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Czechoslovak Mathematical Journal, 29 (104) 1979, Praha 

VARIETIES OF QUASIGROUPS DETERMINED BY SHORT STRICTLY 

BALANCED IDENTITIES 

JAROSLAV JEZEK and TOMAS KEPKA, Praha (Received March 11, 1977) 
In this paper we find all varieties of quasigroups determined by a set of strictly 

balanced identities of length ^ 6 and study their properties. There are eleven such 
varieties: the variety of all quasigroups, the variety of commutative quasigroups, the 
variety of groups, the variety of abelian groups and, moreover, seven varieties which 
have not been studied in much detail until now. In Section 1 we describe these 
varieties. A survey of some significant properties of arbitrary varieties is given in 
Section 2; in Sections 3, 4 and 5 we assign these properties to the eleven varieties 
mentioned above and in Section 6 we give a table summarizing the results. 

1. STRICTLY BALANCED QUASIGROUP IDENTITIES OF LENGTH £ 6 

Quasigroups are considered as universal algebras with three binary operations 
•, / , \ (the class of all quasigroups is thus a variety). 

A quasigroup term t (i.e. a formal expression consisting of variables and the three 
binary operation symbols •, / , \ ) is called balanced if every variable has at most 
one occurrence in t; it is called strictly balanced if it is balanced and contains neither 
/ nor \ . A quasigroup identity t = s (i.e. a pair of quasigroup terms) is 

called balanced or strictly balanced, if the terms /, s are both balanced or strictly 
balanced, respectively, and contain the same variables. The length of a term t is the 
number of occurrences of variables in t. The length of an identity ^ = 5 is the sum 
of the lengths of t and s. Evidently, the length of a balanced identity is an even 
number. 

Consider the following identities: 

(1) X . yz = X . yz , (7) X . yz = xy . z , (13) xy . z = xy , z , 

(2) X , yz = X . zy , {^) X . yz = yx . z , (14) xy . z = yx , z , 
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(3) X . yz = y . xz , (9) X . yz = xz . y , (15) xy . z = xz . y , 

(4) X . yz = y . zx , (10) X . yz = zx . y , (l6) xy . z = zx . y , 

(5) x . yz = z . xy , (11) X . yz = yz , X , (17) xy . z = yz . x , 

(в) x . yz = z , yx , (12) X . yz = zy . X , (18) xy . z = zy . x , 

For every i = 1, 2, ..., 18 we denote by i^^ the variety of quasigroups determined 
by the identity (i). 

1.1. Proposition. Let t = s be a strictly balanced quasigroup identity of length 
^ 6 . Then the variety of quasigroups determined by t = s is equal to some of the 
varieties iT^, У^^ ...^ -^^g. / / i e { l , 2, ..., 6} r/ien 1^1+12 ^̂  r/ie Jwa/ 0/iT-. 

Proof. Obvious. 
Now we define eleven significant varieties of quasigroups: 

^ = l^j^ == Mod (x = x) = the variety of all quasigroups; 
^ = "^2 = Mod (xj; = yx) = the variety of commutative quasigroups; 
^ = -̂ 7̂ = Mod {x . yz = xy . z) = the variety of groups; 
j / = ^ n ^ = the variety of abelian groups; 
^ ^ = 1 ^ 3 = Mod {x . yz = у . xz) ; 
^ 2 = '^15 = Mod (xj;. z = xz . j ) = the dual of Q)^\ 
êI — 1̂ 6 = Mod (x. yz = z . yx)\ 

^2 — '^18 = Mod (xj;. z = z j . x) = the dual of ê^ ; 

J^i = ^ 1 n ^2; 

#•2 = ^ 2 '^ <̂ i = the dual of J^i; 

« ^ = <p ĵ  о 0 2-

1.2. Proposition. The following relations hold: 

(i) -^1 = -^13 = ^ ; 

(iii) r^^rs = r^ = r, = r,, = r,, = r,, = sä. 
Proof, (i) is obvious. In (ii) only 1^12 = ^ is not immediate. However, quasi­

groups from Y^2 satisfy xx = x(x(x \ x)) = ((x \ x) x) x, x = (x \ x) x, yx = 
= j(.(^ \ x) x) = (x(x \ x)) y = xy. We are going to prove (iii). 

