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QUASI-INJECTIVE S-SYSTEMS AND THEIR 
S-ENDOMORPHISM SEMIGROUP 

ANTONIO M . LOPEZ, JR., New Orleans, and JOHN K . LUEDEMAN, Clemson 

(Received March 14, 1977) 

Patterned after the theory of modules over a ring, P, BERTHIAUME [1] introduced 
the concepts of injective and weakly-injective 5-systems. He exhibited examples of 
such 5-systems and showed that properties holding true for a right ring module 
need not hold for a right S-system. For example, a weakly injective S-system need 
not be injective; in ring theory, this is part of Baer's Theorem. In this paper, we study 
another weak form of injectivity called quasi-injectivity. Quasi-injective modules 
have been studied by JOHNSON and WONG [6], FAITH and UTUMI [3], and B. OSOFSKY 

[8], among others. Recently M. SATYANARAYANA [9] investigated quasi- and weakly-
injective S-systems. Our paper is a study of quasi-injective S-systems and their 
S-endomorphism semigroup. We characterize the smallest quasi-injective essential 
extension of an S-system M s contained in /(M^), its injective hull. Further we give 
conditions for Hom^ (M, M) to be (VON NUEMAN) regular and obtain as corollaries 
a result of M. BOTERO DE MEZA [2] deahng with the regularity of the maximal right 
quotient semigroup ß(S) of a semigroup S, and a generalization for S-systems of 
Faith and Utumi's result on the regularity of the endomorphism ring of a quasi-
injective module. 

1. PRELIMINARIES 

Definition 1.1. A right S-system M with zero, denoted M ,̂ is a set M, a semigroup S 
with zero, and a function M x S -^ M such that (m, s) -• ms and the following 
properties hold: 

(i) (ms) t = m{st) for me M and s, t e S. 

(ii) M contains an element Ф (necessarily unique) such that Фз = Ф for all se S. 
(ill) for all me M,mO = Ф, where 0 is the zero of S. 
Dually we can define a left S-system with zero. In this paper all our S-system will 

be right S-systems with zero. 
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Definition 1.2. Ä subsystem N of Ms, denoted Ng ^ M5, is a subset of M such that 
nseN for all и e AT and se S. 

Definition 1.3. Ä (right) congruence a on M^ is an equivalence relation defined 
on M such that if a a Ь then (as) a (bs) for a, b e M and all s e S. 

Definition 1.4. An S-homomorphism f : Ag -^ Bs is a mapping from A to В such 
that for any aeA and se S, f{as) = f{a) s. 

The set of all 5-homomorphisms from As to Bs is denoted by Hom5 (A, B), 
Under composition of functions Hom^ (M, M) is a semigroup called the S-endo-
morphism semigroup of Ms- If the elements of iC = Hom5 (M, M) are regarded as 
left operators then M is a (K, S)-bisystem; that is to say, M is a right 5-system and 
a left K-system such that h(ms) = (hm) s for h еК, me M, and s e S. 

Definition 1.5. An S-system Ms is injective if for each one-to-one iS-homomorphism 
g : Pg -^ Rs and each S-homomorphism h : Ps -^ Ms, there exists an 5-homo-
morphism Я : i^^ -• Ms such that Eg = h. 

Definition 1.6. An S-system Mg is weakly-injective if for any right ideal R of S 
a n d / e Hom^ (Я, M) there exists an element me M such that / ( r ) = mr for all reR. 

Definition 1.7. An 5-system Ms is quasi-injective if for iV^ £ M^ and / e Hom^ 
(iV, M) there exists an 5-homomorphism / : Ms -> Ms such that / | ^ = / . 

In [1], Berthiaume showed that a weakly-injective 5-system need not be injective. 
However, the converse is true. Also, it is clear that Ms being injective implies that Ms 
is quasi-injective, but the converse here is false. In fact, quasi-injective does not imply 
weakly-injective, as shown by the following example adapted from [9]. 

Example 1.8. Let 5 be the semigroup (O, a, b] with ab = a^ = a and ba = b^ = b. 
Now 5 considered as an 5-system over itself is quasi-injective but it is not weakly 
injective since the identity map is not determined by left multiphcation by an element 

. of 5. Consequently, it is not injective. 

