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GENERALIZED PROJECTIVITY

HANA JIRASKOVA, JOSEF JIRASKO, Praha

(Received January 10, 1977)

Throughout this paper, R stands for an associative ring with unity and R-mod
denotes the category of all unitary left R-modules. A submodule 4 of B is small
in Bif A + K = Bimplies K = B for every submodule K < B. If fis an epimorphism
from A to B (Ker fis smallin 4) then we shall say that (4, f) is a coextension (a cover)
of B. This fact will be denoted by A <, B (A <% B). (4, f) is said to be a proper
coextension of B provided f is not an isomorphism. It is easy to see that 4 <% B
and B < C iff A £,; C. A pair (P, ¢) is a projective cover of the module M if
(P, @) is a cover of M and P a projective module. If M has a projective cover then all
projective covers of M are canonically isomorphic and we can choose one of them
and denote it by (C(M), @y). A ring R is said to be left perfect if each of its left
modules has a projective cover. A module C is said to be a cogenerator for the R-mod
if for every M € R-mod there is an index set A and a monomorphism f : M — [] C,,
where C, = C for all a € 4. acd

1. GENERAL THEORY

In the class 4 of all {4, h, B, g, P) where A, B, Pe R-mod, A <, B and ge.
€ Homg, (P, B), define the quasi-order < in the following way: <A’, ', B’, ¢', P'> <
< {4, h, B, g, P> if and only if A = A’, P = P’ and there exists an epimorphism
f: B" — B such that the diagram

4 g

A——> B «——P

" L lf ——| ’
- B
commutes.

In this paper & always denotes a subclass of .#. We shall say that & satisfies the
condition
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— (@) if <A, h, B, g, Py e %, (A, IV, B', g, Py e M and <A, IV, B', g, Py <
< (A, h, B, g, P) implies (A, h',B',g',Pye %,
— (B) if <A, h,B, g, Pye & and P' <, P implies {4, h,B,g-f,P'yeZ,
— (B')if <A, h,B,g,P)e ¥ and P’ <} P implies {4, h,B,g-f,P')e X,
— (y) if <A, h, B, g, P) € & and f : P" = P an isomorphism implies
{A,h,B,gof,P'>e %,
— (5) if <A, h, B, g, PY € £ and fe Homg (P, P) implies {4, h,B,g°f, P'>e %
For every {A, h, B, g, P> € 4/ let us define ry (A, h, B, g, P) (s4(4, h, B, g, P))
to be an intersection of all such Ker f, f e Homg (4, M) to which there exists a com-
mutative (push-out) diagram

A
M —— N
/ [
A—— B
h
Ig
P
with (M, A, N,vog, P> e %.
For every <A, h, B, g, P) € # we define

Cy(A, h, B, g, P) = Al(r4(A, h, B, g, P) n Ker h),
Dy(A, h, B, g, P) = Af(s¢(A, h, B, g, P) n Ker h).

We also use the following abbreviation: rg(4, h, B, 15, B) = fy(A, h, B). Similarly
for sg, Cy, Dg.

Lemma 1.1. Let # be a subclass of M and let

h g A
A—> B<«<——P M——-N
T S T B
C——>D<«——S8§ A— B

hy 91 h

be commutative diagrams, where h, h,, A are epimorphisms. If for every diagram
(**) <M, 4, N,vogoks S)yeL whenever (M, A, N,vog, P>eX then
ky(re(C, hy, D, g4, S)) < r4(A, h, B, g, P). In particular, k,(r&(C, hy, D)) <

S ry(4, h, B).

Proof. Obvious.
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Definition 1.2. A module P is said to be £-projective if every diagram

P

0 |

N—— M
h
with <N, h, M, g, P) € & can be completed to a commutative one.

Theorem 1.3. Suppose P has a projective cover. Then the following conditions
(i), (i), (iii) are equivalent, (iii) implies (iv) and (iv) implies (v). Moreover, if £
satisfies () then all the following conditions are equivalent.

(i) for every epimorphism N L P, where N has a coextension (0, q) with
re(Q,hoq, P)nKerho g < Ker q, there is a homomorphism ¢ :P — N
with hoy = 1p;

(ii) Ker ¢p = ro(C(P), ¢p, P);

(iii) every diagram (1), where N has a coextension (Q, q) withrg(Q, h o g, M, g, P) N
N Ker ho g = Ker q can be made commutative;
(iv) P is L-projective;

(v) Ker ¢p S s4(C(P), @p, P).