If ß is a quasigroup from "V^ and a,be Q, then a = {a / b)b = {a / b) {b(b \ b)) = 
= (b \ fo) {[a /b) b) = {b\ b) a, so that a/ a = b\b and Q has a unit element e. 
Thus ab = e . ab = b . ea = ba and Qe^ n Y'^ = j / . 

Quasigroups from 1^4 satisfy x . yz = y , zx and y . zx = z . xy, so that '1^4 ^ 
£ 1Г5 = ^ . 
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If б is a quasigroup from i^^ and a, b e Q, then ab = a{{b / b) b) = {{b / b) a) b, 
so that a /a = b /b and Q contains a left unit e. In particular, ab = e . ab = ae . b 
and e is a unit. Hence ab = a . be = ba . e = ba and so x . yz = xy . z. 

If Qef^g and a, b e Q, then a = (a / b) Ь = (a / b) ((b / b) b) = {{a / b) b) . 
. {b / b) = a(b / b), so that a \ a = b /b and ß contains a unit. Now we have 
1̂ 9 Ç ^ and ГдЯ.Г^ = ^ . 

If ß e 'îTjo and a, b e Q, then ab = а(Ь(Ь \ Ь)) = ((fe \ b) a) b, so that a/ a = 
= b\b and ß contains a unit. Now IT^^Q ç ^ and i^^o я i^^ = j ^ . 

The varieties f^jg and 1^17 are dual to 1Г4. and i^s and thus also equal to s/. 

1.3. Proposition. The following conditions are equivalent for a quasigroup Q: 
(i) ß e ^ i ( ß e ^ 2 , respectively), 

(ii) There exists an abelian group ß( + ) an J a permutation p of the set ß 5wc/i 
that p(0) = 0 апб? ab = p(a) + fe for all a, b e Q (ab = a + p(b) for all 
a, b e Q, respectively). 

Proof. See Theorem 13 of [8]. 

1.4. Proposition. The following conditions are equivalent for a quasigroup Q: 
(i) QeS'i ( ß e (^2, respectively). 

(ii) There exists an abelian group ß( + ), its automorphism f and an element 
g e Q such that ab = f\a) + f{b) + g for all a, b E Q (ab = f(a) + f^{b) + g 
for all a, b e Q, respectively). 

Proof. See Theorems 17 and 18 of [12]. 

1.5. Proposition. The following conditions are equivalent for a quasigroup Q: 

(i) ß G #"1 ( ß e J^2' respectively). 

(ii) There exists an abelian group ß( + ) and its automorphism f such that f^ = idg 
and ab = / ( a ) + b /o r a// a, b e Q (ab = a + f(b) for all a, b e Q, respec­
tively). 

Proof. It is an easy combination of 1.3 and 1.4. 

1.6. Proposition. The following conditions are equivalent for a quasigroup Q: 

(i) ß e Ж 
(ii) There exists an abelian group ß( + ), its automorphism f and an element 

g e Q such that f^ == idg and ab = f\a) + / (b) + g for all a, b e Q. 

Proof. Apply 1.4. 

1.7. Proposition. We have ^ n ^ = ^ n ^ 1 = ^ n ^2 = ^ n Г̂̂  = ^ 0,(^2 = 
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Proof. Some equalities are obvious and the rest follows from 1.3. 

1.8. Theorem. Every quasigroup variety determined by a set of strictly balanced 
identités of length ^ 6 is equal to one of the varieties M, ^ , ^ , J^/, ^ J , ̂ 2> ^ъ ^i^ 
#"1, #"2, Ж. These eleven varieties are pairwise different. If V is any of them, then 
Л Ç F ç ^ . Moreover, ^^ с Q)^, ^^ с ê^, ^2 ^ ^ 2 . ^1 ^ <^u ^ ^ < î. 
j f (= ^2 ^^d there are no other non-trivial inclusions. 

