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" Introduction. In this paper we consider the first initial-boundary value problem for
parabolic equations with a nonlinear elliptic (monotone) operator of order 2k of the
form

ou lil i
— + Y (=DM D' ay(x, Du) = f(x, t)
ot |il=k

in a domain Q = @ x (0, T), where Q is a bounded domain x € 2 = EV (N-dimen-
sional Euclidean space), t € 0, T) (T < ), i is a multiindex and

a|i| N

with i =Y i,.

pi=— %
oxy' ... Oxy p=1

Du is the vector function Du = (D'u, |i| £ k).
The functions ayx, &), ¢eE? (d = card {i, Iz] < k}) satisfy the assumptions
of Carathéodory and sufficiently general growth conditions (see applications).
Initial-boundary conditions are given by a sufficiently smooth function ue(x):

u(x, 0) = uo(x), Diu(x, ) |saxo,r = Dsuo(*)|aa, 1=0,1,...k—1

where D) is the normal derivative of order I.

We obtain the solution of our problem and some of its properties by a suitable
application of Rothe’s method which is called also the method of lines. In [6],
E. ROTHE solved by this method a linear parabolic equation of the second order
with one space variable. Later on this method has been used in the papers [7—9],
where linear (a]so quasilinear) equations have been solved. A priori estimates of
Schauder from the theory of linear elliptic equdtions have been used there. K.
REKTORYS in [3] solved linear parabolic equations by the same method using a priori
estimates of the type L, only.
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In solving our problem we apply the idea of Rothe in the following way:
Let {t;}7-; be a uniform partition of <0, T, h = TJn and t; = jh. We solve the
nonlinear elliptic equations
Yy

—%i-1 Y (—1)"I D' ayx, Duy) = f(x, t,)
h lil=k

successively for j = 1,2, ..., n with the Dirichlet boundary conditions
D) uj(x)|og = Dyuo(x)|oq 1=0,1,...,k—1
where u, = uo(X). Then we construct Rothe’s function

u(x, 1) = u;_y(x) + (t — 1)) B~ Yuy(x) — u;—q(x)) for t,-, St =t

ji=12,...,n.

By a simple technique we obtain sufficiently strong a priori estimates for u"(x, t)
and then, using results from the theory on monotone operators [11—13], we prove
by the limiting process that u"(x, t) converges to the (weak) solution u(x, 7) of our
problem. We can easily prove the estimate

const.

max. [u7(x, 1) = uls, ) fgmy = S22
0sSt=T n

which is interesting also from the numerical point of view. The derivative (in the
classical sense) du(x, f)[0t € L,(R) exists for a.e. € (0, T) and x € 2 and we have
u(x, 1) = ug(x) in Ly(R) for t — 0. Owing to a priori estimates of du"(t)/0t we do not
work in the space of distributions with values in Banach spaces. In solving our prob-
lem by this method we use direct variational methods for the parabolic initial-
boundary value problems. The attention to this fact has been called by many authors,
e.g., by K. Rektorys [3] and P. P. MosoLov [10]. Thus, some properties of solutions
of elliptic boundary value problems can be transferred to parabolic initial-boundary
value problems.

In the first place (for technical simplicity) we prove existence of the solution for
an operator equation in a Banach space and then we apply this result to a sufficiently
arge class of nonlinear parabolic equations.

NOTATION AND DEFINITIONS

Let us consider the problem

0 9%(;9 - Au(t) = £(), 4(0) = uo, te(0,T)

where 0 < T < oo, with a nonlinear operator A from a separable reflexive Banach
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space Vinto V' (V" is the dual space to V). We denote the norms by |||, and ||*{|y+,
respectively. Let H be a separable Hilbert space with a norm |- || and a scalar product
(*» *)- We suppose that the space ¥ n H (with the norm |*|lynm = |||y + [|*]) is
a dense set in both Vand H with the corresponding norms. Duality between Vand V’
is denoted by [f, v] for fe V' and ve V.

We shall assume that

(2) A: V- V'is demicontinuous and bounded, i.e., it is continuous from the strong
topology in V into V' with the weak topology and transforms bounded sets into
bounded sets,

(3) [Au — Av, u — v] 20 forall u,veV,
(4) [Au, u] = [u] r([u]) where r(t)> o for t— o
and [+] is a seminorm in ¥ such that there exist 1, > 0 and ¢, > 0 such that
[u] + Ao|lu| = coluly forall ueVnH,
(5) upeVn H and AuyeH,
(6) f(1) is Lipschitz continuous: I = <0, T) - H, i.e.,
[£(2) = @l < L|t - t'l (L> 0 is a constant) .