Proof. (i) implies (ii). It suffices to put N = Cg(C(P), @p, P) and set h = @p,
where @p is induced by @p. Since (N, h) is a cover of P, h is an isomorphism by (i)
and consequently Ker ¢p < rg(C(P), @p, P).

(i) implies (iii). Consider the diagram (1). Then there is f: C(P) —» Q with
hogof=go@p By Lemma 1.1, f(rg(C(P), p, P)) S relQ, ho g, M, g, P) and
- the inclusions f(Ker @p) = f(ro(C(P), ¢p, P) 0 Ker ¢p) S r4(Q, ho q, M, g, P) 0
N Ker h o g = Ker g complete the proof.

(iii) implies (i). Obvious.

(i) implies (iv). Easy.

(iv) implies (v). Consider the push-out diagram

cp) -2 p
fl l g
A —— B
h
where {4, h,B,g,P)e ¥. Then g = ho f; for some f; : P > A and f = f; o ¢p
since Ker ¢p + Ker (f — f, 0 ¢p) = C(P) as is easily seen. Therefore Ker ¢p <
< Kerf.
Finally, if & satisfies () then rg = sg.

634



Corollary 1.4. Let % be a subclass of M satisfying (B) and P, Q € R-mod with
projective covers (C(P), ¢p), (C(Q), 9o), respectively. Consider the commutative
diagram

)
(@) — C(P)
[40) ?p

Q p

where f is an epimorphism. Then P is %-projective provided

Ker ¢p = C(f) (r«(C(Q), @g, Q).

Proof. We have C(f) (r£(C(Q), ®g, Q)) S r4(C(P), ¢p, P) by Lemma 1.1 and P
is &-projective by Theorem 1.3.

Definition 1.5. For any ordinal « and any epimorphism ¢ : A — B let us define
sequences C%(4, ¢, B) of modules and epimorphisms ¢, : A — C%(4, ¢, B) in-
ductively as follows:

C.%(A’¢’B)=By Po =@ ;
C% (A, ¢, B) = C4lA, ¢,, C'/(4, ¢, B)), ¢, is a natural epimorphism and

C%(A, ¢, B) = A| N Ker g, ¢, is a natural epimorphism, o-limit.
B<a

Further put Cg(4, ¢, B) = Cy(A, ¢, B), Fy(A, ¢, B) = Ker ¢,, where Ker ¢, =
= Ker ¢ 41, @ 2 1.

Corollary 1.6. For every module P with a projective cover (C(P), @p) the module
C4(C(P), @p, P) is L=projective.
Proof. Denote Q = Cy(C(P), @p, P) = C%(C(P), @p, P). Then Ker (¢p), =

= Ker (@p)ar1 = 2(C(P), (¢p)w Q) N Ker (¢p), = ro(C(P), (@p)ss Q) and apply
Theorem 1.3.

Lemma 1.7. Let % be a subclass of M satisfying (y), N, P € R-mod and let
h:N — P be an epimorphism.If f:N; — N, is a canonical isomorphism of two
projective covers (Ny, g,), (N,, g,) of N then fi(CNy, ho gy, P)) = Co(N,,
h o g,, P), where fiy is an isomorphism induced by f for a 2 1, fro; = 1.

Proof. By transfinite induction and Lemma 1.1.

Lemma 1.8. Let & be a subclass of M satisfying (B') and let P be a module
having a projective cover (C(P), ¢p). If C(P) £,Q <, P where fog = @p then
Ker g, < Ker (¢p), for every ordinal o under the notation from 1.5.

Proof. It follows easily by transfinite induction using Lemma 1.1.
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Remark 1.9. If . satisfies (Y) then the class of all #-projective modules is abstract.

Definition 1.10. Let 4, B be modules and let ¢ : A > B be an epimorphism.
A pair (A4, @) is said to be an L-projective cover of the module B if A is Z-projective,
AL,C <, ,Bwith gof = ¢ and C Z-projective implies f is an isomorphism.

Theorem 1.11. Let £ be a subclass of . satisfying (), (B') and let P be a module
with a projective cover (C(P), 9p). Then (C4(C(P), ¢p, P), $p), where §p is an epi-
morphism induced by @p, is an £-projective cover of P.

