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POLARITY COMPATIBLE WITH A CLOSURE SYSTEM

BoHUMIL SMARDA, Brno

(Received September 30, 1976)

A symmetric relation on a non empty set is called a polarity, in general. In [8]
a C-polarity QC(Q) on a closure space (S, Q) is defined — S is a non empty set and Q
is a closure system on S — in the following way: a QC(Q) b<danb < C, where
a,be S, C = S and M denotes the closure of M < S in Q. This C-polarity is a gen-
eralization of some polarities from [1], [3], [4], [5] and [7] defined in I-groups,
po-groups, lattices and semigroups (see [8], § 3). We denote p(4, C) = {xeS: X n
na < C for each ae A}, p""!(4, C) = p[p"(A4, C) C] for every A,C < S and
a positive integer n; I'((S, Q) = {p(4, C): 4 = S}, I'(S, Q) = N{I'(S, Q) : C < S}.
Aset A< S, A= p*4, C)is called a C-polar.

In § 1 of this paper we compare a C-polarity and a (general) polarity using the
results of F. SIK (see [6]). It is shown that the set I'(S, Q) of all C-polars on a closure
space (S, Q) is a complete Boolean algebra for each C < S, ordered by the set-
inclusion (Corollary 1.4). Further, a polarity on (S, Q) compatible with Q is in-
vestigated. This polarity is characterized by the fact that all polars are closed. A C-
polarity QC(Q) is compatible with Q for each C e Q if and only if Q is an algebraic
closure system and a distributive lattice (Theorem 1.1]).

In § 2 we show that a C-polarity on a closure space is a polarity defined in [7] on
a suitable semigroup and some connections of these polarities are given.

A C-polarity on special closure spaces (topological spaces of Bourbaki, spaces
with closed points) is investigated in § 3.

1. POLARITY COMPATIBLE WITH A CLOSURE SYSTEM

1.1. Definition. A symmetric binary relation é in a non empty set S is called
a polarity in S. For each A € S we define a set 5(4) = {x € S : x 6 a for each a € A}
and §"(4) = 8[0"*(A4)] for each positive integer n. If 4 = 5°(4), then A is called
a é-polar. The set of all 5-polars in S will be denoted by I';(S) (or briefly I).

1.2. ([6], Theorem 3.) A) Let 5 be a polarity in a set S. Then I'y(S) is a complete
lattice, infima in I are set meets, S and A = {s€ S :s0 x for each x € S} are the
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greatest and the least element of T, respectively, and the map A €T — §(A) is an
involution, i.e. 8*(A) = A, (VA,) = N)(A,), 6(AA4,) = V(4,) for all A, A,eT.

B) Let 6 be an antireflexive polarity in a set S. Then I'y(S) is complemented and
5(A) is a complement of A € I')(S).

C) Let 6 be an antireflexive polarity in a set S with a property (DB):

xnon d y = there exists z€ S such that znond z,z < x, z <y, where < is
a quasiorder in S induced by 8(a < b <>{u 6 b = u 6 a}). Then I'y(S) is a complete
Boolean algebra.

1.3. ([6], Theorem 4.) A) Let B be a complete lattice of subsets of a set S, let
infima in B be set meets and let A — A’ be a map of B into B, fulfilling A" = A,
(VA,) = AA, for all A, A, € B. Denote by X the greatest element of B. Then
there exists a unique polarity 6 in X such that ['(X) = 8.

B) Let B be as in A) and in addition, let A’ be a complement of A for any A in B.
Then § is antireflexive.

C) Let B be a complete Boolean algebra of subsets of a set S, let infima in B
be set meets. Denote by X the greatest element of B. Then there exists a unique
polarity & in X such that I'y(X) = B. Furthermore, § is antireflexive and  has the
property (DB) from 1.2.

Remark. The polarity ¢ from 1.3 is defined in the following way: x 0 y < ye X/,
where X = N{4eB:xeA}.

