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INTRODUCTION

This paper is devoted to the problem of when a presheaf of topological (uniform,
...) spaces over a topological space can be represented by sections in its covering
space The method used here requires the existence of a Hausdorff topology in the
stalks which is coarser than the topology of the inductive limit.

The problem of existence of such a topology, which is important by itself, is dis-
cussed in the first part, where some theorems on functional separatedness of inductive
limits of presheaves are established. A certain class of categories in which these
theorems hold and which contains the categories of topological, uniform, proximal,
convergence, topilogical linear, ... spaces, is defined in preliminary chapter 0. The
separation theorems are proven for that class of categories. The existence of the
above mentioned topology follows from these.

The second part includes embeddings of presheaves into presheaves of compact
spaces, from which we get again the theorems on functional separation of inductive
limits. Moreover, these embeddings are necessary for the representation theorems
in the fourth part and, in the third part, they are used to establish a sufficient con-
dition for the cannonical maps of the projective limit of a presheaf into its members
to be homeomorphisms.

In the third part we discuss, for completeness, some cases when an inductive limit
has a Hausdorff, completely regular, normal or metrisable topology coarser than that
of the inductive limit. The metrisable case enables us to prove a representation
theorem in the fourth part. Further, we get there a sufficient condition for the canoni-
cal maps of the projective limit of a presheaf into its members to be homeomorphisms.
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It is shown that in some cases the tools developed in the foregoing sections can be
used for the verification of nonemptiness of projective limits of certain presheaves.

In the fourth part, representation theorems for certain presheaves are proven.
They state that there is a closure in the covering space of the presheaf in question,
such that the set of all continuous sections over any open set, endowed with the
topology of pointwise convergence, is precisely the set of those that canonically
correspond to the sets of the presheaf, and that the canonical maps of the spaces of
the presheaf onto the spaces of the sections are homeomorphisms. In the final
section we find when there is a topology with the mentioned properties in the covering
space. The method developed there gives us a representation theorem in terms of
topological spaces.

The paper is written in terms of closure spaces as our aim was not to lose generality.
The theorems proven here are simple if the presheaf is over a countable set. If it is
not the case, a question arises of when the limit of a family of maps of a set into the
members of a presheaf is a map onto the projective limit of the presheaf. Some
sufficient conditions for this are in the second section of the part one.

The reader who is not interested in the subject of the second and third section of
the third part, can go through the paper and skip these.

As the subject studied in the paper is in many places not easy for survey, and as
we know that a careful reader may lose two days musing over a place where the author
has spared two lines, we tried to write the proofs in detail and shun the phrases
““it can be easily seen”, “likewise as ... we can prove ...”” ““it easily follows that ...”
as much as possible. To make the paper easier for reading we often recall the fore-
going notions and circumstances, bzing aware of the fact that otherwise the paper
could be shortened, but made very bad for reading.

The purpose of the paper is twofold: to study the functional separation of inductive
limits ant to deal with the representation of presheaves by sections. As a matter of
fact, we have written at the beginning that the purpose was to study the representa-
tions and that the studying the separation was necessary for it. However, we might
have stated as well that the separation was the main purpose and that the repre-
sentation followed as its application.

Because of its considerable length the article cannot be published in one piece.
The four parts it has been divided into shall come out as separate papers in the
‘Czechoslovak Mathematical Journal. Bearing in mind that all these four papers can
and should be considered as parts of one article, we numerate their sections and all
-other items accordingly. Also the notation and the basic definitions are introduced
at the beginning of the first part only and are not rapeated in the others being bound
to serve for all the four papers. For instance, Theorem 2.1.7 is in the first section of
the second part. If we recall this theorem, say, in the third part, we write simply
“see Th. 2.1.7”. When we recall Definition 0.5 by writing “see 0.5, the reader will
find it in the first part, Chapter 0.
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0. NOTATION AND DEFINITIONS

0.1. A partially ordered set <A <) is called right (left) directed if for every
a,beAthereisce Asuchthata < ¢, b < c(c < a,c = b). Aset Bc Ais called
cofinal if for every a € A there is b € B such that a < b.

0.2. Let & = (0, /l) be a category where @ are objects and .# morphisms. An
inductive family form R is a family & = {S,|o,5| (4 =)} where

(a) <4 =) is a partially ordered set,

(b) S,€0 for each a € A,

(c) for every a, fe A, « < B there is a morphism @,; € .# between &, and S,
(we write g,5 : S, — Sj) such that g,, is identical and o,, = @, © 0,5 forall o, B,y € 4,
a < B < y. We shall sometimes write ¥ < Kif & is from K. & is called a presheaf
if (A4 <) is right directed. If B = A is a subset of A with the induced order, we put
Sy = {S,]0.4| (B =)}

0.3. A family ¥ = {g, | o« € A} of R-morphisms is called inductive for & if each g,
is a morphism between S, and a common object R € 0. We say that ¢ is a family
between & and R; 9 is called compatible if g, = gz ° 0,5 for alla < B.

0.4. An object I € 0 is called an inductive limit of & if

(a) there is a compatible family ® = {¢, | @ € A} between & and I,

(b) if # = {f,| a€ A} is a compatible family between & and an object R, then
there is a unique K-morphism f:I — R with f, = fo &, for all a € 4. Then f is
denoted by lim & and the inductive limit of & by lim &. The morphism &, e @
and f are called natural or canonical. If K is a category whose morphisms are maps,
pel,ae A, aeS,and {(a) = pthen ais called a representative of p.

It can be easily seen from (a), (b) that if an object J € @ and a family Q =
= {n,| v € A} fulfil (a), (b), then there are K-morphisms i:I — J and j:J > 1
such that i o j and j o i are identical and #, = i o &, for each a« € A. Thus I and J are
K-isomorphic.

0.5. A category K is called inductive if every presheaf & from K has an inductive
limit in K. It is known that each of the following categories is inductive: The category
of sets, closure spaces, topological spaces, semiuniform spaces, proximity spaces,
topological linear spaces, .... These are denoted by SET, CLOS, TOP, SEM,
PROX, UNIF, LIN, .... '

0.6. A family ¢ = {g,,[oceA} of K-morphisms is called projective for & if
each g, is between a common object T and S,. We then say that & is hetween P
and &. % is called compatible if gy = Qup° g, for all &, B A, « < B. An object T
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of K is called a projective limit of & if

(a) there is a compatible family ¥ = {p, | x € A} between P and &,

(b) if # = {/, | a€ A} is a compatible family between an object T and &, then
there is a unique K-morphism f: T — P with f, = p,of for all a€ A. Then f is
«denoted by lim & and the projective limit P of & by lim &. As in 0.4 we can prove
that any two projective limits of & are K-isomorphic. A category & is called projec-
tive if any inductive family from & has a projective limit in &. Each category from 0.5
is projective. If &= {S,0,5| (A <>} is a projective family from SET then lim &
consists of all families a = {a, € S, | a € A} with g,(a,) = a, for every a, fe A4,
a = B

0.7. Let &, £ be two inductive categories, & < . If a presheaf & is from R,
then it is also from L. There thus is I = lim & in & and also J = lim & in . It may
happen that I & J. For example, if & < TOP, then lim & in TOP is a topological
space (I, t7) (here I is a set and 7] is a topology in it). But % can be regarded as
a presheaf from CLOS. There is a closure space (J, t’;) which is an inductive limit
of & in CLOS. Then (I, t7) and (J, t7) need not be the same. It can be seen that
I = J but the closure ¢} may be finer than that yielded by the topology t;. Thus,
when necessary, we write & lim &, £ lim & to distinguish the inductive limits in &
from those in L.

0.8. Lemma. Let & = {Saigaﬂl (A £)} be a preheaf from a category K, let
B < A be cofinal in (A £).

A)If ¢ ={g, | y€ B} is a compatible family between ¥y and a R-object O,
then there is a unique compatible family F = {f, | € A} between & and O with
fy =g, for ye B. (¥ is called an extension of %). Further, we have f = lim F =

B) J = lim & exists iff there exists I = lim & and they are isomorphic.