Proof. The module N = Cy(C(P), ¢p, P) = Cy(C(P), ¢p, P) is L-projective by
Corollary 1.6.Let a module Q, N <, Q <, P, goh = pp, be L-projective. From
Theorem 1.3 we get Ker (7o (@p),); = Ker (ho(¢p),), and Lemma 1.8 yields
Ker (1 © (¢p),), = Ker (¢p),. Therefore r4(C(P), h o (¢p), Q) N Ker (h o (¢p),)
< Ker (¢p), and h is an isomorphism by Theorem 1.3 (i).

Theorem 1.12. Let # be a subclass of . satisfying (o), (B) and let P be a module
with a projective cover (C(P), ¢p). Then all L-projective covers of the module P
are canonically isomorphic provided at least one of the following two conditions
holds:

(i) Every Z-projective module has a projective cover. ,
(i) There is a natural number n = 1 such that C%(C(P), @p, P) = C3"{(C(P), @p, P).

Proof. The existence of an #-projective cover of P follows from Theorem 1.11.
Let (P, g) be an arbitrary Z-projective cover of P.

(i) There is an epimorphism § : C(P) - C(P) with go@p = @po§. For every
ordinal number « = 1, § induces an epimorphism g,y : C%(C(P), @5, P) > C%(C(P),
®p, P). By Theorem 1.3, Co(C(P), o5, P) = Cy(C(P), ¢p, P) = P.Hence gpoh = ¢
for an epimorphism h : P — C4(C(P), ¢p, P) and h is an isomorphism since (P, g)
is an #-projective cover of P.

(i) Put P, = C%(C(P), @p, P), gro; = g and suppose that gi;; : P - P;is an epi-
morphism. From Ker (¢p);1; = r4(C(P), (¢p);, P;) 0 Ker (¢p); we obtain rg(C(P),
(@p)i> Pi» gpip» P) 0 Ker (@p); < Ker (¢p)i+1 by Lemma 1.1 and gy factors through
a homomorphism g;+17: P — P;,,. Asis easy to see, gri+11 1S an epimorphism.
The proof is completed similarly as in (i).

Definition 1.13. A coextension (N, &) of a module P is said to be &L-codense if
there are Q € R-mod and an epimorphism g : Q — N such that ry(Q, h o g, P) N
N Ker (h o g) < Ker q.

Suppose now that N has a projective cover (C(N), @y). As is easy to see, (N, h)
is an #-codense coextension of P if and only if r4(C(N), h o @y, P) n Ker ho gy =
. < Ker ¢y.

An Z-codense coextension which is a cover is said to be an #-codense cover.
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Theorem 1.14. Let & satisfy («) and let P be a module having a projective cover.
Then P is &-projective iff P has no proper #-codense cover.

Proof. The “if” part of the proof follows from Theorem 1.3 since every #-
codense coextension of an Z-projective module splits. For the “only if” part
(C4(C(P), ¢p, P), Bp), where $p is an epimorphism induced by ¢p, is an £-codense
cover of P so that P is #-projective by Theorem 1.3.

Definition 1.15. Let ¥ be a subclass of  satisfying (y) and let N be a module
having a projective cover. A coextension (N, h) of a module P is said to be weakly
Z-codense if FL{C(N), h o @y, P) = Ker ¢y. A weakly £-codense coextension which
is a cover is said to be a weakly &L-codense cover.

Theorem 1.16. Let & satisfy («), (Y) and let P be a module having a projective
cover. Then P is £-projective iff it has no proper weakly £-codense cover.

Proof. It follows easily from Theorem 1.14.

Lemma 1.17. Let % be a subclass of M satisfying (B'), let A be a module having
a projective cover, B, C € R-mod and A <, B <,C. Then

(i) if (4, g » f) is a weakly L-codense cover of C then (A, f) is a weakly L-codense
cover of B,

(ii) if (A, f) is a weakly Z-codense cover of B and (B, g) a weakly %-codense
cover of C then (A, g o f) is a weakly &-codense cover of C.

Proof. (i) Obvious, since Lemma 1.8 yields 7g(C(A),f o ¢4, B) S Fy(C(A),
gofopy C).