Definition 1.9. A subsystem N is large (or essential) in Ms if for any P5 and any 
5-homomorphism / : Ms -> Ps whose restriction to N is one-to-one, then / is itself 
one-to-one. In such a case, we say that Ms is an essential extension of iV .̂ 

The main result of Berthiaume's work in [1] is that every 5-system has a maximal 
essential extension which is injective and unique up to 5-isomorphism over M^. 
This maximal essential extension which is injective is called the injective hull of M s 
and is denoted by /(M^). 

Definition 1.10. A nonzero subsystem N of Mg is intersection large (fl-large) if for 
all nonzero subsystems X of M,X ON Ф Ф. This will be denoted by iV^ c ' Mg. 
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Equivalently, a nonzero subsystem Ns ^ ' Ms if and only if for all (!) + m e M 
there exists s e S^ (an identity adjoined) such that 0 Ф mseN, FELLER and GANTOS 
in [4] proved that every large subsystem of M5 is fl-^arge. The converse is false. 

Definition 1.11. The singular congruence I/>M on Ms is a right congruence defined 
by афмЬ if and only if ax == bx for all x in some П-large right ideal of S, 

In [5], HINKLE showed that when фм = U the identity congruence on M, the 
concepts of large and OAargQ are the same. He also showed that Ms being weakly-
-injective and фм = ^ imply that Ms is injective. Example 1.8 shows that Ms being 
quasi-injective and фм = i does not imply that Ms is itself injective. 

2. THE INJECTIVE HULL 

Let Ms be an 5-system with zero, let / = I{Ms), its injective hull, and let H = 
= Hom^ (/, /) the 5-endomorphism semigroup of / . We know that / is the minimal 
injective essential extension containing M5. Is there a minimal quasi-injective essen­
tial extension of Ms contained in / as in ring theory? 

Lemma 2.1. If M is an (Я, Sybisubsystem of I, then M is quasi-injective. 

Proof. Let Ns ^ Ms and f '.Ns -^ Ms an S-homomorphism. Since Ms ^ / , 
/ c a n be extended to an S-homomorphism / e H. But/(M) Ç M so /can be extended 
to an iS-homomorphism of M into M, namely / | м . 

Lemma 2.2. / / фм = г'м ^^^^ Ф1 = h-

Proof. This follows immediately from the fact that M5 is large in / and Theorem 7 
in [1]. 

Lemma 2.3. Let f, g E Hom^ (M, M) and suppose f and g agree on an O-large 
subsystem Ns of Ms- If фм = U then f = g. 

Proof. Let xeM, then for cex~^N = {SGS :xseN], an fl-large right ideal 
of S, we have f(x) с = g{x) c. Since фм = i then f{x) = g(x). 

Theorem 2.4. / / Ms is quasi-injective and фм = i, then M is an [H, Sybisub-
system of I. 

Proof. Let/ï 6 Я . Since M5 e ' / t h e n / i - ^ ( M ) c ' / a n d s o 6 ? Ф h-\M)nM яЧ. 
Let N = h~^(M) n M and define an S-homomorphism a :Ns -* Ms by x ~> h{x). 
Since Ms is quasi-injective there exists b G Hom^ (M, M) such that b(x) = a(x) for 
all XGN. Since / is injective, there exists CGH such that c(x) = b(x) for all x e M . 
Hence c(n) = b(n) = a(n) = h(n) for all n e iV. Since ф^ = / then i/̂ j = i by Lemma 
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2.2, and so с = /ï by Lemma 2.3. But c{M) ^ M so h(M) я M. Hence M is an (Я, 
5)-bisubsystem of /. 

Corollary 2.5. Let Ms be an S-system for which фм = *̂- Then Ms is quasi-
injective if and only if M = HM where HM = {/(wi) e / | / e Я and m e M}. 

Proof. We note that H M is the smallest fully invariant (Я, S)-bisubsystem of/ 
containing M and it is quasi-injective. 

Note that if Ms is quasi-injective and К = Hom^ (M, M), then any iC-invariant 
subsystem of Ms is also quasi-injective. 