Proof. A: If a € A then there is f € B with « < . We put f, = ggo 0,4 If y€B
is another element with y = o, then there is e € B with e = f8, ¢ = y. From g, ° @,. =
= 0:°0p:° Qup = Jp ° Qup = [, We get that the definition of f, does not depend on
the choice of p € B with 2 o, because (A4 <) is right directed (see 0.1). If o, f € 4,
o = B then fgo 0,5 = g,°0p,° Cup = gy ° Quy = fo» Where y€ B, y = B is arbitrary.
Thus # = {f, | € A} is the desired family. The rest of (A) is clear.

B) Let I exist and % = {g, | y € B} be compatible between &5 and a K-object O.
By A, there is # = {f, | a € A} between & and O with f, = g, for y € B. Thus there
is a unique f:I — O with fo &, = f, for all ae A (£, :S, —» I are the canonical
morphisms — see 0.4), so fo ¢ =fp=9pif peB. If g:1 > O is a K-morphism
with g o & = g, for all Be B then # = {go ¢, l a € A} is an extension of ¥, hence
(by A) F = #. Further, g = lim # = lim & = f, which shows by the definition
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of inductive limits in 0.4 that lim & exists and I = lim ¥p. By 0.4, every lim &5
is isomorphic to I. Conversely, let J exist and A" = {n,; : S, > J | B e B} be the set
of the canonical maps. By (A), there is a unique family /# = {&, | a € A} between &
and J with & =y, for fe B. If F = {f, | € A} is compatible between & and O
then so is ¢ = {f | B € B} between &5 and O. There is a unique f: J — O with
Sp = fong for all BeB. We show that fo &, = f, for all € 4. Then by 0.4, J =
= lim &. The family # = {f o & | B € B} is compatible between &5 and 0. Further,
R = G since fo &y = fon, = fg for f € B. By (A), there is a unique extension 3# =
= {h,|x€ A} of #. We have hy = fo &, for fe B. If a € A, then there is fe B
with B = . Then fo &, = foge 0,5 = hgo g = h,. As F is the extension of ¢
and Z = 9, we get # = F. Thus fo &, = h, = f, for all a € A, which shows that
J = lim & as desired.

0.9. If % is a closure (semiuniform, proximal, ...) space, we denote by |Q" I the
set of Z, i.e. the underlying set. Thus & = (|%/, t), where ¢ is the closure (semi-
uniformity, ...) of Z. If & = {%,]e,5| <4 <>} is an inductive family from CLOS
(TOP, SEM, ...), we put |&| = {|Z,| es| (4 £D}. Then |#| = SET. An object Z
from CLOS (TOP, SEM, ...) is denoted by Z = (X, 1), where X = Iﬂ”l and t is the
closure (topology, ...) of Z. If = (X, t) is from SEM or PROX, then the closure
generated in X by t is denoted by clz. We put clZ = (X, clt). If & = {3&’,!@0,,4 42}
is an inductive family from SEM or PROX, then we put cl & = {cl &, 0.5 <4 <)}.
Clearly ¢l & is from CLOS (i.e. g :cl %, — cl %, are continuous). If Z = (X, f)
is a closure space, then the finest topology in X coarser than ¢ is denoted by mt.
Setting mZ = (X, mt), then mZ and mt are called topological modifications of Z
and of 7 respectively.

If X is an object from SET, then it can be regarded as an object from CLOS
(TOP, SEM, ...) with the discrete closure (topology, ...) d. We write c1 X = (X, d).
Thus SET will be regarded as a subcategory of the mentioned categories.

0.10. An inductive category £ is called inductively closed (i.c.) if

(1) € = CLOS or & = SEM or & = PROX (see 0.5);

(2) there is an object R in £ which, being regarded as an object from CLOS
(SEM, PROX), is the real line with the usual closure (semiuniformity, proximity);

(3) given a presheaf & = {‘%”,,IQ,A {A £)} from € and its canonical maps
{¢,:%,— F =1lim & | ae A}, then

(a) if pe|#|, then there is « € A such that p has a representative in | %] (see
0.4, 0.9);

(b)ifpe |f| andifae I%",], be [%",,I are representatives of p then thereisy = «, f
such that 0,,(a) = gp,(b).

The point (b) readily yields that if every o, : |%,] = |%| is 1—1 (see 0.9), then so
is every & :|%,| > |#| (@ map f:P — Q is called 1—1 if f(x) % f(y) for any
x,y € P, x % y). Throughout the paper € will mean an inductively closed categery.
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0.11. Let 2 be an object from an i.c. category €. The set of all 8-morphisms
(bounded ones) between Z and the real line R (which is regarded as an £-object —
see 0.12(2)) is denoted by C(Z — R |2)(C*% — R|£)). These morphisms are
functions. If C is the field of complex numbers, then C(Z - C | 8) = {f = f, +
+ if, | f1,f2 € C(& - R| 8)}. Likewise we define C*(% — C| ). Clearly, if Z is
from SEM or PROX and F < Cspp(% — R) or F < Cprox(Z — R), respectively,
then F < Ccros(cl  — R) (see 0.9). The same holds for bounded morphisms.

We introduce the i.c. categories to avoid the necessity of repeating the statements,
with the same proof, for the presheaves from various categories. Now we can write
only one statement which holds for all presheaves from i.c. categories for example
from CLOS, TOP, SEM, ... . Otherwise we should have to formulate the statement
for each of them.

0.12. A family & = {Z, ' gaﬂ| (A £} is called an inductive family (presheaf)
of L-objects if L is i.c., Z, is from & for all ® € A and [9] (see 0.9) is an inductive
family (presheaf) from SET (it means that ¢,; need not be £-morphisms but just
some maps of &, into Z;). For example, if & = {Salga,,l {A <)} is from SET and
each set S, is endowed with a closure 7,, then & = {(S,, 7,) |0us| <4 <>} is an in-
ductive family of CLOS-objects. An inductive family of CLOS (TOP, UNIF, ...)
objects is called closured (topologized, uniformized, ...).

The definition of inductive limits can be extended to inductive families of L-objects.
Indeed, using Definition 0.4 to define the inductive limit of a presheaf from £, we do
not use the fact that g,s are £-morphisms. Thus Def 0.4 works even for inductive
families of L-objects.

It is known that if & = {Z, 0ap| <4 §)} is a presheaf of CLOS objects. then
CLOS lim &= (I, t), where I = SET lim & (see 0.7,0.9) and ¢ is inductively generated
by the canonical maps &, : Z, — I. The same holds in terms of TOP, UNIF, SEM,
PROX.

- Given two sets X, 4, let f, for each o« € A be a map of X into a topological space Z,
(of &, into X). We say a topology t in X is projectively (inductively) defined in X
by the maps {f, | x € A} if 1 is the coarsest (finest) of all topologies 7 in X such that
every f, is © — 1, (7, — 7) continuous. Likewise we can proceed in terms of CLOS,
SEM, ....

0.13. Let Z, ¢ be objects from an i.c. category &, let F be a set of L-morphisms
between % and #. We say that F is separating (or that it distinguishes points of %)
if for any x, y € |%| with x # y there is f € F with f(x) + f(»). We say fe Fis 1—1
if the one — point set {f} is separating.

0.14. Given a closure (topological, uniform, ...) space (X, ), B = X, then the
closure (topology ...) induced in B by ¢ is denoted by indg ¢ (shortly ind ¢ or ¢/B).
The set of all continuous (uniformly continuous) or bounded real functions of this
sort on a closure (semiuniform) space is denoted by C(Z — R) (U(Z — R)) or
CXZ - R) (UX(Z — R)) respectively.
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0.15. We say that amap h : S — Tis onto (into) if h(S) = T(h(S) = T). The dual
map h* is the map which assigns to every function f on T a function h*f on S such
that h*f = f o h.