Proof. It follows from the above results. 

2. PROPERTIES OF VARIETIES 

Let F be a variety of universal algebras. (The similarity type is considered to be 
finitary but not necessarily finite or countable; all agebras are considered to be non­
empty.) We shall consider the following conditions on F: 

SAP (strong amalgamation property): If A, B, С e V, Ä = В n С and Л is a sub-
algebra of both B, C, then there exists an algebra D e V such that both B, С 
are subalgebras of D. 

EXT (extensivity): For every two algebras A, В e V there exists an algebra С e V 
and two monomorphisms f : A -^ C, g : В -^ C. 

IDE Every algebra from F contains an idempotent, i.e. an element a such that the 
one-element set {a} is a subalgebra. 

CEP (congruence extension property): If г is a congruence of a subalgebra A of an 
algebra В e V, then there exists a congruence s of Б such that r = s n (A x A). 

RSM (residual smallness): There exists only a set of non-isomorphic subdirectly 
irreducible algebras from F 

FEP (finite embeddabihty property): If Л G F, then for any finite subset Б of Л 
there exists a finite algebra С e V and an injective homomorphism of В 
(considered as a partial algebra) into С 

SFG Subalgebras of finitely generated algebras from Fare finitely generated. 
EFG Every countable algebra from F can be embedded into a finitely generated 

algebra from F 
SBL Every subalgebra of an algebra A e Fis a block of a congruence of A. 
SCH (Schreier property): Every non-trivial subalgebra of a F-free algebra is F-free. 

If F is a variety of quasigroups, then we shall be concerned, moreover, with the 
following two conditions on F: 

NCP (normal congruences property): If ô ( . , / , \ ) e Fand if г is a congruence of 
the groupoid ß( . ) , then r is a congruence of the quasigroup б ( . , / , \ ) . 

GCC If ô(«? / J ^)^ Fand if r, s are two congruences of the groupoid ß ( 0 ' ^̂ ^̂ ^ 
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Let F be a variety of universal algebras and К a class of algebras. If there exists 
a set M ^ V n К such that every algebra from V n К is isomorphic to precisely one 
algebra from M, then we say that V has few X-algebras and put v{K, V) = <a, ß} 
where a is the cardinality of M and ß is the smallest cardinal number such that no 
algebra of cardinality ^ß belongs to VnK. If F i s non-trivial and every algebra 
from Fis isomorphic to a subalgebra of an algebra from VnK, then we say that F 
has enough K-algebras and write v{K, V) = en. Finally, if F has neither few nor 
enough J^-algebras, we write v(K, V) = pr. We shall be concerned with the deter­
mination of v(Sim, F ) and v(Sir, F); here Sim is the class of simple algebras and Sir 
is the class of subdirectly irreducible algebras. A variety is residually small iff it has 
few subdirectly irreducible algebras. 

For every variety F we denote by v(y) the cardinality of the set of subvarieties of F 
and by m{y) the cardinahty of the set of minimal subvarieties of F 

In the following sections we shall be concerned with varieties of quasigroups 
determined by strictly balanced identities of length ^ 6 and for every such variety F 
we shall try to decide which of the above twelve conditions are satisfied by F and, 
moreover, to describe v(Sim, F), v(Sir, F), v{V) and m{V). 

2.1. Lemma. Let V be a non-trivial variety. Then: 

(i) F has enough simple algebras iff for every Ae V and every triple a, b, с of 
pairwise different elements of A there exists an algebra Be Vsuch that A is 
a subalgebra of В and <а, c> belongs to the congruence generated in В by 
<a, by. 

(ii) / / V has enough simple algebras then it has neither CEP nor SBL. 
(iii) / / the similarity type of Vis finite and V has EFG, then it does not have SFG. 
(iv) V is extensive iff every algebra A e V can be embedded into an algebra BeV 

having an idempotent. 
(v) IDE implies EXT. 