Theorem 2.6. Let Ms be an S-system for which ф^ = -̂ Then Ms is quasi-injective 
if and only if Hom^ (M, M) ^ Hom^ (/, /). 

Proof. Let К = Hom^ (M, M). If Я « i^ then M is an (Я, S)-bisubsystem of / 
and so by Lemma 2.1 must be quasi-injective. Conversely, consider ф:К-*Н 
defined by a -• â where ä : I -^ I is the quasi-injective extension of a : M ->• M ç /. 
Since фм = i this mapping is well defined, one-to-one and a semigroup homo-
morphism. Furthermore, Ms being quasi-injective implies by Theorem 2.4 that M 
is an (я, S)-bisubsystem of /. 

We now show that HM is the smallest quasi-injective essential extension of M 
contained in /. 

Theorem 2.7. Let Ms be an S-system with ф^ = i- Then HM is the intersection 
of all quasi-injective S-subsystems of I containing M. 

Proof. Let P be a quasi-injective subsystem of/ containing M. We must show 
that HM ^ P, but it is sufficient to show that aP Я P for all a e Я. To this end then 
let аеН, Since M ^' I and M я P Я I then both P and a'^P) are fl-large S-
subsystems of/ and so (P Ф a~^{P) n P is an O-largQ S-subsystem of P. Consider 
the mapping a~^[P) n P -^ P defined by x -^ a(x). Since P is quasi-injective then 
there exists an a e Hom^ (P, P) such that â{x) = a(x) for all x e a~^(P) n P. Since 
/ is injective there exists ä e H such that ä(y) = a(y) for all y e P. Thus äP с p. 
But by Lemma 2.2 and 2.3, ä{x) = â(x) = a[x) for all x e a~^(P) n P я' I impUes 
that ä = a, and so aP Я P. 

Since there are S-systems which are quasi-injective but not injective (Example 1.8) 
we can have H M с /, HM Ф /. The condition that фм = i cannot be omitted in the 
previous theorem as the following example demonstrates. 

Example 2.8. Let ß* represent the noncompete chain of rationals with largest 
element 4- oo and q , q* ~ qiï and only if ^ ^ q'. Thus ß^* has for its injective hull 
the chain of extended reals 1?*. Berthiaume [1] showed that every noncompete chain 
is weakly injective. Satyanarayana [9] showed that since ßß* has an identity it must 
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also be quasi-injective. Here II/Q. Ф i because if \I/Q. = i then the maximal right 
quotient semigroup Q(Q*) ;^ Б(о*)^ ^he bicommutator of the injective hull of ß* , 
[7; Corollary 3.1] which is a contradicition since ß * = 0(ß*) and i?* = ß(ß*). 
Hence QQ* is quasi-injective and фд* Ф i. In this case, Я = HomQ*(i?*, i?*) and con­
sidering the mapping f : R* -^ R* defined by r -> (^2) . r, we say that HQ* ф ß*. 
Hence HQ* is not the smallest quasi-injective essential extension contained in i?*. 

3. THE 5-ENDOMORPHISM SEMIGROUP OF A QUASI-INJECTIVE 

S-SYSTEM 

In addition to the notation of the previous section we let К = Hom^ (M, M) and 
define for m € M the mapping Я^ : S^ -> Ms by s ^ ms. Let 

J{Ms) = {m e M : Я^ is one-to-one only on one element right ideals of 5} . 

Lemma 3.1. J{Ms) is an S-subsystem of Ms. 

Proof. It is clear that J{M^ is not empty since Ф e J {Ms). Let m e J{Ms) and 
s e S, we must show that ms e J{Ms). Let Л be a right ideal of S with more than one 
element, denoted \Ä\ ^ 2. Consider the right ideal sA of S. Either s^ = 0 or \SA\ ^ 2. 

Case 1. Suppose sA = 0 then for all а^ Ф a2 e A, sa^ = 5^2 = 0 and so m(sai) = 
= m(sa2) = Ф. Consequently Я^̂  is not one-to-one on A and thus ms e /(M^). 