If s or t is a closure (semiuniformity, ...) in the set S or Trespectively, then we say h
is a homeomorphism into (uniform embedding), if h:(S,s) — (h(S),ind ) is
a homeomorphism (uniformly continuous together with h™?).

0.16. Lemma. Let X, Y be two sets, h : X - Y a map, F(X) and F(Y) some sets
of real functions on X and on Y respectively. Assume F(X) is separating (see 0.13,
recall that X, Y are from CLOS — see 0.9). If F(X) « h* F(Y) = {h*flfe F(Y)}
then h is 1—1.

Proof. If x, y € X, h(x) = h(y), f € F(X), then there is g € F(Y) with f = g o h.

Hence f(x) = g o h(x) = g o h(y) = f(y). Thus f(x) = f(y) for all f € F(X). As F(X)
is separating, we have x = y.

0.17. When speaking of a compact (locally compact) space Z we mean that &
is hausdorff. When speaking of a closure space 2 we mean that to every x € |2 |
here is given a filter base #x of subsets of [.%“l such that x € B for all Be #x. ¥ is
defined to be T; if the points of Z are closed.

A uniform space (X, n) whose uniformity n is given by a filter # of vicinilies of
the diagonal A in X x X, is called separated (or Hausdorff) if N{ | Fe #} = A.

0.18. Where useful, we shorten a complicated notation ‘A’ by introducing another
and simpler abbreviation ‘B’ using the symbol B * A or just B = A. For example,
Gy, 6) £ G means that Gg,(&, &) is denoted by G.

0.19. Let an inductive family & = {%, = (X,, 7,) |0.5| (4 =)} from £ be given,
where £ is one of CLOS, TOP, SEM, UNIF, PROX. If the order < is the equality
(i.e. a,be A then a < b iff a = b) then there is £ = lim & in &. It is known that
# = (I, 1), where I = U{X, | x€ A} and t is inductively defined by the canonical
embeddings j, : &, —» 1. We denote # by Y {%,|aeA}. In general, we say that
a category & has the sum property if every inductive family & = {Salga,;l 4 2>}
from K, over a set {4 <) whose order is the equality, has an inductive limit %
in & We write # = Y'{S, | a € 4}.

0.20. Let & be ic., & = {%’alguﬁl (A £)} = 8 a presheaf, S = lim &. Then
(i) |#] = lim || (see 0.9),

(ii) if f: F — R is a real function such that fo ¢, € C(ﬁl’a—»Rlﬁ) for all we A
(&,:Z,— F are the natural maps), then fe C(# — R).

Proof. (i): Given a set S and a compatible family # = {f, | x€ A} between
|| = {|%.] |ous| <4 <)} and S, pe|#], then there is a representative a € |%.|
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of p (see 0.10(3a)) we set h(p) = f,(a). It follows from 0.10 (3b) that h(p) does not
depend on the choice of a and of the representative a € |2 a| of p. Thus gotten map
h:|#| - S fulfils ho & = f.forall a e 4, and if h:|#| > S is another map which
fulfils it then clearly h = h.

(ii): Set ¥ = {g, =fo¢, | a€ A}. Then ¥ is a compatible family of € — mor-
phisms between ¥ and R — see 0.12(2), 0.6. There is a unique g € C(# - R | £)
with g o &, = g, for all « € A. By (i) there is a unique h : |f| — Rwith ho &, =g,
for all ae A. Also fo &, =g, for alla€ A. Thus f = h = g and fe (S — R[E).

1. SEPARATION THEOREMS

1. A GENERAL SEPARATION THEOREM FOR INDUCTIVELY
CLOSED CATEGORIES

1.1.1. Definition. A closure space (Y, ¢) is called functionally separated (shortly
f.s.) if the set C = C((Y, ¢) » R) distinguishes points of ¥, i.e. if C is separating
for Y (see 0.13, 0.14). If a nonempty family F(Y) = C distinguishes points of Y,
we say that (Y, c) is f.s. by F( Y). Clearly, if h is a continuous 1—1 map of a closure
space (X, ) into (Y, ¢) (see 0.15), where (Y, ) is f.s. by F(Y), then (X, ¢) is f.s. by
h* F(Y) = {f o h| h e F(Y)}. More generally, if & is a family of continuous maps
of (X, t) into (Y, c¢) which distinguishes points of X (see 0.13) then (X, 7) is f.s. if so
is (Y, ¢).

This can be likewise written in terms of any inductively closed category £ (see 0.10).
An f-object # is called functionally separated (f.s.) if C(# — R|£) separates
points of I/l (see 0.13, 0.9, 0.11). If F = C(# - R [ €) is nonempty and separates
points of [jl, we say that # is f.s. by F. If & is a family of 8-morphisms of Z into #
which distinguishes points of % (see 0.13) and if # is f.s. by F, then Z is f.s. by
{foh|feF, he&}. '

1.1.2. Lemma. Let (Y, c) be a f.s. closure space. Then there is a Hausdorff topo-
logy u in Y coarser than c. This lemma holds also in terms of SEM and PROX
(see 0.5).

Proof. We define u projectively by the functions from C = C((Y, ¢) = R) (see
0.14). Then u is a topology coarser than ¢ and is Hausdorff for C separates points
of Y. To prove the lemma in terms of SEM (PROX), we define the uniformity
(proximity) u projectively by the set of all uniformly (proximally) continuous
functions on (Y, c).

Given a presheaf S = {(S,, 7,) [0.4| (4 <)} from CLOS (SEM, PROX, ...) and
its inductive limit (7, tf), Lemma 1.1.2 gives us a method for the proof of separation
theorems. If we want to find when there is a Hausdorff topology (uniformity, ...)
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in I, coarser than tf, we try to find some conditions for the set C((1, 1f) > R).
.(U((I, 1f) - R), ...) to distinguish points of I (see 0.5, 0.14).

1.1.3. Notation. Let (A <) be a partially ordered set, o € A.

A. The set A,y = {fe A| B < a} is called a segment of A. If there is a largest
(smallest) element of {4 <) smaller (larger) than «, we denote it by o« — 1 (« + 1).
If <A £) is well ordered and « is not the largest element of (A <), then there is
o + 1; the smallest element of {4 <) exists and is denoted by 1. When speaking
about « + 1 (¢ — 1), we mean that a is not the largest (smallest) element of A.

B. If {4 £) is a partially ordered set, a, f 4, a < B, we put {a, B> = {ye
€A|a =y = B}. Likewise we define <, B), («, B, («, B). Further we put A(x) =
={Bed|p=a}

1.1.4. Definition. Let & = {S,|0,5| <4 <)} be an inductive family from an
arbitrary category & (see 0.2), « € A. We say that S, is limit if A[o] is right directed
and S, = K lim & 41,3 (see 0.8, 0.4). This also means that {gz : S; - S, | pe Ala]}
are the canonical maps (see 0.4). We set £(&) = {a € 4| S, is limit}. If no misun-
derstanding can occur we write & instead of £(&). Clearly 1¢.% if there is the smallest
element 1 of {4 =).

1.1.5. Definition. A. Let an inductively closed category £ and an inductive family
& = {&,)|0.5| (A =D} of L-objects (see 0.12) be given. If for every x € A we have
a set F, = C(%, > R| &) (see 0.11), then we say & is endowed with the family
& ={F,|aeA}. & is called separating (strongly separating) if for every a e A
the set F, separates points of &, (points and points from closed sets of ¢l Z ,l). If the
points of Z, are closed in c1 %, — see 0.9 — for every o € A, then any strongly
separating family is also separating.

If (A =) is well ordered then & is called leftward (rightward) smooth if F, =
< 0ra+1Fars (QFa+1Fary = F,) for all ae A. & is called smooth if it is leftward
and rightward smooth.

