 0 + t € J(I).
Since Mg =’I then t~*M is an (\-large right ideal of S and |t“’Ml = 2. Hence
there exists 0 + s € S such that @ # tse M. We now show that ts € J(Mg) which
gives a contradiction. Let R be any right ideal of S with IRI = 2. Then either sR = 0
or IsRl = 2.

Case1.If sR = Othenforr, #+ r, € R, f(sr;) = #(sr;) so A, is not one-to-one on R.
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Case 2. If [sR| Z 2 then there exists sr; # sr, € sR such that #(sr;) = t(sr;) be-
cause t € J(I). Hence once again A, is not one-to-one on R.

Thus in both cases ts € J(M).

The next corollary is similar to a result of M. BoTERO DE MEZA [2].

Corollary 3.6. Let S be a monoid considered as a right S-system with zero over
itself, and let Q(S) be the maximal right quotient semigroup of S. If Y5 = i and
J(S) = 0, then Q(S) is regular.

Proof. Corollary 3.5 and [7, Corollary 3.2].
We now link this work with a result of Faith and Utumi [3] by considering the
following set:
X(K) = {feK :f is one-to-one only on one element S-subsystems of My}

Lemma 3.7. T(Mj) < X(K).

Proof. Let feT(Mg) then f Y(J(Mg)) <’ M;. Let O + Ng = Mg, then
S (J(Mg)) " Ns + {0}. Let 0 + nef Y(J(Ms)) n Ng then f(n)e J(M;s). Con-
sequently, A, is one-to-one on only one element right ideals of S. So there exists
s; * s, €S such that f(n)s; = f(n)s,. But then f is not one-to-one on nS < N
so f e X(K).

Lemma 3.8. If J(Mj) = {0} then
X(K)=T(Ms) = {feK :f7Y(0) =’ Mg} = {6} .

Proof. Let fe X(K) and suppose f~1(0) is not an ()-large subsystem of M.
Then there exists {0} + Ty = Mj such that f~%(0) n T = {0}; that is, {me M :
:f(m) = 0} A T = {0}. So there exists 0 # t e T such that f(f) + 0 and so f() ¢
¢ J(M;). Furthermore, there exists a right ideal R of S with |R| = 2 such that
ry * r, € R implies f(t) r; # f(t) r,. Hence f is one-to-one on tR = T < M. But
this is a contradiction since |tR| = 2 and feX(K). Thus f~*(0) <’ My and so
X(K) = {feK :f~1(0) =’ Mj}.

Theorem 3.9. If S is a ring and My is a quasi-injective right S-module then
X(K) ={feK :kerf <’ Ms}.

Proof. If f € X(K) but ker f = {m € M : f(m) = 0} is not (-large in M then there
exists {0} # Ty = Mg such that ker f N Ts = {0} so f is one-to-one on Ts. This is
a contradiction since f € X(K) so ker f ' M.

Faith and Utumi [3] showed that K \ X(K) is a regular ring and when X(K) = {6},
K is a regular ring. Thus Theorem 3.4 generalizes the second half of Faith and
Utumi’s result to quasi-injective S-system whose singular congruence is the identity
congruence. '
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