Case 2. Suppose \SA\ ^ 2 then there exists sa^ Ф sa2 ^ sA such that m(5öi) = 
= m(sfl2) because m e J{Ms). Hence l^^ is not one-to-one on A and ms e «/(M^). 

Lemma 3.2. J(M5) is K-invariant. 

Proof. Let / е К and m e /(M^). Since / is an S-homomorphism then f{m) s = 
= f{ms) = / ( Я Д А ) ) = / О ЯДХ). Suppose / (m) ^ /(M5) then Я (̂̂ ) is one to one on 
a right ideal R of S with | я | ^ 2. Since m e /(M^) then there exists Vi Ф Г2 ç К 
such that ÀJTI) = ЯДГ2). But then fi^m{ri)) = /(>^тЫ) and so f^^^J^rt) = 
= / o ЯДГ2). Thus Xf^m) is not one-to-one on JR; a contradiction. 

Thus J{Ms) is a (K, S')-bisubsystem of Ms and when M^ is quasi-injective, J{Ms) 
is also. Furthermore, when фм = ^ and Ms is quasi-injective, /(M5) is an (Я, S)~ 
bisubsystem of M5. We now define the set 

T{Ms) = {feK:r\J{Ms))^'Ms}. 

Clearly the zero mapping 0e iC is in T ( M S ) and {feK :/"*((P) ^ ' Mj} E T(iVfs). 

Lemma 3.3. / / J{Ms) = {О}, then 

T{Ms) = {/eX :ГЩ E ' Ms} = {ö} . 
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Proof. Let 0 Ф / е T{Ms), then there exists (P Ф m e M ^ such that / (m) Ф Ф. 
Since J{Ms) = {Ф} then / (m) ^ /(M^) so there exists a right ideal R of S with 
|JR| ^ 2 such that Я^^) is one-to-one on JR. Consider now the S-subsystem mR and 
note that \mR\ ^ 2. Now / is one-to-one on mR and since /~^(Ф) ^ ' M ^ then 
/ " ^ ( ^ ) n mR Ф 6*. This is a contradiction since if x ef~^(p) n mR, / (x) = Ф and 
since X G mR, then/(x) = /(6^) which implies that x = Ф since/is one-to-one on mR. 
Hence T(Ms) = {9}. 

Theorem 3.4. Let Mg be a quasi-injective S-system, If \l/j^ = i and J{Ms) = {Ф}» 
then К = Honis (M, M) is regular. 

Proof. Let в ^ feK, then there exists Ф =^ x e M s such that f{x) Ф Ф and so 
f{x) Ф J{Ms). Hence there exists a right ideal R of S with | R | ^ 2 such that Xf^^) is 
one-to-one on R. Hence considering the 5-subsystem xR we can say that / is one-to-one 
on xR and \XR\ ^ 2. By Zorn's Lemma, there is a maximal 5-subsystem on which/ 
is one-to-one, call it Df. Define the S-homomorphism g 'f{Df) -> Dy by j = 
= / (z) -• z. Since Ms is quasi-injective then we can extend g to g еК such that 
SlfiDf) = 9- Let Df=f-\f{Dj)\ then for teD^, f{i) = f{r) for some reDf. 
Hence for t e Df we have 

f9f{t)=/(^(/(0))=mm)) = /('•) = /(0. 
Thus if Dy. ç ' Ms we have by Lemma 2.3 that / ^ / = / on M^. Hence suppose Df 
is not an П-iargG subsystem of M^, then there exists As ^ Ms such that [Л ]̂ ^ 2 
and Asr\ Df= {Ф}. Let Ф Ф aeAs such that /(tï) Ф б?. Then f{a) ф J{Ms) so 
there exists a right ideal 7 of iS such that |Г | ^ 2 and /(a) y^ Ф/(«) J2 for all 
j ^ Ф ^̂ 2 ̂  Y- Hence / is one-to-one on аУ £ M^. But D/ e Df so ^ 5 0 ! ) ^ = {Ö?} 
imphes Df n aY == {Ф}. Now Df и aYzD Df so / is not one-to-one on DfUaY 
by the maximality of D/. Hence there exists d e Df and ay e aY such that d Ф ay 
bu t / ( J ) = / ( a j ) . Thus ay ef-\f{Df)) = Df. But Df n aY = {Ф} since Df n Ag = 
= {Ф} and so ay = 6?. Thus / (d) = Ф = f{p) and J = 6?; a contradiction since 
ay Ф J. Thus Df ^ ' M5 and К is regular. 