A thread through & is a family & = {f, | « € A} with g}3f; = f, for all o, B € 4,
a < B. (Thus the threads through & are the compatible families # = {f, | ae A}
with f,e F,forallo€ A — see 0.3). f M < A4, we put &) = {F, | ae M}. & is called
connected (fully connected) when the following condition holds: “If « € 4 is such
that o — 1 does not exist, f € A[x] — & (B e A[a]) (see 1.1.4) and if # = {f, |ye
e {Pa)} is a thread through &, ,, then there is f € F, such that Q;';f = f, forall ye
el ﬁoc).” Clearly, & is connected if (4 <) is well ordered and countable with the or-
dinal type w,, because then every o € 4 has o — 1.

In the samy way we define the notions of this definition in the complex case, i.e.
if we have the field C of complex numbers instead of R.

B. If {4 <) is well ordered and every Qfﬁ sends Fy into F, then & is connected
iff it is fully connected. Indeed, let « € A such that @ — 1 does not exist, f € A[o]
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and a thread ¥ = {f, |ye{pa)} through &, be given. Setting f, = 0yfy for
y< B, F =1{/, I y€<1, @)}, then & is a thread through &, ,). As 1 ¢ <, there is
feF, with o/ = f, for all y e {1, «) provided & is connected. Thus onf = f, for
all y e (Pa) whence & is fully connected; the converse is plain.

1.1.6. Lemma. Let & = {Q”‘, Qaﬂl (A 2>} be from an i.c. category £, {A =)
well ordered. Assume & is endowed with a leftward smooth and connected family
& ={F, [ w€ A}. Then F, < gi;F; for all a,fe A, « < B (it means that & is
leftward smooth for any M < A). Thus @,5 is 1—1 for all a € A if every F, separates
points of Z,.

Proof. Given a, fe A, « < B, f € F,, we prove by induction that there is a thread
Fy={f,|ve{Bap} through &, with f, =f. Let e€ 4, ¢ > a and let F, =
= {f,|7€<a, &)} be a thread through &, with f, = f. If there is ¢ — 1 then by
virtue of the leftward smoothness of & we can find g € F, so that Qf_mg = feoy-
If ¢ — 1 does not exist then the connectedness of & yields the existence of a g € F,
such that glg = f, for all y e {a, ¢). In the both cases, 4 = {f, |y € (o, &)} with
f. = g is a thread through &, ., If ¢ = B, we have f = f, = 0jf; which with fy € Fj
proves that F, < ngFﬂ By 0.16, g,z is 1 —1. The lemma is proven.

1.1.7. Theorem. Let & = {%'a Qa,,| A §>} be a presheaf from an i.c. category £
(see 0.10), <A <> well ordered. Suppose & is endowed with a leftward smooth and
connected separating family & = {F, = C(Z, > R| ) | x € A}.

If pgqe s =1im &, p =+ q, then there is o€ A — &, representatives a € S,
of pand be S, of q and a thread F = {f, [ y = «} through & such that f, o g,.(a) =
=1, f,° 04(b) = 0 for all y 2 a. Thus for f = lim & we have f(p) = 1, f(q) = 0.
Hence S is f.s. by C(# — R | ) (see 0.6b).

"Proof. Let p, g€ #, p & q. There is a smallest element « € 4 such that there is
a representative a € &, of p and be Z, of q. We have a € A — & since otherwise
there would be f < « so that p, g have representatives in 2’5, which contradicts the
choice of a. By 1.1.6, g,z is 1—1 for all a, B. By the condition (3) from 0.10, the
canonical maps &, : %, » # are 1—1 and hence the representatives are unique.
As {A <) is ordered, the set A(a) = {ye 4 | 7 = o} is confinal in (4 £), hence
by 0.8B, lim & is f-isomorphic to lim & 4. Thus we may suppose o = 1 (see
1.1.3B). Put a; = ¢,4(a), by = 0,4(b) for p e A. Using transfinite induction we get
a thread & = {f, |« € A} through & such that f(a,) =1, f,(b,) = 0 for each
o € A. If we find such a family then there is lim # = fe C(# > R | &) with f(p) = 1,
f(g) = 0 and with &f =f,eF,forany ye 4, y = o (see 0.4, 0.15). Thus & is f.s.
by C(# - R| 9).

The construction of #: There is f, € F; with f,(a) = 1, fy(b) = 0. Suppose a € 4
and let us have a thread %, = {f;|Be A[a]} through &,,; with fyay) = 1,
f4(bs) = 0 for each f e A[a].
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(#): If @ — 1 does not exist, then there is g € F, with Q;‘ag = f, for all y e A[a].
Putting f, = g, we have f,(a,) = 1, f,(b,) = 0.

(3 #): If there is & — 1, we have F,_, < of_; ,F,. As f,_,€F,_,, there is
g € F, with ¢ | ,g = f,—,. Putting f, = g, we have f,(a,) = 1, f(b,) = 0. In both
cases, {f; I B < a} is a thread through &,,,. Therefore the transfinite construction
gives us the desired thread &. The theorem is proven.

1.1.8. Corollary. Let & = {Z,|0,4| <A <)} be a presheaf from an i.c. category £,
{A =) well ordered. Suppose & is endowed with a leftward smooth separating
family & = (F, =« C(%, > R | 2) | a € A} and moreover

1. if e A, o * 1 then either a € & or there is o — 1;

2. if ae A, o + 1 is such that « — 1 does not exist, f€ A[a] — &, and if F =
= {f,eF,|ye{pa)} is a thread through & g,, then im F = feF, (see 0.4; this
condition 2 holds namely if F, = C(Z, > R | &) for all « € A for which o — 1 does
not exist.)

Then & is connected and thus the statement of Th. 1.1.7 holds.

Proof. If o, B, f, # are the symbols mentioned in 2, then g},f = f, for all y € {fa),
thus & is connected. Hence Th. 1.1.7 works.

Theorem 1.1.7 is a sufficient condition for lim & to be f.s. Its key points are the
left smoothness and connectedness of &. We deal with that in the next two sections.

2. THE CONNECTEDNESS

In this section some conditions for the connectedness are found.

1.2.1. Proposition. Let & = {S,|o,4| (A4 <>} be an inductive family from SET
(see 0.5). Suppose that for every a € A we have a set R, = S,. Put r,; = 0,4/R,
(the restriction; we have 7, : R, > Sp), Z = {R, | r,4| A =)} (# need not be an
inductive family for it need not be r,R, = Ry). A family a = {a,€ R, ] ae A} is
called a thread through Z if r,(a,) = a, for all o, f € A, o < B (this is in accordance
to the definition of the threads in 1.1.5). We denote by P, the set of all threads
through 2 (then P, < lim &% — see 0.6). Assume <A <) is right or left directed
(see 0.1). Let a set S and a projective family # = {f,: S > S, | a € A} between S
and & (see 0.6) such that R, = f,(S) for all « € A be given. Setting f = lim & (see
0.6 — we have f : S — lim &), we have

A. Py < f(S) if each f, is L —1 on f;'(R,).

B. Let, moreover, (A <) be left directed and let S be a topological space. If
a={a,|acA} is a thread through &, we set Ba = {M, = f;"(a,)| e A}
(@a is a filter base in S as (A <) is left directed). Then Py < f(S) if one of the
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following conditions is fulfilled:

a) for every a € Py, Ba consists of compact sets (in the topology of S).

b) S is uniformisable, complete, and for every a € Py, Ba is a base of a Cauchy
filter of closed subsets of ¢l S (see 0.9).

c) A is countable, (A <) with the inverse order < (i.e.a < p iff f<a) is well
ordered and for every thread a = {a, | o€ A} through R there is B such that M,
is either locally compact or a complete metric space and M, is of Baire type G,
and dense in My for all y -z B.

d) There is no countable confinal subset in (A <*) (then A is, of course, un-
countable; X is the inverse order), (A £) is ordered, S is Lindeldf space and for
every thread a = {a, I o€ A} through Z the base %a consists of closed sets.