1.4. Corollary. The set I'((S, Q) of all C-polars on a closure space (S, Q) is
a complete Boolean algebra for each C < S, ordered by set-inclusion. Further,

A p(4;, C) = N p(4: C), VIp(A,., C) = p*[ U p(4;, C), C] for every A; S S, i€
iel ie iel

iel

el + 0 and a complement of a C-polar p(A, C) is p*(A, C) for each A < S. The
greatest element of T'{S, Q) is S = p(0, C) and the smallest element of I'(S, Q)
isC = p(S, C).

Proof. C-polarity () is a symmetric and antireflexive relation in S and we shall
prove the property (Df) from 1.2, C): If x non ¢¢(€2) y, then X N ynon £ C and if
we choose ze (X n J)\C, then Znz = Znon £ C, ie., znong(Q)z. Further,
ifuodQ)x,theninXxc Candinzgan(iny)ciunxcCie,ugdl):z
and z < x in the quasiorder < induced by o¢() in S. Similarly, we can prove z < y.
The rest follows from 1.2.

1.5. Proposition. Let 6 be an antireflexive polarity in S, S #+ 0. Then g4(I'(S)) 2
2 3. Further, 0g(T'(S)) = 6 if and only if 6*(a) n 6%(b) = 6*(0) implies ad b
for a,beS.
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Proof. If a, b€ S, then a § b implies 6%(b) < 5(a) and 6*(a) N 6*(b) < 6%(a) N
n 8(a) = 6%(0). Further, a g4(I's(S))b<=anb <0 in I'y(S)<> 5*(a) nd*b) =
= 5%(0).

1.6. Corollary. If 6 is an antireflexive polarity in S, which fulfils 6 + @ and has
the property (DB) from 1.2, then § = I'y(I'(S)).

Proof. If xnond y, x, y € S, then (Df) implies the existence of an element z € S
such that znon 6 z, z < x, z < y. The relation z < x means: s 3 x = 56 z, (s € S),
ie., ze€d*(x). Similarly z e é*(y). Further, %(0) = 5(S) = {se S:s5 x for every
x € S}.1f z € 6%(0), then z & z, a contradiction. Then 3%(0) + 6%(x) N 6%(y) and the
rest follows from 1.5,

Remark. C-polarity oo(2) is antireflexive and has the property (Df) (see the proof
of 1.4) and thus o(Q) = 04(I'(S, Q).

1.7. Definition. Let 6 be a relation on a closure space (S, Q). We say that § is
compatible with Q, when s A =>s5 A foreveryseSand A < S.

Remark. s 0 A means s é a for each a € A4.

1.8. Proposition. Let 6 be a symmetric relation on a closure space (S, Q). Then
it holds:

1) & is compatible with Q if and only if 5(A) = 6(A) for each A < S.

2) If & is compatible with Q, then I'(8) = Q.

Proof. 1) is clear. 2) If x € 5(A), then x € 6%({x}) £ 6*(3(4)) = 5*(5(A)) = 3(4)
and @ c §(A).

1.9. Proposition. 1) C-polarity o) is a symmetric relation and ¢(Q)(A) =
= pl4, C) for every A, C < S. I'(S, Q) = I'(ed(Q)).

2) C-polarity oo(Q) is compatible with Q if and only if I'(S, Q) £ Q.

3) C-polarity o(Q) is compatible with Q for each C < S if and only if I'(S, Q) =
= Q.

Proof. 1) 0(Q) (4) = {s€ S : 5 0(R) a for each a e A} = p(4, C).

2) <= :T¢(S, Q) = @ implies p(4, C) n 4 = p(4, C) n p*(4, C) = p(4, C) n
N p*(4, C) = C and similarly p(4, C) n A £ C. From [8], 1.7 we have p(4, C) =
c p(4, C) < p(4, C). =: see 1.8,2.

3) <= : I(S, Q) = Q implies I'((S, 2) € Q for each C £ S and the rest follows
from 2. =: see 1.8,2.