(ii) By assumption Fy(C(A),f° @4, B) < Ker ¢4 and Fy(C(A), g ofo @y C) S
< Kerf o ¢ . Hence C(A) <,Cy(C(A);gofcps,C) Syopz B, foPaon =fo
° @4, 7 is a natural epimorphism .and Lemma 1.8 gives Fo(C(A), g ofeo @y, C) =
= Fy(C(A), m, C4(C(A), g o fo ¢4 C)) S Fo(C(A), f o @4, B) < Ker ¢4

Definition 1.18. A cover (N, h) of P is a said to be a minimal weakly &-codense
cover of P if it holds: (N, h) is a weakly #-codense cover of P and M <,N <, P,
where (M, h o g) is a weakly #-codense cover of P, implies g is an isomorphism.

Theorem 1.19. Let & be a subclass of M satisfying (o), (B) and let P be a module
with a projective cover such that at least one of the conditions which are given in
Theorem 1.12 holds. Then the following conditions are equivalent:

1 , h) is a minimal weakly £-codense cover of P,

i) (N, h) i I kly &-cod f P

(ii) (N, h) is an &L-projective cover of P,

(iii) N is &-projective and (N, h) is a weakly £-codense cover of P.
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Proof. (i) implies (ii). The #-projectivity of N follows from Theorem 1.16 and
Lemma 1.17.If N S, M <, P, fo g = h and M is Z-projective then Theorem 1.16
and Lemma 1.17 imply that g is an isomorphism.

(ii) implies (iii). It follows from Theorem 1.11 and Theorem 1.12 that there is an
isomorphism f : N — C4(C(P), ¢p, P) such that @pof = h and it suffices to use
Lemma 1.17 (ii), since (C4(C(P), @p, P), @p) is a weakly £-codense cover of P.

(iii) implies (i). By Theorem 1.16 and Lemma 1.17 (i).

Proposition 1.20. Let £ be a subclass of M satisfying (), (8) and let P be a module
with a projective cover. Then P is &-projective if and only if every diagram (1)
with (N, h) being &£-codense coextension of M can be made commutative.

Proof. If the condition is satisfied then P is #-projective by Theorem 1.3. Con-
versely, rg(Q,hoq, M) nKerhoq < Kerq for some QeR-mod and an epi-
morphism ¢ : Q —» N and it suffices to use Theorem 1.3 (iii), since r&(Q, ho g, M,
g, P) = rg(Q, hog, M) by Lemma 1.1.

We can use the following notation. For every C € R-mod let us denote by L
the class of all <N, h, M, g, P> € &, where N = C.

Definition 1.21. A module C is said to be a test module for £-projectivity if every
& ~projective module is Z-projective.

Theorem 1.22. (Test criterion for Z-projectivity.) Let R be a left perfect ring
and &£ a subclass of M satisfying the following condition (€):

© If
P
@) C(P)rC(P), @1, P) —22> Plog(r AC(P), op, P))
f l \ lg
C D

is a push-out diagram then <C, h, D, g o 7, P) € £. (n is a natural epimorphism.)
Then every cogenerator for the R-mod is a test module for #-projectivity.

Proof. Suppose that C is a cogenerator for the R-mod and P is Zc-projective.
With respect to Theorem 1.3, it suffices to prove that K = Ker §p = 0, where
@p : C(P)[r4(C(P), @p, P) = P|@p(ro(C(P), ¢p, P)) is an epimorhism induced by @p.
Suppose on the contrary that K # 0. Then there are k € K and a homomorphism
f: C(P)[re(C(P), @p, P) - C with f(k) & 0, since C is a cogenerator. Consider
the push-out diagram (2). By the assumption, thereis p : P —» C with hop = gom.
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Since

cp)—2- p

L
h

C——D

(, m are natural epimorphisms) is a push-out diagram and Ker ¢p is small in C(P),
we have fom; = po¢@p. Further, k = m,(k’) for some k'eKer ¢p. Therefore
f(k) = (fem) (k') = (peop) (k') = 0, a contradiction.

2. APPLICATIONS

Let 2 be a subclass of the class £ of all couples (M, N), M = N. We say that 2
satisfies the condition (a) if (M, N)e 2, M’ = M < N implies (M’, N) € 2.

Remark 2.1. Let ", 2 be subclasses of % and % a class of all {A,h,B,g,P>e M,
where (Ker h, A) € 2 and (h™*(Im g), A) € . Obviously & satisfies (B). Moreover,
if both " and 2 satisfy (a) then & satisfies (o) and (3).

We start with some basic definitions from the theory of preradicals (for details
see [4] and [5]).