Proof. It is well-known and easy 

2.2. Lemma. Let Vbe a variety of quasigroups. If Vsatisfies NCP, then it satisfies 
GCC. 

Proof. It is easy. 
Let F be a variety of universal algebras. Then F* denotes the variety of pointed 

F-algebras, i.e. of F-algebras with an added nullary operation. Thus elements of F* 
are algebras Д / ь Л , . . . , w) such that ^ ( / i , / 2 , •••) ^ Fand и is an element of A. 

2.3. Lemma. Let Vbe a variety. Then: 
(i) IfP is one of the properties SAP, CEP, RSM, FEP, SFG, EFG, SBL then Vhas P 

iff F* has P. 



(ii) / / К is either Sim or Sir, then v{K, V) = en <^ v{K, F*) = en and v{K, V) = 
= pr <^ v{K, F*) = pr; if v{K, V) = <a, ß} and v{K, F*) = <y, ^> then ß = Ô, 

Proof. It is easy. 

3. THE VARIETIES ^ , ^, ^ , .o/ 

3.1. Theorem. The varieties Ш and ^ have the properties SAP, EXT, FEP, EFG, 
SCH. They do not have the properties IDE, CEP, RSM, SFG, SBL, NCP, GCC. 
We have v(Sim, ^ ) = v(Sim, ^ ) = v(Sir, ^ ) = v(Sir, ^ ) = en and v{0t) = v{^) = ̂  
= m(^) = m(^) = 2"^^ 

Proof. It can be easily proved (see also [4]) that every halfquasigroup can be 
embedded into a quasigroup and every commutative halfquasigroup can be embedded 
into a commutative quasigroup. (By a halfquasigroup we mean a partial groupoid G 
such that if a, b, с e G, ab and ac are defined and ab = ас then b = с and if ba 
and ca are defined and ba = ca then b = c.) From this SAP, EXT, v(Sim, M) = 
= v(Sim, ^ ) = en follow. (The fact that the variety of all quasigroups has enough 
simple members was proved by many authors, see e.g. [9]; almost every proof of this 
case can be adopted for ^ as well.) FEP is easy. The vahdity of EFG and SCH is 
proved in [4] (Theorems 1.2.4, 1.2.8) for ^ ; the proofs for ^ are in fact the same. 
By 2.1, ^ and ^ do not have CEP, SFG and SBL; evidently they do not have IDE, 
RSM. In [14] a commutative quasigroup with two noncommuting groupoid con­
gruences is constructed. Hence ^ , ^ do not satisfy GCC and by 2.2 they do not satisfy 
NCP. It is proved in [2] that there are uncountably many minimal varieties of totally 
symmetric quasigroups; hence m(^) = 2̂ *̂ . 

3.2. Theorem. The variety ^ has the properties SAP, EXT, IDE, EFG, SCH, 
NCP, GCC; it does not have the properties CEP, RSM, FEP, SFG, SBL. We have 
v(Sim, ^ ) = v(Sir, ^ ) = en, v{^) = 2^° and m(^) = KQ. 

Proof. Since every group has a unit, ^ has IDE and EXT. The validity of SAP, 
SCH and EFG is well-known (see [10], paragraphs 35, 36, 38). The properties NCP 
and GCC follow from the fact that every group is an inverse property quasigroup. 
v(Sim, ^ ) = en is well-known; it follows for example from some results of [7]. 
Hence v(Sir, ^ ) = en as well and ^ does not have RSM. It follows from 2.1 that ^ 
does not have CEP, SFG, SBL. It does not have FEP (see [5]). v{^) = 2^' is proved 
in [13] and [15] and m(^) = KQ is easy and well-known. 