Proof. A. Let every f, be 1—1 on f;'(R,), a = {a,€ R, | a € A} € P,. For every
a € A there is b, with f(b,) = a,. If « < B then fy(b,) = 0,5 fob,) = 0up(a,) = ap.
As fy(by) = agand f,is 1—1 on f5 '(R,), we get b, = b;. As (A <) is right or left
directed, we have b, = b, = b for all a, f € A. Clearly f(b) = a as desired.

B. If (a) or (b) holds then %a has a cluster point b. Clearly f,(b) = a, for all
a € A so f(b) = a. In the case (c), if a = {a,| a € 4} is a thread through %, o« "= B
then M, = M. By the Baire category theorem [5. Chap. XI, Sec. 10, Th. 10, p. 249],
[5, Chap. X1V, Sec. 4, Th. 4.1, p. 229], B = N{M, | y £ B} * D as it is a countable
intersection, hence if b € B then f(b) = a.

In the case (d) assume that %a = 0. Then the Lindeldf property of S yields the
existence of a countable subset ¥ of %a with € = 0. Let, say, € = {M, =
=fola,)|n=1,2,...}. As {a,|n=1,2,...} is not cofinal in {4 =*) and
(A =+ is ordered, there is f € A such that @, <* § for all n. Since M, = f; '(a;) * 0
and g, (My) = M,, for all n. we have N% * 0 — a contradiction. So there is
b e N%a and f(b) = a.

1.2.2. Proposition. Let & Z, P4 have the same meaning as in 1.2.1. Given a set S
and a projective family # = {f,:S > S, | a€ A} between S and & (it need not
be R, < f,(S) for all xe A), f = lim F : S —» lim & (see 1.2.1, 0.6) let us assume
that (A <) is right or left directed and there is B € A such that Ry < f§(S). If 04
is 1—1 on M,y = 05 '0,4R, for all o, Be A, o < B (if it is fulfilled then M,z = R,),
then P4 < f(S).

Proof. By 1.2.1, Py is the set of all threads through £. Given a thread a =
= {a, l a € A} through &, there is f and be S with f4(b) = a;. Then d = {b, =
= f(b) ] a € A} is a thread through &. Clearly a, = b, for all y 2 §, and if 6 € 4
with a; = bs then a, = b, for all y = 6. Let y € A. If (A =) is right directed then
there is & with & = B, & 2 y. Then g,4(a,) = a5 = b; = 0,s(b,), a,, b, € M5 hence
a, = b,. If (A <) is left directed then there is 6 with & < 7, 8 < f. Then g45(a;) =
= by = gs5(bs), a5 bs€ M, hence a; = b, Since 6 <y, we have a, = b,. Thus
a, = b, forall y € 4, hence d = a = f(b) which finishes the proof.
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1.2.3. Corollary. Let & = {Sa|Qaﬂ| (A £)} be an inductive family from SET,
P =1lim &. Assume {A <) is right or left directed. Let S be a set and F =
={f,:S-S, | o€ A} a projective family between S and & (see 0.6) such that f,
carries S onto S, for all w € A. Then f = lim & carries S onto P if either each f,
is 1—1 or each 0,5 is 1—1.

Proof. By 0.6, P is the set of all threads through &% (see 1.2.1). If every f, or every
045 1s 1—1 then the statement follows respectively from 1.2.1 or 1.2.2 (we put R, = S,
so that & = 2), because Py, = P4 = lim & = P (see 1.2.1, 0.6).

The foregoing corollary is useful when a presheaf & = {Z, Qa,,l A §>} from an
i.c. category is endowed with a family & = {F, = C(Z, » R | 2) | « € A} such that
the family §* = {F;Iga,,l A §'>} is inductive (<- is the inverse order for <, i.e.
a<s"biff b £ a), i.e. when g;",, carries Fj into F, for all «, B. In this case we may
use 1.2.3 to verify the connectedness of &. But if we have only F, < ¢jsF;, then 1.2.3
cannot be used directly. For that case we have established 1.2.1, 1.2.2. The next cor-
ollary is adopted for the direct verificationo of the connectedness of &.

1.2.4. Corollary. Let & = {&’"a|gaﬁ| <A §>} be a presheaf from an inductively
closed category L, which is endowed with & = {F, < C(%,— R | g) ] ae A},
(A <) well ordered.

A) Assume that for every o€ A for which o — 1 does not exist there is f € A[a]
such that at least one of the following conditions holds:

1) F, < 0}F, and @ is 1—1 on F, 0 o}, 'F, for all y € {Bu);

2) there 1s a cofinal set B in (A[a] £ > with F, < o},F, for all ye B, and o,
is 1—1on g}, "oy F, for all 5,y e {Pa),d < y.

Then & is fully connected.

B) Assume that for every a € A for which there is no « — 1, F, is a topological
space such that for any B e A[«] and any thread % = {g, |y € {Pa)} through & 4,
there is v € {Ba) such that one of the following conditions is fulfilled:

a) The filter base #,,={M,=F,n g} "g,|ve<v)} consists of compact
subsets of F,;

b) F, is uniformisable, complete, and A, is a Cauchy filter base of closed sub-
sets of F;

¢) {va) is countable, M, is of the Baire type G, dense in M, for all y € {va), and
either locally compact, or a complete metric space;

d) there is no countable cofinal set in (v, a) and either F, is a Lindeldfs space
and M, are closed in F, for all y e {va), or M, is a Lindeldf space and M, are
closed in M, for all y € {va).

Then & is fully connected.

Proof. Given o € 4 such that o — 1 does not exist, 6 € A[o] and a thread F =
= {f, | y € (6«)} through &, we may assume & = B. If the condition 1 or 2 of A
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holds then, using respectively 1.2.1A or 1.2.2 to &y, &, F, and {o}; | 7 € <Bx)}
we get that there is f € F, with off = f, for all y € {Ba) which proves A, while B
follows from 1.2.1B.

1.2.5. Lemma. Let a presheaf & = {%,|o,| A <)} be from an i.c. category @,
B c Alet (B =) be well ordered and let &y be endowed with a family & =
= {F, = C(#, > R| )| ae B} such that for each o, B € B, « < P the pair (F,, Fy)
has a property P,z. Let there be a countable cofinal set C in B. Then there is a cofinal
set D in {C £) — and therefore cofinal in (B =) — such that the family &,
which endows &p, has the following properties: (1): For every a,feD, a <
the pair (F,, F;) has the property P,

(2): &p is connected. Moreover, l_m,(VD‘ is L-isomorphic to lim &, D being
cofinal in {B <).

Proof. {C £ is countable and well ordered; it is well known that there is a cofinal
set D in C of the ordinal type wo. Now as each y € D hasy — 1in (D <), (2) follows
from 1.1.5A. The rest is clear.

1.2.6. Lemma. Under the conditions of the foregoing lemma, if some properties
P, Q of & and the connectedness of & yield a property R of # = lim & which is
stable under R-isomorphisms, and if P means that for certain elements o, ff € B,
a < B the pair (F,, Fj) has the property P,y then in order that ¢ have the proper-
ty R it is enough that the property P,z be posessed by any pair (F,, Fp), o, B € B,
o < B, and that Q be stable under making subfamilies of &.

Proof. We take &), from the foregoing lemma. Then by the foregoing lemma,
&p is connected and has the properties P, Q whence 4 = lim &, has the property R.
Since A is L-isomorphic to #, the lemma follows.

As a corollary we get the following strengthening of Th. 1.1.7:

1.2.7. Corollary. Let & = {Z,|0,4| <A <)} be a presheaf from an i.c. category £,
(A £) well ordered. Suppose & is endowed with a leftward smooth and connected
separating family § = {F, < C(Z,— R I 2) | ae A}

Givenp,ge ¥ =1lim &, p * q, then thereisa € A — ¥, representativesa, be &,
of p, q, and a thread F = {f, | Y 2 o} through & such that f,0,,(a) = 1, f, 0,,(b) =
= 0 for all y =z . Thus for f = lim # we have f(p) = 1, f(q) = 0 hence £ is f.s.
by C(F — R | 8). If moreover there is a countable cofinal set C in A and F, < g};F
foralla, Be A, a < B then the assumption on the connectedness of & may be left out.