A preradical s for R-mod is any subfunctor of the identity functor, i.e., s assigns
to each module M its submodule s(M) in such a way that every homomorphism of M
into N induces a homomorphism of s(M) into s(N) by restriction. A preradical s
is said to be

— idempotent if s(s(M)) = s(M) for every module M,

— a radical if s(M|s(M)) = 0 for every module M,

— cohereditary if s(M|N) = (s(M) + N)/N for every submodule N of a module M,
— hereditary if s(N) = N n s(M) for every submodule N of a module M.

A module M is an s-torsion if s(M) = M and s-torsionfree if s(M) = 0. If r and s
are preradicals then we write r < s if r(M) < s(M) for all M € R-mod. The zero
functor is denoted by zer and the identity functor by id.

For every M e R-mod we define r™)(N) = () Ker f, f ranging over all fe
€ Hompg (N, M). It is easy to see that r'™? is a radical and, in fact, the largest preradical
for which M is a torsionfree module. The idempotent core § of a preradical s is
defined by 5(M) = Y K, where K runs through all s-torsion submodules K of M,
and the radical closure § is defined by §(M) = (L, where L runs through all sub-
modules L with M|L s-torsionfree. Further, the cohereditary core ch(s) is defined
by ch(s) (M) = s(R) M.

For a preradical s and modules N = M let us define C(N : M) by C(N : M)IN =
= s(M|N).
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Let s be a preradical for R-mod. A coextension (A, h) of a module B is said to be:
— (s, 1)-codense if there exist Ce R-mod and g:C— A an epimorphism with
s(g~!(Ker h)) = Ker g,
— (s, 2)-codense if s(Ker h) = 0,
— (5, 3)-codense if Ker h n s(4) = 0.

Further. if N € M is a submodule and (M, 7) is an (s, 1)-codense coextension of
M|N where 7 is a natural epimorphism, then we shall write N =®1 M. Similarly
N €& M (N <6 M),

A preradical s is said to be cobalanced if A< B, C< D, A=~ Cand A =V B
implies C =1 D,

It is easy to prove the following assertions for a preradical s:

(i) if P <, A, P projective then (4, h) is an (s, 1)-codense coextension of B iff
s(9~*(Ker h)) < Ker g;

(ii) if N = M are modules then N =¥ M implies N €®? M and N =®?» M
implies N =V M;

(iii) if s is a cohereditary preradical and N = M are modules then N =©® M
implies N <2 M;

(iv) if s is a hereditary preradical and N & M are modules then N =©®? M
implies N =3 M;

(v) M =D M iff M is ch(s)-torsionfree, M =®? M iff M =& M iff M is
s-torsionfree;

(vi) if K< N S M are modules then N =®? M implies K =®? M for all
ie{l,2,3};

(vii) every cohereditary preradical is cobalanced;

(viii) if R is left hereditary then every preradical is cobalanced.

Definition 2.2. Let r, s be two preradicals, i, j € {1, 2, 3} and M € R-mod. Let 2,
be the class of all couples (N, M) of modules with N =™? M and let & ; be the
class of all couples (N, M) with N =© M. Now let Z; ; be the class of all (M, h,
B, g, Py e M such that (Ker h, M)e 2; and (h™'(Im g), M)e o";. We say that
a module. P is (r, i, s, j, M)-projective, if it is &; ;-projective. A module P is said
to be (r, i, s, j)-projective, if it is (r, i, s, j, N)-projective for all N € R-mod.

A module P is said to be (r, i, M)-projective ((r, i)-projective), if it is (r, i, zer, 1, M)-
projective ((r, i, zer, 1)-projective). A module P is said to be (i, r, M)-projective
(3, r)-projective), if it is (zer, 1, r, i, M)-projective ((zer, 1, r, i)}-projective).

Proposition 2.3. Every module P having a projective cover has an (r, i, s, j, M)-
projective cover ((r, i, s, j)-projective cover), i,je{1,2,3}. If at least one of the
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conditions which are given in Theorem 1.12 holds, then all the (r, i, s, j, M)-projec-

tive covers ((r, i, s,j)—projective covers) of P are canonically isomorphic, i,je
e{l1,2, 3%

Proof. Apply Theorems 1.11, 1.12 and Remark 2.1.