1.10. Lemma. Let (S, Q) be a closure system and Q a distributive lattice with
operations AAB=AnB, Av B=AUB for every A,Bc S. Then Xn
AU{N:N c A4 finite} € X nU{a: ae A} for every xeS, A € S.
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Proof. XN U{N:N < 4 finite} = U{x "N :N < 4 finite] = U{x n {ay, ...

st N ={ayy, ..., an} € A finite} = U{X 0@y U ... Uaw) N = {ay ...
sany S A finite} = Y{(Rnapy)u...u(Enay):N={any...,aqn <4 fi-
mte} U{Enany)u...u(Xnaw) N ={ayy, ..., aqy} S A finite} =,

=U{¥na:aed} =xnU{a:aeA].

1.11. Theorem. The following assertions are equivalent:

1) C-polarity o(Q) is compatible with Q for each C € Q.

2) fnAd= fiﬂU{c‘;ﬂ_aa} for every xe S, A < S.

3) Q is an algebraic closure system and a distributive lattice with operations

AANB=ANB, Av B=AUB for every A, B < S.

Remark. 1. An algebraic closure system £ on S is a closure system with the
property: A = U{N : N < A finite} for each 4 = S (see [2]).

2. The assertion 2 is the same kind of distributivity in Q : X n Wm =
=xnA=3nUla:aeAl =U{fna:aeAd}.

Proof.1 = 2:ThefactY{Xna:aed} =3nU{d:aed} cinU{a:aed]
implies xep(A,xnU{a:aeAd})=p(A,snU{a:aed}). Thus SnAd=5%n
AU{b: beA‘—U‘xr\b bedy cinUia: a€ A}. The inclusion XN A 2

23xnU{a:aeA}is clear.

2=1: If xep(4,C), A<S, CeQ, then XxnUf{a:aed} =U{xna:
caeA} € Cand thus SnA=3nU{a:aeAd} = C. It means that x € p(4, C)
and p(4, C) < p(A, C). The inclusion p(4, C) 2 p(4, C) follows from [7], 1.2,d).

=3 Let X,Y%,Z<S. Then (XUZ)n(YuZ)=(XnY)uZc(XnY)u
UZ. If we denote (XnY)UZ =K, then XUZ g p(YUZK)=p(YUZK).
It means (XUZ (YuZ)CI\ and YUZ g p(XUZK)=pXUZK).
Finally, X UZnYUZ<cK = (X n Y)UZ and Q is a distributive lattice. If

xed thenx< Aand s nU{N:N < 4 finite} c ¥ nUf{a:aed} =3nd =%
(see Lemma 1.10 and | <>2). This fact implies xe ¥ € U{N : N. < A finite} and
A < U{N:N c 4 finite}. The inclusion 4 2 U{N : N < 4 finite} is clear and Q
is an algebraic closure system.

3=1:Letxep(4,C), A< S. Thenxna < C for each ae A, ie,xn U {a:
taed} = U {Xxna:aeA} c C. Now,if Nis afinite subset in 4, N = {ay,...,a,},
thenX AN =%0d; U...0G = (XN d;)U...U (I 0 G) s C, because X N a; £ C
(i=1,.., k). Further, ¥nA=XnU{N:N c A4 finite} =UY{XnN:Ngc 4
ﬁnite} C,i.e.,x¢€ p(A, C).Finally, p(4, C) € p(4, C),[8],1.2,d)implies p(4, C) 2

2 p(4, C) and o(R) is compatible with €.
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1.12. Proposition. Let (S, Q) be a closure system. Then it holds: 1. Let 4, C, D &
S S, A2 C. Then p(4, C) n p(C, D) = p(A, D) if and only if op(€2) is compatible

with Q and D < C.
2. If ¢0p(Q) is compatible with Q and D < C, then D = C n p(C, D).

Proof. 1. =: p(4, D) = p(4, A) A p(4, D) = S ~ p(4, D} = p(4, D) and 1.8.1
implies the compatibility of 0p(Q) with Q. D = p(S, D) = p(S, €) 0 p(C, D) =
c p(S,C) =C.