Let X be a Banach space with a norm |- | x.

Definition 1. We denote by L,(I, X) (1 £ p < o) the set of all measurable abstract
functions v(f) from I into X (see [15]) such that

o]z, = L”v(t)”; di<oo for 1Sp< and

|9 L. xy = sup ess [o(®)]x < o0 for p=oo.
te.

Let C(I, H) be the set of all continuous functions u(f) : I - H with ||u|cy,m =
= max [|u(t)| < co. Denote by C'(I, H) the set of all continuously differentiable
tel
functions u(?):1 - H with |ullciqm = [4]cam + [¢]lca,m < . Let M be
a linear dense set in Ly(I, H) of functions v(t) e C'(I, H) such that supp v(t) < (0, T).

Definition 2. We say that u(t) € L,(I, H) is weakly differentiable, u € Wi(I, H), if

sup < ©.

I(u(‘), v'(1)) dt

VE.
el Lycr,myst

In this case (Riesz Theorem) there exists a uniquely determined g(r) € Ly(I, H) such
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that
(8) Jl(u(t),' V() dt = — J (9(1), v(r)) dt forall veM

and we denote by du(t)/dt = g(t) the weak derivative of u(f). Wi(I, H) is a Hilbert
space with the scalar product

(u, O)ys = L(u(t), o1)) dt + L(‘;—':, %) dt

Definition 3. Under the solution of the problem (1) we understand u(f) € W3(I, H) N
N Ly(I, V n H) such that u(0) = u, and

©) J I(‘%ﬂ : v(t)) dr + f A0, o] 41 = J (0, ) a
holds for ‘each veL(I,VnH).

Lemma 1. If u € Wi(I, H) then u € C(I, H) (after changing on a set of zero mea-
sure) and for a.e. t €I the strong derivative u'(t) satisfying u'(t) = du(f)/dt exists.

Proof. Let us consider the Bochner integral (see [15])
t
u(f) = du(s) ds.
0 ds

From the properties of the Bochner integral we obtain that v € C(I, H), v(t) is strongly
differentiable for a.e. t €I and v'(f) = du(r)/dt. Easily we find that v e Wi(I, H) and
du(t)/dt = du(t)/dz. We prove u(t) — v(t) = w(t) = z € H for a.e. t € I. From Defini-
tion 2 we obtain

f(w(t), ¢'(1)y)dt =0 forall yeH and o(t)e 9(I).

(1) is the set of all functions with support in (0, T), having derivatives of all orders.)
Every y/(t) € 9(I) can be decomposed into the form

(1) =f¢(t)dt 1) + 0'(t)
where x(t) € 2(I) is a fixed function with [, x(f)dt = 1 and ¢(f) € 2(I) is chosen

with respect to ¥(2). Let us denote [, w(t) x(¢) dt = z € H (Bochner integral). Then
we have

[0 v e = [ugar. [ o0 09t = [ oy weg o,
hence w(t) = z for a.e. t eI and Lemma 1 is proved.
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Remark 1. From Definition 3 and Lemma 1 it follows that the solution u(r) of
the problem (1) satisfies

u'(t) + Au(r) = f(2)
for a.e. t€(0, T) in the space H.

Indeed, we put oft) = () w, where Y(t) € L,(I) and we ¥V n H, into the identity
(9). Since f(t) € H and u'(f) = du(t)/dt € H, we have A u(t) € H.

Positive constants will be denoted by C and the dependence of C on the para-
meter ¢ by C(e). Constants C and C(e) may denote also various constants in the
same discussion.

1. EXISTENCE OF THE SOLUTION

Following the idea of Rothe, we solve the equations

(10) S du, = f(1)

successively for i = 1,2, ..., n, where h = T|n, t; = ih and u, is from (1).

In the sequel we shall suppose (2)—(6). The assumption (5) is used in Lemma 3
only.

Lemma 2. For an arbitrary n and 1 < j < n there exists a unique solution
u;€ V. H of the equation (10).

Proof. Let us define an operator &, : Vn H — (V n H)' by the duality
(ou, v)y = [Au, v] + Mu,v) where 1>0,

(*, *)x is duality between ¥ n H and (V n H)'.

&, is a bounded demicontinuous and strictly monotone operator. From the esti-
mate

Jullyon < i([“] + (o + 1) Jul)

and the assumption (4) we deduce that from each sequence {u,} with |[u,]y.u =
a subsequence {u,,} can be chosen in such a way that

(A 3t ) - (i |vm) ™ = 00 for k- 0.

This fact implies the coerciveness of &,. Thus, the theory of monotone operators
(see [12]) yields the existence of a unique solution of the equation
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Au=feHc(VAH) =V +H

and hence Lemma 2 is proved.