Proof. The property P: “For every a, « + 1 € A we have
P,ar1:{F, < 0f4+1F,+1}” — which is the left smoothness of & — together with Q:
““é is separating” and the connectedness of & imply the property R of # which is
described in the assertion of 1.2.7. As F, < Q;kaﬂ forall o, fe A, o < B, P as well
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as R, Q fulfil the conditions of 1.2.6, hence the assertion of 1.2.7 holds for R (with
A =D, & = &p). 0.8A, B now completes the proof.

1.2.8. Remark. In the same way we may strengthen 1.1.8 by adding to it: If there
is a countable cofinal subset in 4 and if F, < Q;",,Fﬁ for all «, f € A, « < B then the
condition (2) may be left out.

3. LEFT SMOOTHNESS

In this section we seek a class of presheaves for which there is a leftward smooth
family &. To this end we study when for two closure spaces £, % andamap h : & —
— ¥ there are sets F(Z) = C(Z - R), F(%) < C(% —» R) such that F(%) <
c h* F(%). If &, % are arbitrary then h need not be even 1—1. But if we restrict
ourselves to some more reasonable spaces, we must assume more about h. This is
shown by the following lemma (a topological (closure, uniform, ...) space Z is now
denoted by (X, 1), where X = |#| and ¢ is the topology (closure, ...)).

1.3.1. Lemma. Let & = (X, 1), ¥ = (Y, (') be two closure spaces, h:X —» Y
a map, F(X) « C(% — R), F(Y) = C(% — R). Denote by © and by 1’ the topologies
projectively defined in X and in Y by the functions from F(X) and F(Y) respectively.
Further, denote by h' the map h : (X, t) - (Y, ).

a) If h* F(Y)  F(X), then k' is continuous.
b) If his 1—1 and F(X) = h* F(Y), then (h')™" is continuous (see 0.14).

¢) If F(X) separates points of X and F(X) (\ h* F(Y) is a dense subset of F(X) in
the usual sup-norm then h is 1 —1.

This lemma holds also in terms of SEM and PROX.

Proof. We have this diagram (i, j are identities)

(X, 1) s (%, 2)

]

(X, 1) —— (%,7)

a) b’ is continuous iff so is g o i’ for any g e F(Y). But go #’ = h*g e F(X) so
g o h' is continuous.

c) Let x, y e X, h(x) = h(y). Then h* g(x) = go h(x) = go h(y) = h* g(y) for
any g € F(Y), hence f(x) = f(y) for any fe F(X) and thus x = y. Thus h is 1.1
and h™! exists.
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b) Put ind,xyt" = 7* (see 0.14). Then h™! is t* — 7 continuous iff so is g =
= fo h™! for any f € F(X). There is I € F(Y) such that f = lo h, hence g = lo ho
o h™! = I[h(X), thus g is t*-continuous.

The proof in SEM and PROX is the same.

1.3.2. Corollary. Let & = (X, t), Y= (Y, ') be completely regular topological
spaces, h : X - Y a map, F(%) = C(% - R), F(Y) = C(¥ - R).

(1) If K(X) = Y then these are equivalent:
a) h* carries F(Y) onto F(X);
b) h is a homeomorphism of & into ¥.

(2) Let h be an arbitrary (we do not assume h(X)=Y) 1—1 map and let h™" :
1 (h(X),ind ¢') — (X, 1) be continuous. If every ge C((h(X),ind t') - R) has an
extension g’ € F(Y), then F(X) = h* F(Y). If h is continuous then F(X) = h* F(Y).

Proof. As &, % are completely regular, t and ¢’ are projectively defined by F(X)
and F(Y), respectively. Now (1) follows from 1.3.1. To prove (2), take g € F(X).
If g’ € F(Y) is an extension of g o h™, then g = h*g'. The rest is clear.

We have shown that if F(X) separates points, then F(X) ¢ h* F(Y) unless h is
1—1and h™* continuous. Thus, if we want to find when F(X) = h* F(Y), it is natural
to assume that A~ ! is ind ¢’ — ¢ continuous (or uniformly continuous, ... if we work
in SEM ...).

1.3.3. Notation. A) Let Z = (X, ) be a closure space. The set of all continuous
or bounded continuous real functions on % is denoted by C(% — R) or C¥% — R)
respectively.

B) Let Z = (X, n) be a semiuniform space. The set of all uniformly continuous
or uniformly continuous bounded functions on Z is denoted by U(% — R) or
UX(% — R) respectively.

C) Let Z = (X, t) be a locally convex real topological linear space. The set of
all continuous linear functions on % is denoted by I(% — R).

D) Let & = (X, t) be a metrisable space with a metric d. The set of all Holder-
Lipschitz functions (shortly H.L.) on (X, d) is denoted by HL((X,d) - R) (f:
:(X,d) —» R is a H.L. function if there is &, 0 < & < 1 such that |f(x) - 1) £
< d%(x, y) for all x, y € X).

Where it is useful we write C((X, t) > R), ... instead of C(Z — R), ....

1.34. Lemma. Let ¥ = (X, 1), ¥ = (Y,t') be two closure spaces, h:X — Y
a 1—1 map, F(X) = C(% - R), F(Y) = C(%¥ — R). Then F(X) = h* F(Y) if one
of the following conditions is fulfilled:
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a) ¥ is a normal topological space, h(X) is closed in it, h™':(h(X), ind ') -
— & continuous, and F(X) ¢ C(# - R), F(Y) > CX#% - R);

b) % and ¥ are uniformizable with some uniformities n,n’, h™! isn’ — n uni-
formly continuous and F(X) =« U¥(% — R). F(Y) > U¥% - R);

c) X, ¥ are locally convex topological linear spaces, h: % — % linear and
F(X) < L(Z > R), F(Y) > L& - R);

d) (X, 1), (Y, t') are metrizable by some metrices d,d’, h™':(h(X), ind d') —
— (X, d) is a Holder-Lipschitz map (i.e. d(h™(y), h™!(2)) £ [d'(y, z)]* for some a,
0 <« < 1) and F(X) = HL(X, d) - R), F(Y) > HL((Y, d’) > R).

Proof. (a) follows from the Tietze theorem [5, Chap. VIL, Sec. 5, Th. 5.1, p. 474],
(b) from the theorems concerning uniformly continuous extensions of uniformly
continuous functions [3, Chap. IV, Sec. 25, Th. 25 F2, p. 474. (c) from the Hahn-
Banach theorem [10, Chap. 3, Sec. 17, p. 190] (d) from [11].

1.3.5. Remark. Only the case (b) from 1.3.4 is essential. If we may use (a), (c) or
(d), then we may always use (b). Indeed, if (c) or (d) holds, then % = (X, ), ¥ =
= (Y, ') are canonically uniformizable with some uniformities n, n’, which yield
t, t' so that h~! — being linear or Holder-Lipschitz — is ind n’ — n uniformly
continuous. Thus we may use (b). If (a) holds, we may define n and n’ projectively
by F(X), F(Y). By 1.3.1b, the map h™' is n’ — n uniformly continuous, so we may
use (b) again.

1.3.6. Lemma. Let & = (X,1), ¥ = (Y, t') be two ciosure spaces, h:X - Y
a map, F(X) = C¥% — R), F(Y) > C¥%, R). Let us have a continuous map
g:% — & such that g o h is identical on X (it is always fulfilled if h is 1—1,
h~Yind ¢ — t continuous and if there is a continuous map g, of % onto (h(X),
ind ') which is identical on h(X)). Then F(X) = h*(F(Y).

The proof of 1.3.6 is obvious. In 1.3.6 we need not the normality of #. By 1.3.1b,
under the conditions of 1.3.6, Lemma 1.3.4b may be used again.