Lemma 2.4. Let r s be preradicals for R-mod i, je{1,2,3} and Zet (A, h) be
a coextension of a module B. Consider a commutative diagram

X—sY——0

f] ]

A——>B
h

with an exact row, where Ker y =9 X and y~*(Im v) = X. Then the following
implications hold.:

(i) ifi = 1,j = 1, A projective then r(Ker h) + ch(s) (4) = Cs(r(Ker h): 4) =
< Kerf;

(i) if i = 1, j = 2, A projective then Cy(r(Ker h) A) < Ker f;
(iii) if i =2, j=1 then ¥Kerh) + ch(s) (4) = Cey(F(Ker h) : A) < Ker f;
(iv) if i =2, j = 2 then Cy(F(Ker h) : A) < Ker f;

(v) if i = 3,j = 1 then ch(s) (A) + C/ch(s) (4) : A) n Ker h = Cy(C(ch(s) (4) :
:A) nKerh: A) € Ker f;

(vi) if i = 3. j =2 then C{C,3(A) : A) n Ker h : A) = Ker f.
Proof. Easy.

Lemma 2.5. Let r, s be preradicals for R-mod, i, je{1,2,3} and let (A, h) be
a coextension of a module B. Let &, ; be the class of all {M,f,N,g,P)>e M
such that Ker f = M and f~*(Im g) =7 M. Then the following implications
hold:

)ifi=1,j=1, s = zer then re. (A, h, B) < r(Ker h);
(i) if i=1, j=1, r is cobalanced then rg, (A, h, B) < r(Ker h) + ch(s) (A);
(iii) if i = 2,j = 1, s = zer then rg, (A, h, B) = F(Ker h);

(iv) if i=2, j=1 and Ker h/(f(Ker h) + ch(s) (A) n Ker k) is F-torsionfree
then rg, (A, h, B) < F(Ker h) + ch(s) (A);

(v) if i = 1, j = 2, r is cobalanced then rg, (A, h, B) = C{r(Ker h) : A);

(vi) if i =2, j =2 and Ker h|(Ker h n C{(¥(Ker h) : A)) is F-tersionfree then
re, (45 h, B) < Cy((Ker h) : A);

il
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(vii) if i =1, j =1 and B is ch(s)-torsionfree then g, (A, h, B) < r(Ker h) +
+ ch(s) (A);
(vii) if i = 1, j = 2 and B is s-torsionfree then re, (4, h, B) = C{r(Ker h) : A);
(ix) if i = 3,j = 1 and r is a radical then ro, (A, h, B) = C(ch(s) (4) : 4);
(X) if i=3,j=2,r is a radical and A/C,,(§(A)3A) is §-torsionfree then
re. (4, h, B) = C(5A) : A).
Proof. (i) By (vii).

(ii) and (vii) Consider the commutative diagram

Al(r(Ker ) + ch(s) (A)) —— BJh(ch(s) (4))
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where 7,, 7, are natural epimorphisms. It is easy to see that Ker h =< 4/(r(Ker h) +
+ ch(s) (4)) and (k)™ (Im n,) =1 4)(r(Ker h) + ch(s) (4)).

(iii) By (iv).

(iv), (v), (vi), (viii). Similarly.

(ix) Consider the natural epimorphism 4 — A4/C,(ch(s) (A) : A).

(x) Similarly.

Corollary 2.6. Let r, s be preradicals for R-mod and let P be a module possessing
a projective cover (C(P), @p). Then the following implications hold:

() if r is cobalanced then P is (r,1,s, 1)-projective iff Ker ¢p < s(C(P)) +
+ r(Ker ¢p);
(ii) if r is cobalanced then P is (r, 1, s, 2)-projective iff Ker ¢p = Cy(r(Ker ¢p):
: C(P));
(iii) if P is s-torsionfree then P is (r, 1, s, 2)-projective iff Ker ¢p = Cy(r(Ker ¢p) :
: C(P));
(iv) if Ker @p|(7F(Ker @p) + s(C(P)) N Ker ;) is F-torsionfree then P is (r, 2, s, 1)-
projective iff Ker ¢p < #(Ker ¢@p) + s(C(P));
(v) if Ker @p/(Ker 9p n C{(F(Ker @p) : C(P))) is F-torsionfree then P is (r, 2, s, 2)-
projective iff Ker op S C{F(Ker @p) : C(P));
(vi) if r is a radical then P is (r, 3, s, 1)-projective iff Ker p = C,(s(C(P)) : C(P));
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(vii) if r is a radical and C(P)[C/5(C(P)) : C(P)) is 3-torsionfree then P is (r, 3, s, 2)-
projective iff Ker op < C,(3(C(P)) : C(P)).