Now we prove some a priori estimates for u;, i = 1,2, ..., n
Lemma 3. There exists C(uo, f) such that

U; — Uy

— | = o)

holds for eachnandi = 1,2, ..., n.

Proof. Let us subtract the identity

(11) (E’—t;u—li’ v) + [Auj, 0] = (f(t;),v), veVAH

forj=iandj =i — 1, where v = u; — u;_,. Then we obtain

(E‘_T;ﬂ‘_l, u; — u,-_l) + [Au; — Au;_y, u; — u_]=

_ (u_x_;b uy — ui_1> + () = ft-) s = up_y)

from which, owing to (3), we deduce

U; — U;- Uij—qg — U;- Uiy — U,;_
: = : 2+ @) - (o)) = L= Him2l gy
h . h h
Thus, we obtain successively
(12) 4 —h""“ < [P =X 4 o

Now, we estimate [[(u; — uo)/h|. From (11) for j = 1 and v = u, — u, we have

uy — ul?
h

= (f(tl)’ l‘_l;_“o) _ [Auo, uy ; uo]‘

Taking the assumption (5) into account we estimate

u, —u
[Auo, lh 0]

1
+ i [Au, — Aug, uy — “oj =

(13)

Uy — U

h

= [ uo] -
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and hence (3) and (13) yields the estimate

Uy — Ug

(14)

< C(uo. f)

Thus, from (12) and (14) we obtain the required result.

Lemma 4. There exists C(uy, f) such that
”ui"VnH é C(“Oaf)
forallnand i = 1,2,...,n.

Proof. From the triangle inequality and Lemma 3 we deduce

Uy —Uj-1

(15 ll < 3, ot o] = Ol 1)

foralli=1,2,...,n.
Let us put v = u; in (11). Then due to Lemma 3, (15) and (4) we have

[u.] "([“t]) = C(uo,f)
and hence there exists C(uo, f) such that
(16) [ui] = C(“o,f)

for all nand i = 1,2,..., n, since r(t) » oo for t — 0. The estimates (15) and (16)
imply the required result (see (4)).
Owing to Lemma 3 and Lemma 4, we conclude from (10) that

(17) Au;eH e (VnH) forall i=1,2,..,n and

l4uioomy = |4ui] = Cluo. f)
foralli=1,2,...,n.
Let us define a step function #"(f) by

i'(t)=wu; for t;_; <t=t;, j=1,2,...,n and @"(0) = u,.
If u”(1) is Rothe’s function, i.e., ’

w(t) =ujy + (t = tj-y) K" u; —uy_y) for t;_, St =4y,
j=1,2,...,n, then owing to Lemma 3 we have

(19) () ~ #()] S Cluos 1) n~?
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for all n and t € I. From Lemma 3 we easily obtain the estimates

(19) ”“"”Lm(l,VnH) + ”ﬁn”Lw(l,VnH) =< C(uo,f)

for alln and tel. ‘
Easily we find that u" € W3(I, H) and
du"(t)  u;—u;y
dt

for t,_,<t<t;, j=12,...,n.

Lemma 3 and Lemma 4 imply

(20) 4| Loty S Cluo, f) forall n,
(21) () < Clug,f) forall n.
dt Lo(I,H)

Thus, we have the estimate
(22) ”“"”Wzl(z,n) < C forall n.

Remark 2. We denote
Fr(0) = f(ty-1) + (t = t;-0) BN S(1) — f(15-1))

fort;_y <t =<t;,j=1,2,..., n The estimate (21) can be expressed also in the form
(see the proof of Lemma 3)

dt

dz.

(21a) g(gf—)

< )] + Auo] + f

Lo (I,H)

Lemma 5. There exists u € Wi(I, H) with u, du/dt € L, (I, H) and a subsequence
{u™(t)} of {u"(t)} such that u™ — u, du™[dt — du/dt in Ly(I, H) (weak convergence).

Proof. Wi(I, H) is a reflexive space and, thus, the assertion follows from (20),
(21) and (22).

If we denote by f*(¢) the step function /(1) = f(t;)fort;.; <t < t;,j=1,2,...,n
and f"(0) = f(0) then the identity (11) can be rewritten into the form

(23) ((—i%n—t(t—) , v> + [Aa"(t), v] = (f(1), v)
for all ve Vn H.