The last assumption of Th. 1.1.7 which deserves to be dealt with is that the family &
is separating. To finish this section we shall investigate when it is fulfilled.

1.3.7. Lemma. Let & = (X, t) be a closure space. Then the set F(X) = C(Z — R)
separates points of X in each of the following cases:

(@) & is a completely regular topological Ty-space (i.e. the points of % are
closed) and F(X) > CXZ — R).
(b) & isuniformizable with a separated uniformity n and F(X) > U*(X, n) - R).

(¢) % is a Hausdorff locally convex topological linear space and F(X) > L(% —
- R).
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(d) & is metrizable with a metric d and F(X) > HL((X, d) = R). In the cases
(a), (b), (d) the set F(X) distinguishes points from closed sets of % .

Proof. We prove (b). Let M = X be t-closed, a€ X — M. If n is a separated
uniformity which yields 7, then the function f =1 on M, f(a) = 0 is uniformly
continuous on (M U {a}, ind n). There is g € U = U*((X, n) > R) with g = f on
My {a}. Thus U separates points from closed sets. As n is separated, the points of X
are t-closed, which proves (b). Likewise the cases (a), (c), (d) follow from the extension
theorems used in 1.3.4.

4. SOME PROPERTIES OF Z(¥)

We have defined 3(9) in 1.1.4. Here we deal with some properties of this set that
will be used later.

1.4.1. Lemma. (1) L(& 4y) = L(¥) 0 Ala],

(2) L(Fap) = L(F) nAP) if CA £ is ordered and f ¢ L(F) (see 1.1.3),
() LL ) = L(F)  (Pa) if (A < is ordered and f ¢ L(F),

(4) ¢pp+1:Ss = Spsyq is a K-isomorphism if p + 1 exists and p + 1€ 2,

(5) Qup : S. — Sy is a K=isomorphism if {a, ) = N = L, where (N =) is well
ordered.

Proof. (1) follows from 1.1.4. By 1.1.4A, if « € £(¥ 4p) then « > B and S, =
= lim & 5, By 0.9B, we have S, = lim & ,; as {fa) is cofinal in A[a]; hence
ae L(&) n A(p). Conversely, if o e £(¥) 0 A(B) and f ¢ £, then we have f < a.
As (o) is cofinal in A[«], we get S, = lim & 4,y = lim & ,), thus a € L(L )
“which proves (2). To prove (3), we recall that {Ba) = (A[a]) (B). By (1), if B ¢ L(F)
then B ¢2( 4)- Thus by (1), (2) We get L(Fps) = L(L am) O {B) = L(¥) 0
A Alo] 0 {Pa) = L(#) N {Pa) as desired. (4) follows from 0.8B as f is the largest
element of M = A[B + 1]. Indeed, M is directed for f + 1€ Z. Thus if ye M,
then there is d € M with § = B, 6 = y which yields 6 = B, hence y < f as desired.
We prove (5): Let ye <« p) and let g, : %, = %, be a K-isomorphism for any
¢ e, y). Then <ay) is cofinal in A[y] because y e £ and A[y] is right directed
(see 1.1.4). By 0.8B, &, = lim S 4r,y = lim F,y). It can be seen from 0.4 that
%, = lim &, and that {o;" : Z, = %, | e € {ay)} are the canonical maps. By 0.4
we get that g,, is a R-isomorphism. Transfinite induction gives us the desired result.

1.4.2. Lemma. Let & = {S¢|Qaﬂ| (A §>} be a presheaf from a category R,
N < &. Then lim & and lim & ,_ 4 are K=isomorphic if either (A £ is ordered
and {N" £) well ordered, or if A — A" is cofinal in (A <. (I.e. if one of the limiis
exists then the other exists as well and they both are R—isomorphic). Thus im & gre1- 2
is K-isomorphic to lim & 417 for all o€ A if (A <) is well ordered.
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Proof. If A — A is cofinal then the statement follows from 0.8B. If A — A" is
not cofinal, then (4" <) is well ordered and there is € 4 such that {a € 4 ! «z p} =
< A . Let M be the set of all such f and let p be the smallest element of M. Then
pe N and since N = &£ so lim &4,y = S,. Further, A — A" is cofinal in A[p]
for (4 <) is ordered. Thus S, = lim &% ,_,. We have gotten that lim & ,_ , exists
if (A <> is well ordered. By ].4.1(5), Qup : Sz = Sy is a K-isomorphism for all
o, B = p, hence lim & is K-isomorphic to S, is desired. Let {4 =) be well ordered,
ae A. Using 1.4.2 to & 4y and N = L(F 417) = & 0 Ap,y (Which is well ordered),
we get the last statement.

1.4.3. Lemma. Let & = {%"algw| A4 §>} be an inductive family from a catego-
ry K ae .

A. Let (A — £, <) be well ordered. Then either A(x) = {fe A | pzalc ¥
or there is ()€ A — &, a < I(a) such that (1) <o, i(a) = &, (2) if e A, f > o,
(oP) = & then B < l(o) if <A =) is ordered, (3) a) S B if fecA— &, f>«
@ y=1Ia)iff yeAd— L, a<yand{ay) = %, (5)if ye A — & then A[y] — &
is cofinal in A[y] iff v % () for all pe &L, (6) Z, is K-isomorphic to lim & ;-

B. Let (& <) be well ordered. Then there is s(x) € £, s(a) < a such that (7)
{s(a), oy = 2, (8) if BeZ, B = aand {foy = & then s(a) < B, (9) if there is
o =s(a) — 1, then @ ¢ &L and Quswy is a K-isomorphism, (10) if <A £ is well
ordered and 1 and A are the smallest elements of A and of £ respectively, then
1 < 2, (11) the set A[o] — & is cofinal in A[o] iff o = s(a).

Proof. If A(x) & &,then M = {fe A — £ | B> o} + 0. Let I(«) be the smallest
element of M. Clearly I(«) fulfils (1)—(4) while (5) follows from (2) and (4). (6)
follows from 1.4.1.(5). As for B, let s() be the smallest element of {8 % | > 7
for any y € A[a] — &} =+ 0. Clearly s() satisfies (7), (8). As s(x) € &, (9) follows
from 1.4.1(4). By 1.1.4, we have 1 ¢ &, hence 2 > 1 which proves (10). As A[«] — &
is cofinal in A[a] iff {s(«), &) is a one point set, (11) follows forthwith.

1.4.4. Lemma. Let & = {Z,|0,4| <A £D} be from an i.c. category 2 (see 0.10),
(A =) well ordered, a € &, fe A[a] — &. Suppose ¢ = {g,€ C(Z, > R| 2)|ye
€ {Pa) — £} is a compatible family for & 4, _ 4 (see 0.3). Then there is a unique
compatible family F = {f, |y € A[«]} for & sy with f, = g, for all y € {po) — Z.
Further we have f, = lim {f; ] Sedly]l} if ye%; lim # = fe C(Zsw — R | Q),
lim F = g€ C(%, > R | 2) and ¢¥p9 = 1.

Proof. Put f, = ¢jyfy for y < B. Let y € {Ba) and let us have a compatible family
F, = {1s] 0 € A[Y]} for & with f, = g, for 6 € A[y] — & so that f, = iim {f, | e
EA[&]} foroe¥ n A[)’] If’))¢$, we putfy = g,. Ifyeg, we putfy = h_n’_l.gry
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Clearly {f, l 6 € (1, y>} is compatible for &, ,,. Transfinite construction yields the
desired family. Using 1.3.4(11) to & 4,5, We get that g, is an L-isomorphism which
completes the proof.

5. SEPARATION THEOREMS

In Section one we have proven Th. 1.1.7, which is an abstract sufficient condition
for the functional separatedness of lim &. In the present section some separation
theorems for specific presheaves are proven with the help of Th. 1.1.7.