3.3. Theorem. The variety se has the properties SAP, EXT, IDE, CEP, RSM, 
FEP, SFG, SBL, SCH, NCP, GCC; it does not have the property EFG. We have 
v(Sim, j^) = <Ko, ̂ o>, v(Sir, j^) = <Ko, K^) and v{j^) = m(j/) = Ko-



Proof. An abelian group is subdirectly irreducible or simple iff it is isomorphic 
to C{p") for some prime p and O ^ n ^ o o o r O ^ n ^ l , respectively; here C{p") is 
the cyclic group of order p" if и < oo and C(jf?°°) is the quasicyclic Prüfer p-group. 
This implies v(Sim, J / ) = <Ko, Ko> and v(Sir, j / ) = <Ko, K^). For the rest the 
reader is referred to an arbitrary text-book on abelian groups. 

4. THE VARIETY S^ 

In this section we shall estabhsh various properties of the variety ^ i , i.e. the variety 
of quasigroups determined by x . yz = у . xz. However, it will be convenient to 
formulate and prove the results not in terms of ^^ but in terms of an equivalent 
variety, denoted by Ж. 

Let J T denote the variety of algebras Л( + , 0, —, p, p~^) with one binary, one 
nullary and three unary operations determined by 

{x + y) + z = X + (y + z), 

X + у = у -i- X , 

— X + X = 0 , 

0 + X = X , 

p{p~\^)) = P~4P{^)) = ^. 
p{0) = 0. 

Algebras from Jf are abelian groups with a permutation p such that p(0) = 0. 

4.1. Proposition. The varieties Q)^ and X are equivalent, i.e. there exists a one-
to-one correspondence between ^^ and C^ preserving underlying sets and homo-
morphisms. If У4( + , 0, —, p, p~^) G JT then the corresponding quasigroup 
g( . , / , \ ) G ^ I is defined by Q = A and xy = p(x) + y. If Q{-, / , \ ) e ^ i 
then the corresponding algebra Л( + , 0 , —,р,р~^)еЖ is defined by 0 = xjx, 
X -{- у = (x/O) y, p{x) = X . 0. 

Proof. It follows easily from 1.3. 

4.2. Proposition. Every at most countable algebra from JT can be embedded 
into a cyclic algebra from Jf; every finite algebra from Ж can be embedded into 
a finite cyclic algebra from Ж. 

Proof. Let Л( + , 0, —, p, p~^) e Ж be at most countable. Denote by C( + , 0, —) 
the cylic group of the same cardinality as Л and by i |-> a-^ a one-to-one mapping 
of С onto A. Denote by D( + , 0, —) the cyclic group with two elements 0, 1 and put 
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JB( + , О, —) = C( + , О, ~ ) X D( + , 0, —). Define a permutation q on В as follows: 
q{ai, 0) = (p{ai), 0>; ^(Ö^-, 1) = (ofj+j, 1>. The algebra B( + , 0, - , ^, q"^) is cychc 
(it is generated by <0, 1)), belongs to Ж and contains a subalgebra isomorphic to 
^(4- , 0, —,p,p~^);itis finite if A is finite. 

4.3. Proposition. The variety Ж has enough simple algebras; every finite algebra 
from Ж can be embedded into a finite simple algebra from Ж. 

Proof. To prove that Ж has enough simple algebras, it suffices to show that if 
Л(4-, 0, —, p, p~^) e Jf* and if a, b, с are three different elements of A, then there 
exists an algebra Б( + , 0, —,q,q~^^e Ж containing У4( + , 0, ~-,p, p~^) as a sub­
algebra and such that <a, c> belongs to the congruence generated in В by <a, b>. 
Of course, A( + ,0, — ) is a proper subgroup ot an abehan group JB( + , 0, — ). Let 
deB\A. Evidently, d + a, d + b, d + с are three diff'erent elements of B\A. 
Define a permutation ^ on Б as follows: p Я q\ q{d + b) = d + c; q(d + c) = 
= d + b; q(u) = и for all и e B\(A и [d + b, d Л- c]). Evidently, Б( + , 0, —, q, 
q~^) has the required property. 