Corollary 3.5. Let Ms be an S-system with H = Hom^ (/, /) where I is the in-
jective hull of Ms- If фм — i and J(Ms) = {Ф}, then H is regular. 

Proof. It suffices to show that J(Ms) = {Ф} implies J{I) = {Ф}. Lot Ф =¥ t e J{l). 
Since Ms я'I then t'^M is an П-large right ideal of S and | г ^ М | ^ 2. Hence 
there exists 0 Ф se S such that Ф Ф tse M. We now show that 5̂ e J{Ms) which 
gives a contradiction. Let R be any right ideal of S with | R | ^ 2 . Then either sR = 0 
or \SR\ ^ 2. 

Case L If 5R = 0 then for r^ ф Г2 e R, t(sr^) = ^^2) so A^̂ is not one-to-one on R. 
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Case 2. If \SR\ ^ 2 then there exists sr^ Ф 5Г2 e sR such that t{sri) = t{sr2) be­
cause t e J(I). Hence once again Â^ is not one-to-one on R. 

Thus in both cases ts e /(M^). 
The next corollary is similar to a result of M. BOTERO DE MEZA [2]. 

Corollary 3.6. Let S be a monoid considered as a right S-system with zero over 
itself, and let Q(S) be the maximal right quotient semigroup of S. If ij/s = ' ^nrf 
J(S) = 0, then Q{S) is regular. 

Proof. Corollary 3.5 and [7, Corollary 3.2]. 
We now link this work with a result of Faith and Utumi [3] by considering the 

following set: 
X(K) = {feK'.fis one-to-one only on one element S-subsystems of Ms} 

Lemma 3.7. T(Ms) Ç X(K). 

Proof. Let feT{Ms) then f-\J{Ms)) Я.'Ms. Let ^ Ф iV̂  ç M ,̂ then 
f-\j{Ms)) nNs^ {Ф}. Let Ф =¥ n ef-\J{Ms)) n Ns then f{n) e J(Ms). Con­
sequently, Aj(„) is one-to-one on only one element right ideals of S. So there exists 
Si Ф 52 6 5 such that f(n) s^ = /(n) 52. But then / is not one-to-one on nS £ jV̂  
sofeX{K). 

Lemma 3.8. / / J{Ms) = {Ф} then 

X{K) = T(Ms) = {feK :f-\G) ^' Ms] = [в] . 

Proof. Let feX(K) and suppose f~^{0) is not an OAargc subsystem of M5. 
Then there exists {Ф} ф Ts ^ Ms such that f~\Ф) пТ= {Ф}; that is, {теМ : 
:f{m) = Ф} пТ = {Ф}, So there exists Ф + teT such that f{t) ф Ф and so f{t) ф 
Ф J{Ms). Furthermore, there exists a right ideal î  of S with |JR| ^ 2 such that 
1̂ =¥ Г2Е R implies f(t) r^ ф f(t) Г2. Hence / is one-to-one on tR ^ T ^ M. But 

this is a contradiction since \tR\ ^ 2 and feX{K). Thus f^ip) ^' Ms and so 
X(K) = {fGK:f-^^'Ms}. 

Theorem 3.9. / / S is a ring and Ms is a quasi-injective right S-module then 

X{K) = {feK:kQxf ^'Ms]. 

Pro of. If / e X{K) but ker / = {m G M : /(m) = 0} is not П-large in Ms then there 
exists {0} Ф T5 Ç Ms such that ker/ nTs = {O} so / is one-to-one on T .̂ This is 
a contradiction since /eX(iC) so ker/ я' Ms. 

Faith and Utumi [3] showed that К \ X(K) is a regular ring and when X(K) = {0}, 
X is a regular ring. Thus Theorem 3.4 generalizes the second half of Faith and 
Utumi's result to quasi-injective S-system whose singular congruence is the identity 
congruence. 
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