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VARIETIES OF /-GROUPS ARE TORSION CLASSES 

W. CHARLES HOLLAND, Bowling Green 

(Received July 19, 1976) 

In [3], MARTINEZ introduced the notion of a torsion class of lattice ordered 
groups. A class e/ is a torsion class provided 

1) GeJf and N an /-ideal of G imply GJN e J, 
2) Ge У and H a convex /-subgroup of G imply H e У, and 
3) if j / is a collection of convex /-subgroups of G and for each Ae s^, ЛеУ, then 

\/s/ E c/, where V ^ denotes the convex /-subgroup of G generated by j / . 
The idea of torsion class was intended to generalize, among other things, varieties 

(equationally defined classes). Indeed, in [3], Martinez notes that every represen-
table variety is a torsion class, and also the variety of normal valued /-groups is 
a torsion class. The main (and only) result of the present paper is to close the gap 
by showing that every variety of /-groups is a torsion class. 

The proof depends on two important properties of normal valued /-groups 
(Theorems 1 and 2 below). If G is an /-group and ^ e G, a value of g is any convex 
/-subgroup of G maximal with respect to missing g. Every value К has a unique cover 
X* which is the intersection of all convex /-subgroups of G properly containing K. If 
each value 1^ is a normal subgroup of its cover X*, then G is said to be normal valued. 
The normal valued /-groups form a variety; in fact, it is the largest proper variety 
of /-groups: 

Theorem 1 [2]. / / an l-group N satisfies an equation which is not satisfied by 
every l-group, then N is normal valued. 

Theorem 2 [3]. The normal valued l-groups form a torsion class. 

If g is an element of the /-group G, G{g) denotes the convex /-subgroup of G 
generated by g. As a final bit of terminology, G is a lex extension of a prime convex 
/-subgroup К if b Ф e and a A b = e imply аеК. In this case, if e < g фК then 
К <g\_l, pp. 2.23, 2.24]. 

Lemma. Let G be a subdirectly irreducible normal valued l-group generated 
by g и ", 9п' Then G = G(gk)for some 1 ^ к ^ п. 
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Proof. Let С be a value of some element of the minimal /-ideal of G. Then 
{g^, ..., ^„} Ф С Let К be the largest member of the non-empty finite chain [M | С ^ 
^ M, M a value of some ^ J . Then К is a value of g^ for some 1 g /c ^ n. Also, iC is 
normal in its cover X*; in fact, K"^ = G and G/i^ is /-isomorphic to a subgroup of 
the archimedean ordered group of real numbers. Moreover, G is a lex extension of K. 
For suppose that Ь ф e and a A b = e. Since П 0'"^^^' is an /-ideal of G which 

clearly does not contain the minimal /-ideal, it must be that f) g~^Cg = {e}. Hence, 
geG 

there exists geG such that b ф g~^Cg. But any (conjugate of a) value must be prime, 
and so a E g~^Cg Я g~^Kg = K. Therefore, G is a lex extension of i^. Since дкфК 
and GjK is an archimedean o-group, it follov^s that G = G(éf/c). 

Theorem 3. Every variety of l-groups is a torsion class. 

Proof. The first two properties in the definition of torsion class obviously hold 
for any variety. To verify the third property, we assume that H is an /-group, J^ is 
a collection of convex /-subgroups of Я, and each member of J / satisfies the equation 
p(xi, ..,,x^) = e. If every /-group satisfies the equation p{x^, ..., Xfn) = e,then 
certainly so does У^/, the convex /-subgroup of H generated by «s/. If not every 
/-group satisfies p(xi, ..., x^) = e, then by Theorem 1, every member of ^ is normal 
valued. By Theorem 2, \/s/ is also normal valued. Let /zj,/22,...,/^m ^ V*^- We 
wish to show that p{hi, ..., /2 )̂ = e. Since \/s^ is just the subgroup of H generated 
by j / [1, Theorem L4], hi = П ^u ^^^ somç gije\js^. Let G be the /-subgroup 

J 

of V ^ generated by {^/y}. As an /-subgroup of a normal valued /-group, G is also 
normal valued. Let G be any subdirectly irreducible factor of G and denote the 
natural m a p ^ ь-> д. Then G is normal valued and generated by {^j^}. Therefore, by 
the lemma, G — G(̂ t̂̂ ) for some /c, /. Since g^^i G A for some Л e j / , and since the 
image A rS G is a convex /-subgroup of G, G = A r\ G, Because A satisfies 
j7(x|, ..., x^) = e, so does A r\ G =^ G. Finally, G is a subdirect product of subdirectly 
irreducible factors, each of which satisfies p(xi, ..., x^) = e,and therefore, so does G. 
In particular, ;7(/îi, ...,/î^) = e. , ; ^ 1 
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