Proof. It follows from 1.3, 2.4 and 2.5.

Proposition 2.7. ‘Let r, s be preradicals for R-mod, i€ {1, 2, 3} and P € R-mod.
Then

(i) if K < ch(s) (P) then P is (r, i, s, 1)-projective iff P|K is so,
(i) if Pis(r, i, s, 2)-projective and K < 3(P) then P[K is (r, i, s, 2)-projective.

Proof. Use the fact that P is (r, i, s, j)-projective iff it is (r, i, M)-projective for
all M e R-mod with M =®P M, i, je {1, 2, 3}.

Corollary 2.8. Let r, s be two preradicals and P a module such that P = P|[ch(s) (P)
has a projective cover (C(P), pp). Then P is (r, 1, s, 1)-projective iff Ker ¢p =
c s(C(P)) + r(Ker ¢p).

Proof. By 2.5 (vii), 2.4, 1.3 and 2.7(i).

Proposition 2.9. Let r, s be preradicals, i€ {1,2,3} and P e R-mod. Then the
following assertions hold:

(i) P is(r, i, s, 2)-projective iff it is (r, i, s, 3)-projective;
(i) P is (r, 2, s, i)-projective iff it is (F, 2, s, i)-projective;
(iii) P is (r, i, s, 2)-projective iff it is (r, i, §, 2)-projective;
(iv) P is (r, i, s, 1)-projective iff it is (r, i, ch(s), 1)-projective;

(v) if P has a projective cover (C(P), pp) and Ker @p|(F(Ker ¢p) + s(C(P)) N
N Ker ¢p) is F-torsionfree then P is (r, 2, s, 1)-projective iff it is (7,2, s, 1)-
projective;

(vi) if P has a projective cover (C(P), @p) then P is (r, 1)-projective iff it is (F, 1)-
projective;

(vii) if r is cobalanced then P is (r, 1, s, i)-projective iff it is (ch(r), 1, s, i)-projec-
tive;

(viii) if r cobalanced and P has a projective cover (C(P), ¢p) then P is (r, 1, s, 1)-
projective iff it is (ch(r), 2, s, 1)-projective.

Proof. (i), (ii), (iii), (iv), (vii) are obvious.
(vi) follows from 2.8.

(v) With respect to (i) we can assume that r is a radical. Since 7 < r, the (F, 2, s, 1)-
projectivity implies the (r, 2, s, 1)-projectivity. Conversely, consider a diagram (1)
with Ker h =c®? N and N €V N and suppose that P is (r,2, s, 1)-projective.
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Then hod = g o @p for a homomorphism § : C(P) — N. Further, let K, = Ker h,
K,., = r(K,) for every ordinal « and K, = {'] Kﬂ if « is limit. Then 0 = #(Ker h) =

= K, for an ordinal y. By (2.6) (iv) Ker q),, E r(Ker @p) + s(C(P)), and therefore
g(Ker ¢p) S K, for every ordinal «. Hence g(Ker ¢p) = 0 and so P is (7,2, s, 1)-
projective.

(viii) By (vii) and (v}

Proposition 2.10. Let r, s be two preradicals and P a module with a projective
cover (C(P), ¢p). Then the following assertions hold:

(i) if r is a cobalanced idempotent preradical then (C(P)/(r(Ker @p) + s(C(P)) N
N Ker @p), @p) is an (r, 1, s, 1)-projective cover of P;
(i) if r is a cobalanced idempotent preradical then (C(P)(Cir(Ker ¢p) : C(P)) N
N Ker ¢p), @p) is-an (r, 1, s, 2)-projective cover of P;
(iii) (C(P)[7(Ker @p), @p) is an (r, 1) projective cover of P;
(iv) if R is left perfect and r cobalanced then (C(P)/(ch(r) (Ker ¢p) + s(C(P)) N
N Ker @p), @p) is an (r, 1, s, 1)-projective cover of P;

(v) if R is a left perfect left hereditary ring then (C(P)/(7(Ker ¢p) + s(C(P)) N
N Ker ¢p), @p) is an (r, 1, s, 1)-projective cover of P;