1.5.1. Theorem. Let & = {Z,|o,5| <4 <)} be a presheaf from an i.c. category £
and let a set B = A be such that {B <) is well ordered. Suppose that

(1) Either B is cofinal in (A <5, or (A <) is ordered,{A — B, <) well ordered
and A—Bc &

(2) &5 is endowed with a leftward smooth and connecied separating family
& ={F, = C(%,~> R|2)|ae 4} (seec 1.1.5). Then ¢ = lim &, and S = lim &
are functionally separated by D = {fe C(# - R| 8)| there is peB such that
EXfeF, for allye B,y = B} (here {¢,: &, - S | y € A} are the canonical maps).

If there is a countable confinal subset C in B and if F, < gfp(Fﬂ)for all o, € B,
o < P then the connectedness of & may be left out.

Proof. Using 1.1.7 to &z and &, and bearing in mind that .# and _# are f-isomor-
phic by 1.4.2, we get by 1.4.2 that there even is f € B — 5?(5" B) such that the state-
ment of 1.5.1 holds. To get the last assertion we use 1.2.6 to &5, & and to the pro-
perties Q: ““€ is separating”, P: “For every «, « + 1 € B the pair (F,, F,.;) has the
property P, .1 : {F, © @sa+1F,+1}” — which is the left smoothness of & — and
‘to R: “The assertion of 1.5.1””. If P, is fulfilled for any «, f € B, « < f then because Q
is stable under making subbamilies of & and R is stable under 2-isomorphisms, the
assertion follows. ‘

1.5.2. Theorem. Given a presheaf & = {9&”“|Q,ﬂl (A £)>} from UNIF (see 0.5)
and a set B = A such that the uniformity in , is separated for every o € B, let us
denote by o + 1(a — 1) the follower (predecessor — if it exists) of o€ B in (B <)
and let us assume the condition (1) of Th. 1.5.1. is fulfilled and

(2) (@) Quus1: %y sy is a uniform embedding into &, (see 0.15) for all
o € B, ) .

(b) if ae B is such that « — 1 does not exist, then U¥( %, = lim p.; = R) =
< 2 UXZ,— R) (here Ay : &, > %, is the canonical map — see 1.1.3).

Then ¢ =lim & and S = lim & are f.s. by U — R). The condition (2b)
may be left out if there is a countable cofinal set C in B and if g5 %« —> % is
a uniform embedding for all «, e B, oo < .
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Proof. We show that the conditions of Th. 1.5.1 are fulfilled. If « € B then we put
F,=U%%,—-R), & = {F,| ae B}. By 1.3.4b and 1.3.7b, & is leftward smooth
and separating. If ae B is such that o — 1 does not exist, e B[a], # = {f, €
€F,|ye{Ba) n B} a thread through &,.p then lim # = fe UX(Z, - R). By
the assumption (2b) and by 1.3.5b, there is g € F, with AJg = f. Clearly ¢),g = f,
for all y € {B«) N B, hence & is connected. By 1.5.1, our theorem follows. If all the Qap
are uniform embeddings then F, < gfﬁF s for all a, fe B, a < B; so the assertion
follows from that of 1.5.1.

L]

1.5.3. Remark. We have the condition (Zb) of the foregoing theorem to get the
connectedness of &.

The inclusion in (2b) is equivalent to the uniform continuity of A; ! : (1,(%,),
ind 7,) - (&,, t,), where 7, and ¢, are the uniformities projectively defined in ]%‘ ,I
and in [$a| by U¥%, — R) and U¥(&Z, — R) respectively — see 0.9, 1.3.1B.

The inclusion in (2b) is equivalent to the connectedness of &. Indeed, if fe
€ U, - R) then for each canonical maps {0}, : %, > £, |y e B[«]} we have
opf = f,€F,. So {f,|yeB[«]} is a thread through &p;. If & is connected then
there is g € F, with 0,9 = @js o 249 = f,. By 0.4, we have Ayg = f and hence
U*(¥,— R) AYF,. The converse has been shown in the proof of 1.5.2.

1.54. Corollary. Let & = {%, = (X, 1) |0.s| A =D} be a presheaf from
CLOS (see 0.5), B = A. Suppose that for every o € B there is a separated unifor-
mity n, in X, which yields a topology v, coarser than t, and such that P = {No=
= (Xa» 1) |0up| <A D} is from UNIF (i.e. @ : Ny — Ay are uniformly conti-
nuous). Denoting by o« + 1 (o — 1) the follower (predecessor — if ir exists) of
a € Bin (B £), we assume that the condition (1) of Th. 1.5.1 is fulfilled and

(2) (@) Qugt1: N 4= Nusy is a uniform embedding for all w € B,

(b) if ae B is such that « — 1 does not exist then U¥ &, = lim ?B[a] - R) c
< J3U¥(N, > R) (heré Ay : L, — N, is the canonical map — see 0.4).

Then ¢ = lim &y and S = lim & are functionally separated by C*# — R)
(see 1.1.3). The condition (2b) may be left out if there is a countable cofinal set C
in B and if g5 : Ny = Ny is a uniform embedding for all o, Be B, o < f.

Proof. The presheaf  fulfils the conditions of 1.5.2 (the set B mentioned in 1.5.2
is now whole B for ;), thus A" = (K, n) = lim & is fs. by U*(A — R) (n is the
uniformity in &, K = |J£" |) Let ¢ be the topology generated in K by n. Then (K, )
is f.s. by C*(K,#) - R). If {¢,: N, > A | we B} are the cannonical maps then
&, (X v,) = (K, 1) together with the identity e, : %, — (X, v,) are continuous
for all « € B. Hence the same holds for all &, 0 e, : %, — (K, ). By 0.10(3), ¢, are 1 -1,
thus there is a continuous 1—1map h : £ — (K, t). By 1.1.1, # is f.s. by C*(# — R).
Now we use 1.4.2.
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1.55. Corollary. Let & = {Z, = (X,.1,) |0.s| (4 =)} be a presheaf from
CLOS (see 0.5), and B = A a set such that &, is a normal topological space for
every o € B. Denoting by a + 1 (o — 1) the follower (predecessor — if it exists)
of o € Bin (B £), we assume that the condition (1) of Th. 1.5.1 is fulfilled and

(2) (@) sp+1: %, = Zysy is a homeomorphism into %,y such that g, ,+(X,) is
closed in &, 1,

(b) if a € B is such that « — 1 does not exist then the canonical map 4,: %, =
= lim &g, = £, 15 a homeomorphism into %, such that 1,2, is closed in Z,.
Then ¢ =lim ¥y and £ = lim & aré functionally separated by C*(# — R).
The condition (2b) may be left out if there is a countable confinal set C in B and if
(2a) is fulfilled for any pair «, f € B with « < f instead of for «, « + 1 only.

Proof. The family & = {F, = C*(%, > R) | a € B} endowes ¥ and is separating
by 1.3.7A, leftward smooth by (2a) and 1.3.4a, and connected by (2b) and 1.3.4a.
If (2a) holds for any pair o, f€ B, o < B then F, < gj3F, for all «, fe B, « < f.
Now we use 1.5.1.

1.5.6. Remark. A. The condition (a) of 1.5.4 is fulfilled namely if for « € B the map
Qu,z+1 18 1—1 and continuous and %Z, compact.

B. The statements 1.5.2—5 have better form if B is countable and if the assumption
ensuring the left smoothness of the saparating families is fulfilled for all «, § € B,
o < B. Then we may leave out the awkward assumption about those « € B for which
o — 1 does not exist. For example, we get the following statement from 1.5.4 and
1.5.5:

Let & = {Z,]e.| <4 =)} be a presheaf from TOP, B = A such that (B <) is
well ordered and that there is a countable cofinal set C = B. Assume that either B
is cofinal in {4 <) or {4 =) is ordered, {4 — B <) well ordered and A — B =
o Z.If %, is compact and @,z is 1 —1 for all o, f € B, then £ = lim & is f.s.

In the general case the propositions 1.2.1, 1.2.2 can be sometimes used to verify
the connectedness of &.
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