Now let A[ + ,0, ~, p, p~^) e Ж be finite. Evidently, there exists an abelian 
group Б( + , 0, — ) containing Л(+ , 0, — ) as a subgroup such that Card( -B\^) > 
> Card (A) + 1. Let bo, b^, . . . , b„ be the elements of B\A. Define a permutation q 
of В as follows: p Я q; ^(bo) = bg; q(bij = b^+j for / = 1, ..., n — 1; q{b^ = b^. 
Suppose that '^ is a congruence of Б( + , —, 0, ^, ^~^) diff'erent from id^. Then 
bg ^ a for some a ф b^. If a = bi for some / = 1, ..., n, then b^ = q'%bo) ^ 
^ q'"{bi) for all m, so that Б \ Л is contained in a block of ^ and thus ^ = В x B. 
If a € A\ {O}, then 0 = a — a^ bo--a = bi for some f e {1, ..., n} and similarly 
as above we see '^ = Б x Б. Finally, let {O, bo} be a block of ^. Then every block 
of ^ has exactly two elements; a certain block is contained in {b^, ..., b„} and thus 
by the definition of q on {b^, ..., b„} every b^ (г = 1, . . . , и) is congruent to some bj 
with / 7̂  f; now it is easy to see that if a e Л \ {O} then {a} is a block, a contradiction. 

4.4. Proposition. The variety Ж has uncountably many minimal subvarieties. 
Moreover, if n ^ 2, then the variety Ж„ of algebras from Ж satisfying p'^(x) = x 
has uncountably many minimal subvarieties. 

Proof. We shall prove that Ж2 has uncountably many minimal subvarieties; the 
proof for и ^ 3 is analogous. Let N be the set of positive integers. For every subset S 
of N let Vs denote the subvariety of Ж2 determined by the following identities: 

p(7" . p{3x)) = 2 . 7 " . p{3x) 

p{ir .p{3x)) = 2, ir.p{3x) 

• p{7"^ .PM)= Т.р(Ъх) 
p{ir .p{3x)) = 1Г".р(Зх) 
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р{Т . р(5х)) = 2 . 7 " . р{5х) for ne S, 

р{1Г . р{5х)) = 2 ЛГ . р{5х) for ne S, 

pil"" . p{5x)) = T . p{5x) for meN\S, 

p ( i r . p{5x)) = 11'" . p(5x) for w G iV \ 5 . 

Let us prove first that if 5, Tare two different subsets of Â , then the variety Vs n VT 
is trivial. Suppose that there is em ne T\S (the other case is similar). Let Ae Vs n 
n Fy. We have p(7". p{3a)) = 2 . 7 " . p{3a) for every a e Л since A e Fj . On the 
other hand, p(7". p{3a)) = 7". /?(3a) since A e Vg. Hence 7". jp(3^) = 0 for every 
aeA. Similarly 11". p(3a) = 0 and consequently p(3a) = 0, so that 3a = 0 for 
every aeA. Similarly 5a = 0 and thus a = 0 for every aeA. 

Since every non-trivial variety contains at least one minimal subvariety, the proof 
will be complete if we prove that the variety Vs is non-trivial for any subset S of iV. 
Let Z( + , 0, — ) be the additive group of integers and A = (3Z u 5Z) \{0} . Denote 
by В the set of prime numbers p e Z such that p ^ 12 and put С = \J ТВ u (J 11"Б. 

neS neS 
The sets A and В are countably infinite and A n В = 0. Hence there exists a one-to-
one mapping/of У4 onto B. Further we put D = 2C and E = Z\(A ^ В и С KJ D). 
It is easy to see that AnB = AnC = BnC=CnD = AnD = BnD = 0 
and 0 e E. We shall define a mapping p of Z into Z as follows: 

p(a) = f(^a) for every aeA; 

p(^b) = f~^{b) for every b e В ; 

p(^c) = 2c and p(2c) = с for every с e С ; 

p(e) = e for every e e E . 

As one may check easily, j>̂  = id^ and Z( + , 0, —, p, p)e Vs. 

4.5. Theorem. T/ze шг/e^j; ^ j /las й е properties SAP, EXT, IDE, FEP, BFG, 
SCH, GCC; it does not have CEP, RSM, SFG, SBL, NCP. We have v(Sim, ^ J = 
= v(Sir, ^ i ) = en and v{^^) = m(^ i ) = 2^°. 

