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A binary relation on a set S is said to be a tolerance on S if it is reflexive and sym-
metric. We say that a tolerance ¢ on a semigroup S is compatible with S if for any
four elements x,, X5, ¥y, ¥, of S for which x, ¢ y;, X, 0 ¥y, we have x,X, ¢ y1y,.
Let J denote the class of all semigroups such that every tolerance compatible with S
is a congruence on S (i.e. a transitive relation on S). It is known that every group
belongs to . Any semigroup with at least three elements belonging to J is simple
(see [1]). Hence it follows that every commutative semigroup with at least three
elements belongs to 7 if and only if it is a group (see [2]). In this note we shall give
a necessary and sufficient condition for a periodic semigroup to belong to J .

Let I and J be non-empty sets and let G be a group. Let P:I x J —» G. Put
pi; = P(i, j) for ieI and j e J. Denote by M(G, I, J, P) the Rees matrix semigroup
with the following multiplication: (g, i,j) (h, r, s) = (g9pj,h, i, s), where g, heG,
i,relandj,seJ.

Lemma. A semigroup M(G, 1,J, P) belongs to I if and only if card I < 2 and
card J £ 2.

Proof. Let S = M(G, 1,J, P) belong to . By contradiction, we assume that
card I = 3. Then we can suppose that I = I, U I,, where card I, = 2, cardI, = 2
and card I, n I, = 1. Put (g, i, j) ¢ (h, r, 5) if and only if g, h € G, j, s € J and either
i,rel, ori,rel,.Itis easy to show that ¢ is a tolerance compatible with S. Now
we have (g, i, j) ¢ (9, k, j) and (g, k, j) 0 (g, 7, j), where g € G, i e I, NI, keI, N I,
rel,\ I, and j € J, but (g, i, j) non ¢(g, r, j). The tolerance ¢ is not a congruence.
Thus we obtain that card I < 2. Similarly we can prove that card J < 2.

Let S = M(G, 1, J, P), where card I < 2 and card J < 2. We shall prove that S
belongs to . Let i€l, jeJ. Put G;; = {(g, i, j); g € G}. It is known that G; is
a subgroup of S and e;; = (pj;', i, j) is the unit of G;;. Let x € G,. Then x = (9,1, 9),
where g € G and s € J. We have ¢;;x = (pj;', 1, )) (9, i, s) = (9, i. ) = x and s0

1) e;x =x forall xeG.
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Dually we obtain that
(2 xe;; = x forall xeG,;.
Let ¢ be a tolerance compatible with S. We shall show that g is a transitive relation

on S. Suppose that x ¢ y, y ¢ zand y € G,,. Since y~! ¢ y~ !, we have xe,, = xy~ 'y e
1

Q Yy 'z = euz and so

(3) , X 0 €apZ
and dually

4) ewX 0 Zey, .

Let x € G,, and z € G,,,. Then we have the following possibilities:

Case 1.t = aand w = b. Then according to (1), (2) and (4) we have x ¢ z.
Case 2. v = aand u = b. It follows from (1), (2) and (3) that x ¢ z.

Case 3a.t #+ aand v #+ a. Since card I < 2, we have t = v. By (1) we obtain that
(5) X =egpxo0e,y and euyoenz = z.

It is clear that e,y € G,,. If w = b, then by (5) and Case 1 we have x ¢ z. If u = b,
then it follows from (5) and Case 2 that x ¢ z. If w # b # u, then in virtue of
card J < 2 we have w = u and so by (2) and (5) we obtain that x = xe,, € €pVea
and e, ye,, 0 ze,, = z. It is clear that e,ye,, € G,, and so it follows from Case 1 that
XQz.

Case 3b. w & b and u =+ b. This is dual to Case 3a.

Case 3c. t #+ a and u + b. According to Cases 3a and 3b, we can suppose that
v = a and w = b. It follows from (2) that x = xe,, 0 Ve, It is clear that ye,, € G,,.
Since y ¢ x and x @ ye,,, it follows from Case 3a that y ¢ ye,,. Now, since ye,, 0 y
and y o z, it follows from Case 1 that ye,, ¢ z. Finally, since x ¢ ye,, and ye,, ¢ z,
it follows from Case 2 that x ¢ z.

Case 3d. w + b and v =+ a. This is analogous to Case 3c.

Consequently, ¢ is a congruence on S and so Se€ 7.

Theorem. Let S be a semigroup with at least three elements. Then the following
conditions on S are equivalent:

1. S belons to I and some power of each element of S lies in a subgroup of S.

2. S is isomorphic to the Rees matrix semigroup M(G, 1, J, P), where card I < 2
and card J £ 2.
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Proof. 1 = 2. If a semigroup S with at least three elements belongs to Z, then
according to Theorem 4 of [1], S is simple. If some power of each element of a simple
semigroup S lies in a subgroup of S, then it follows from Theorem 2.55 (MUNN W. D.)
of [3] that S is completely simple. Then, by Theorem 3.5 (Rees D.) of [3], S is
isomorphic to M(G, I, J, P) and so according to Lemma card I < 2 and card J < 2.

2 = 1. This follows from Lemma.

Corollary 1. Let S be a semigroup with at least three elements. Then the following
conditions on S are equivalent:

1. S is a periodic semigroup belonging to .

2. S is isomorphic to the Rees matrix semigroup M(G, I, J, P), where G is a peri-
odic group, card I < 2 and card J < 2.

Corollary 2. Let S be a semigroup with at least three elements. Then the following
conditions on S are equivalent:
1. S is a finite semigroup belonging to .

2. S is isomorphic to the Rees matrix semigroup M(G, 1, J, P), where G is a finite
group, card I < 2 and card J < 2.
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