<=:If xe p(4, D), then £ na < D < C for each a € A and x € p(4, C). Further,
fnécxnU{@a:aeda} c D for each ceC. It means that x € p(C, D), ie.,
p(A, D) < p(A, C) 0 p(C, D). If x € p(A, C) n p(C, D), then X na € C,xnceD
for every a € 4, ¢ e C. Compatibility of ¢,(2) with Q implies x € p(C, D) = p(C, D),
ie, xNnC=xnU{y:yeCl=U{xny:yeC} = D. Finally, Xnagxn
n C < Dand x € p(4, D), p(4, C) n p(C, D) = p(A, D).

2. From 1 it follows that D = p(S, D) = p(S, C) n p(C, D) = C n p(C, D).

2. POLARITY ON SEMIGROUPS

2.1. Definition. (See [7].) Let (S, *) be a semigroup. A mapping x :exp S = exp S
fulfilling the following conditions:

L. AcS=>ACA,
1. A,BS S, A< B, =4, < B,
HL. ASS=S.A4, < 4,

IV. ,B=S=A4.B, = (4.B),

is called an ideal mapping and a set A < S with the property A, = A is called an
x-ideal in S. A system of all x-ideals in S for a given ideal mapping is called an
X-system.

2.2. Proposition. If Q is a closure system on a set S and x : exp (exp S) —
— exp (exp S) such that of, = {XeexpS:X < A, X + 0 for a suitable A€ o/}
for each of < exp S, then x is an ideal mapping in the commutative semigroup
(exp S, +), where A.B = A " B for every A,B < S.

Proof. I. & < &/, is clear. II. If & < A, Ye o, then there exists A € & such
that Y £ A. It means that A€ 4, i.e., there exists Be # such that 4 < B and
YS A< B=B, YeA,. Finally, &, < #B,. lIL. If & cexp S, Xe o, Yeexp S,
then there exists A€o such that X < 4,ie, X. Y=XNnY<SANnYc A4 1t
implies X .Ye s/, and o .expS c .. IV. If &, B expS, Xed, YeZ,,
then there exists Be % such that Y B and thus X.Y=XnY<c XnnYe
e( . B),.




2.3. Definition. (See [7].) Let (S, -, ¢) be a commutative semigroup with 5 yero ¢
(.., s. e = e.s = e for each s € S). We define a symmetric relation ¢’ in S, called
d’-polarity, in the following way:

xdyex.y=e for x,yeS, x=*y,

xdx<ex=c¢ for xe8S.

2.4. Proposition. If (S, -, e) is a commutative semigroup with a zero e, Q is an
x-system on S and s.s = e implies s = e, for s€ S, then it holds: §' = 01(Q) =

< {e}. = {e}.

Proof. =: pefe},={phn{p}s = (P} S {e}s= (D Pp=pd' p=p=
o=} = {d)

<:1f ad’b, a%b, a,beS, then a.b=re, bed'(a), {b}, < (a), {a), <
< 6"(a) — see [7], 1.7. Now, if p € {a}, n {b},, then p € 6"(a) N §'(a) = {e}, = {e}
and {a}, n{b}, < {e}., i-e., ap(Q)b. If ad’ b, a=b, then a=b < ¢ and
{a}, 0 {b}, = {e}. i€, agy(RQ)D.

Conversely, if ay(2)b, a + b, then {a}, n{b}, S {e}. ={e} and a.be
efal, n{b}, ={e}, ie, a.b=e ad b If agy(Q)b, a=b, then {a}, = {e}
and a = e, i.e., ad’ b.

Notation. (exp S)c = {XeexpS:X 2 C}, QexpS) = {, : & < exp S},
Qdexp S) = {, : o < (exp S)c}.