Proof. Since the variety of abehan groups has SAP, EXT, IDE, FEP, it is easy to 
see that JT has them as well; but then ^^ has also these properties. EFG follows from 
4.2. For SCH see [1]. v(Sim, ^ j ) = en follows from 4.3 and m(^i ) = 2^° from 4.4. 
By 2.1, ^ 1 does not have CEP, SFG, SBL. Now it is enough to prove that ^ j has 
GCC and does not have NCP. 

Let ß ( . , / , \)e^i and let ß( + , 0 , -,p,p~^) be the corresponding algebra 
from J T , so that xy = p{x) + у for all x, у e Q. Let r be a congruence of 6 (0-
If <a, b} er and ce Q then <c + a, с + b> = <р~^(с) . a, p " ^ ^ ) -b} er. Thus 
every congruence of ô( . ) is a congruence of Ô(+) and, of course, every two con­
gruences of 6( + ) commute. 
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Define a quasigroup ß(o, / , \ ) as follows: Q is the set of rational numbers; 
a о b =- 2a + b; a / b = i:{a - b); a\b - b ^ 2a, One may check easily that 
6(0, / , \)e9^. Define a relation г on ß by <a, b> e r iff a - Ь is an integer. It is 
easy to see that r is a congruence of Q{o). However, <2, 1> e г and <2/0, l/0> ф r, 
so that r is not a congruence of g(o, / , \ ). 

5. THE VARIETIES <^i,^^i AND Ж 

It follows from 1.4 that ^ 1 , <^i, Ж are varieties of medial quasigroups, i.e. quasi­
groups satisfying xy . zu = xz . yu. Varieties of medial quasigroups were studied 
in [6] (medial quasigroups are called abelian there) and so in proving various proper­
ties of the varieties (f 1, J^^, Ж we shall exploit the results from [6] as well as the 
terminology introduced there. The reader is supposed to be acquainted with [6]. 

Let a ring R with unit and two elements oç, ß e Rhe given. We shall say that a, ß 
are i-generators of R if they are invertible and R is generated as a ring by a, j5, a~^, 
ß~~^. A quasigroup ß ( . , / , \ ) is called an [R, a, j5)-quasigroup if there exists an 
i?-module ô( + , rx) and an element h e Q with ab = aa -\- ßb + h for all a, b e Q, 
Given a ring R and its i-generators a, ß, the class of all {R, a, ^)-quasigroups is a vari­
ety; it is denoted by ^(R, a, ß). 

Let us denote by A^ the free abelian group with one free generator a, by Z the ring 
of integers and by ZA^ the corresponding group-ring. Let J/ denote the variety of 

5.1. Proposition. ZA^ is a commutative noetherian domain which is i-generated 
by a^, a. We have ê^ — 0^(ZA^, a^, a) and the varieties <f* and Jf* are equivalent. 

Proof. See L4 and Proposition 5.5 of [6]. 

5.2. Theorem. The variety ê^ has the properties SAP, EXT, CEP, RSM, SFG, 
SBL; it does not have IDE, EFG, SCH, NCP. We have v(Sim, S^) = <Ko, Ko> and 
v{S,) = m(^i) = Ko. 

Proof. Since ^ t and ^ /* are equivalent, the validity of SAP, CEP, RSM, SFG 
and SBL follows from 2.3 and the fact that modules have these properties (ZA^ is 
noetherian). Extensivity follows from 8.3 of [6]. The negation of SCH follows from 
7.5 of [6] (the fact that ZA^ is not a principal ideal domain is clear). The negations 
of IDE and EFG are obvious. To prove that <f ̂  does not have NCP, it is enough to 
consider the quasigroup g(o, / , \ ) where Q is the set of rational numbers and 
a ob — Aa + 2b, and to define a congruence '^ of Q(o) by x ^ y Ш x — y h dixv 
integer. By 10.3 of [6], S^ has countably many subvarieties; since s^ ^ i^, it has 
infinitely many minimal subvarieties. The assertion on simple quasigroups follows 
from 11.4 of [6] and from se <=: ê^. 
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Consider the following ring S. Its additive group is that of Z x Z and the multi­
plication is defined by <a, b> . <c, d} = (^ac + bd, ad + be}. Let Ж be the variety 
of S-modules. 