(vi) if r is an idempotent preradical and P = P|ch(s) (P) has a projective cover
(C(P), @p) then (C(P)|/(Ker p 0 ™ (r(Ker ¢p) + (C(P)))), @p), where m:
: C(P) > C(P) is an epimorphism with ¢pom = vo @p, v:P — P natural,
is an (r, 1, s, 1)-projective cover of P;

(vii) (C(P)[F(Ker @p), @p) is an (r, 2)-projective cover of P;

(viii) if r is an idempotent preradical and Ker ¢p/(F(Ker ¢p) + s(C(P)) N Ker @)
is F-torsionfree then (C(P)|(¥(Ker ¢p) + s(C(P)) " Ker ¢p), @p) is an (r,2, s, 1)-
projective cover of P;

(ix) if r is an idempotent preradlcal and Ker ¢p[(Ker ¢p 0 C(F(Ker ¢p) : C(P)))
is F-torsionfree then (C(P)/(Ker @p N C{F(Ker @p) : C(P))), @p) is an(r,2, s, 2)-
projective cover of P;

(x) if r is a radical then (C(P)/(C(s(C(P)) : C(P)) 0 Ker @p), @p) is an (r, 3, 5, 1)-
projective cover of P;

(xi) if r is a radical and C(P)|C(3(C(P)) : C(P)) is $-torsionfree then
(C(P)/(CA3(C(P)) : C(P)) n Ker @p), @p) is an (r, 3, s, 2)-projective cover of P,
Proof. (i), (ii), (iii), (vii),»(viii), (ix), (x), (xi) Apply 2.4, 2.5 and 1.11.
(iv), By (i) and 2.9 (viii).
(v) It follows from (iv).
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(vi) By 2.4 (i), 2.5 (vii) and 1.11, (C(P)/(r(Ker @p) + s(C(P))), @p)is an(r, 1, s, 1)-
projective cover of P. Put Q = C(P)/(Ker ¢ 0 n”!(K)), where K = r(Ker ¢p) +
+ s(C(P)). Obviously Q/ch(s) (Q) = C(P)/K and Qis (r, 1, s, 1)-projective by 2.7 (i).
Now, let Ker ¢p n 17 Y(K) = L = Ker ¢p and let C(P)/L be (r, 1, s, 1)-projective.
Then (C(P)/L)[ch(s) (C(P)/L) is (r, 1, s, 1)-projective by 2.7 (i) and so L = Ker ¢p N
n 7~ Y(K), since (C(P)/K, @p) is an (r, 1, s, 1)-projective cover of P.

Lemma 2.11. Let r be a cobalanced preradical and s a preradical for R-mod.

If (A, h) is a coextension of B, M € R-mod, f € Homg(A/(r(Ker h) + ch(s) (4)), M)
then there is a pushout diagram

with Kero <™V M and 6™ '(Im g) =V M (r is a natural epimorphism).

Proof. If
M

| E T

A[(r(Ker h) + ch(s) (A)) —> B/h(ch(s) (4))

is a push-out diagram then the diagram

is a push-out diagram with Kero =™ M and o~ *(Im(¢ o m,)) @D M (m, is
a natural epimorphism).

Theorem 2.12. Let R be a left perfect ring and C a cogenerator for the R-mod.
If r is a cobalanced preradical, s a preradical then a module P is (r, 1, s, 1)-projec-
tive iff it is (r, 1, ch(s), 1, C)-projective. In particular, if both r and s are cobalanced
then every cogenerator for the R-mod is a test module for the (r, 1, s, 1)-projectivity.

Proof. See 2.9 (iv), 1.22 and the proof of Lemma 2.11.
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Corollary 2.13. Let r, s be two cobalanced preradicals, P a module possessing
a projective cover (C(P), ¢p) and M € R-mod. Then P is (r, 1, s, 1, M)-projective iff

Ker ¢p S C,on((r(Ker ¢p) + s(C(P))) : C(P)).
Proof. By 1.3,2.4 (i) and 2.11.

Corollary 2.14. Let r be a cobalanced idempotent preradical, s a cobalanced
preradical, P a module with a projective cover (C(P), (pp) and M € R-mod. Then

(C(P)/(C,(M;((;(ﬁer @p) + s(C(P))) : C(P)) n Ker ¢p), @p) is an (r,1,s, 1, M)-pro-
Jective cover of P.

Proof. Apply 2.4 (i), 2.11 and 1.11.
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