2.5. Corollary. If (S, Q) is a non empty set with a closure system Q, C € Q, then
((exp S)c, +, C) is a commutative semigroup with a zero C, where A.B = A B
for every A, Be (exp S)c, and the restriction x¢ of the mapping x from Proposition
2.2 on (exp S)c is an ideal mapping in (exp S, *) and also in ((exp S)c, *). Further,
a &'-polarity in ((exp S)c, ) is a {C}-polarity g;c)(Qc(exp S)) in ((exp S)c, Qc(exp S)).

Proof. The first part of Corollary can be proved similarly as Proposition 2.2. The
second part follows from Proposition 2.4 and the fact {C},. = {X e(exp S)c : X <
c C} ={c}.

2.6. Proposition. For a C-polarity odQ) on a closure system (S, Q) and a &'-
polarity on a commutative semigroup ((exp S)c, *), where C € Q, it holds:

1. Xe§'(A)<« X < p(4, C) for A, X e(exp S)c.

2. Moreover, if 9(Q) is compatible with Q, then §'(4) = (p(4, C)),., 6"(4) =
= (p*(4, C))ee» 5'[(p(4, C)),.] = &'(p(4, C)), where A € (exp S)c and x is the ideal
mapping on (exp S)¢ from 2.5.

Proof. 1. Xed'(A) <X . A=C=Xnd=C=X

N

p(4, C).

18



In

2. The fact §'(A) = (p(4, C)),. follows from 1 and 1.9, 2): X €d'(4) =X <
€ p(4, C) < X € {p(4, C)},. <> X € {p(4, C)},.. Further, for each X € &'(p(A, C)
and each Z € [p(4, C)],.wehave Z < p(4,C)and X . Z=XnZ = X n p(4,C) =
=Xnp(A4,C)=X.p(4,C)=C,ie, Xed[(p(4, C))] It means &(p(4, C)) <
€ d'[(p(4, C)..] and from p(4, C) e (p(4, C)),. we have &'(p(4, C)) =
2 T((A. O], Finally, #(4) = S(F(A) = S T(A, O).] = 9(p(4, O)) =
= (P*(4, O))se-

=

3. POLARS ON SPECIAL CLOSURE SPACES

3.1. Proposition. Let o{Q) be compatible with Q for each C < S. Then Q defines
a topological space of Bourbaki on S if and only if I'(S, Q) is a sublattice of the
lattice (exp S, U, N).

Proof. =: For every P, QeI(S, Q) it holds PUQ =PuQ=PuUQeQ =
= I(S, Q), see 1.9,3.

<:1f A,BS S, then AU B = p(S\A4,A)Up(S\B,B)eI(S, Q) =Q (see
1.9,3 and [8], 1.5,a)), i.e, AuB=AUB=AUB.

3.2. Proposition. If 0 € Q, then p(4,0) = {s€ S:5 = S\ A} for each A < S.

Proof. If se p(A4,0), then 5na <P =0 for each ae 4, ie, SnA =0 and
5 < S\A. Further, if 5 € S\ 4, then §na < (S\NA)n A = 0 for each a € A and
se p(4, 0).

3.3. Theorem. If {s} U 0 € Q for each s € S, then p(A, C) = (S\ A) U C for every
A, C < S. If odQ) is compatible with Q and p(A, C) = (S\NA)u C for every
A, C < S, then {s} UD e Q for each s€S.

Proof. If xe p(4, C)\C, then xna < C for every ae A and x * a, ie.,
x€SNA, p(4, C) € C U (SN A). Further, C < p(4, C)(see[8],1.1,a))and s na =
={s}ud)n({a} VD) =({s} n{a})UD =0 < C for every se S\ A4 and a € 4,
ie, Cu(S\A4) < p(4, C).

If (@) is compatible with 2, then we have p(S~\{s},0) = (S\(S\{s}))up =
= {s} U D for each s € S and thus {s} UDe Q, see 1.8,2.

3.4. Corollary. Let {s} € Q for each seS. Then ¢,(Q) is compatible with Q if
and only if Q = exp S.

Proof. =: It is 0eQ and S\A4 = p(4,0) = p(4,0) = S\ 4 (see 3.3), ie,
A e Qforeach A £ S. The second implication is clear.
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