5.3. Proposition. S is isomorphic to the group-ring ZC(2), where C(2) is the 
two-element group. S is a commutative noetherian ring and it is not a domain. 
The element <1, 0> is its unit and <0, 1>, <1, 0> are its i-generators. We have 
#"1 ^ ^ ( S , <0, 1>, <1, 0>) and the varieties ^^Л are equivalent. 

Proof. Most of the assertions are easy; see also 15.11 of [6]. 

5.4. Theorem. The variety ^^ has the properties SAP, EXT, IDE, CEP, RSM, 
SFG, SBL, NCP, GCC; it does not have EFG, SCH. We have v(Sim, ^,) = <Ko, Ko> 
and v{^i) = m(#'i) = KQ. 

Proof. Most of the properties can be proved analogously as in 5.2. We shall prove 
only NCP. Let g ( . , / , \)e^i and let r be a congruence of Q(.). By 1.5 there 
exists an abelian group 6 ( + ) and its automorphism / such tha t / ^ = idg and ab — 
= f(a) + b for all a, b e Q. Let a, b, с e Q and <ac, be} e r. Put d — —f(c). We 
have <ac . J , be . d} e r, i.e. </( / (a) + c) + J, f{f{b) + c) -\- d} E r, i.e. 
<a + /(c) + d, b + f{c) + dy e r, i.e. <a, b> e r. Now let <ca, cb> e r. Put e = - c. 
We have <e . ca, e . cb} e r, i.e. </(e) + /(c) + a, f{e) + /(c) + b> e r, i.e. 
<a, by er. 

Finally, consider the following ring T. Its additive group is that of Z x Z x Z and 
the multiplication is defined by <a, b, c> . <J, c , /> = <ай + Ь/ + ce, ae -\- bd + 
+ c/, af + cd -\- bey. Let ^ be the variety of T-modules. 

5.5. Proposition. T/s isomorphic to ZC(3), where C(3) is the three-element group. 
T is a commutative noetherian ring and it is not a domain. The element <1, 0, 0> 
/5 its unit and <0, 1, 0), <0, 0, 1> are its i-generators. We have Ж — ^ (Т, <0, 1, 0>, 
<0, 0, 1>) and the varieties J f *, ^ * are equivalent. 

Proof. See 1.6 and Proposition 5.5 of [6]. 

5.6. Theorem. T/ic шггс^}; Ж has the properties SAP, EXT, CEP, RSM, SFG, 
SBL, NCP, GCC; it does not have IDE, EFG, SCH. We have v(Sim, Ж) =̂  <Ko, Ko> 
and v{Ж) = т{Ж) = KQ. 

Proof. Again, we shall prove only NCP. Let ß ( . , / , \)e Ж and let r be a con­
gruence of ô( . ) . By 1.6 there exists an abehan group Q{-\-), its automorphism/ 
and an element ^̂  e ß such that p = id^ and ab = P{a) + f{b) + g for all 
a.beQ. Let a,b,ce Q and <ac, fec> e r. Put d = - ( c + P{g) + g). We have 

94 



<rf .ac,d. be} e r, i.e. {f\d) + f{f\a) + /(c) + g) + g, f\d) + f{f\b) + 
+ /(c) + g) + дУег, i.e. <a, b> e r. Let ica, cb} e r. Put с = - ( с + Д^) + /^(з))-
We have <СЙ . e, cb . e> e r, i.e. </'(/ '(c) + Да) + g) + Дс) + g, f\f\c) + 
+ f{b) + g)+ f{e) + gysr, i.e. (a, b> e r. 

6. SUMMARY 
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