Lemma 6. u" — u in the norm of the space C(I, H) and the estimate

lu() = u(®)]* = C(u ) n™*

is valid for all n and tel.
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Proof. Let us subtract (23) for n = r and n = s where v = (1) — a(t). We
obtain ’

(d_“dQ - d“TY) (1) - as(z)) + [AT() = Aw(), T(1) - w(1)] =

= (/) = 1), #(0) — @)

from which we deduce by virtue of (3)

(24) |
(=) 1) - ) s (LD, ) ) - 7)) +
+ (1) = 1), 7(0) - ()
Since
f (%:(t» (i) - us(o) dt = Hu(t) — u(r)|?
and

o= rolsi(;+1),

integrating (24) in (0, 7) and using the estimate (18) and Lemma 3 we conclude
1

(25) () w9 s €7 + )

Thus, there exists v € C(I, H) such that u” — v in C(I, H). But 4" - p also in the
space L,(I, H) and thus, v = u because of Lemma 5. By the limiting proces; for s —» oo
in (25) we obtain the required estimate and the proof is complete.

As a consequence of Lemma 6 we have u(0) = u,. From Lemma 6 and (18) we
also deduce #" — u in the norm of the space L (I, H).

We shall use the following assertion: :

Lemma 7. If ve L,(I, Vo H) then Av e LI, (V n H)) and
f [A(v + Aw), z] dt —>f [Av,z]dt for 2 -0
1 1

(4 is a real number), where v, w, z € L(I, V n H).
Proof. From the boundedness of A we deduce

[40(®)|yomy < C forae. tel.
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We prove that A vt) is a measurable abstract function (see [15]). To this aim it
suffices to prove that [4 v(t), w] is a measurable function of ¢ for all we Vn H
since ¥ N H is a separable reflexive space (see [15]). There exists a sequence {v"(f)}
of simple functions such that v"(f) - v(t) in V' H for a.e. t €I. Thus, [4 v"(t), w]
is a measurable function and from (2) we obtain [4 v"(t), w] — [4 v(t), w] for a.e.
t eI and, hence, 4 v(t) is a measurable abstract function. Owing to (2),

(29) [A(o(r) + 2 w(t)), z(1)] = [A v(t), z(1)]

for A —» 0 and a.e. t e I. We suppose that 0 < 1 < 1. Frpm the estimate
lo + 2]y om = Co, w)

(the constant C(v, w) is independent of 1) we deduce

4w + )| zr.vomn S Clo, w)
and hence

LA (1) + 2w(1)), 2(0)]] < C(v, W) 2] cact,vem -

From this estimate, (29) and the Lebesgue Theorem we obtain the required result.
In the sequel we prove that u(f) from Lemma 5 is a solution of (1). From the
definition of LI, X) and from the definition of the Bochner integral (see 15) it
follows that L (I, X) is a dense set in L(I, X) (p = 1).
Let v € L(I, V n H). Integrating (23) over the interval I, where v = 1(t), we obtain

(26) f (di_"(‘), v(t)) at + f [A (1), o] dt = I (), o{1)) di .
r\ dt I I

The estimate (17) implies

(27) l4@" o, wamyy S [AT|Loam S Cluo, f)

for all n.

Theorem 1. There exists a solution u(t) of (1), (2) (in the sense of Definition 3)
and the estimate

lu(8) — u(r)|?> < Cluo, f) n*
holds.

Proof. Since Ly(, (V' n HY') is the dual space to the separable space Ly(I, V n H),
there exists x € L,(I, (V n H)') (moreover, x € L(I, H)) such that

(28) L[A (1) o] dt — I () o(e)] e

for all ve Ly(I, V.n H), where {@"} is a suitable subsequence of {@"}, i.e., Au™ — y
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in L(I, (Vn H)) (weak* convergence in Ly(I, (V n H))). Thus, by the limiting
process in (26), where v € L (I, V n H), we obtain

(29) L(d"(‘) v(t)) dt + J' [x(0), o(t)] dt = J’ (1), o(0) it

because of (28) and Lemma 5. By the same argument as in (28), we obtain from (19)
that there exists g € L,(I, Vn H) and a subsequence {#"™} such that @™ — g in
L(I, V n H) (weak* convergence). But #" — u in Ly(I, H) > L,(I, V. H) and thus
u=yg.

Now, we prove 4 u(t) = x(t) using some technique of monotone operators.

By substituting v(f) = #"(r) into (26) we obtain

(d_g_gi) u(t)) dr + J‘I(f(t), u(t)) dt

because of Lemma 5 and @" — u in L,(I, H). From this fact and (29) we deduce

fI[A (1), @(i)] dt — — f

(30) L[A (1), w(1)] dt - L[x(t)’ u(®)] dt
for n — o0. Owing to (3) we have

L[A (1) — Aoft), () — o(i] dt 2 0
which together with (30) yields

(31) L[x(t) — A dd), u(t) — o) dt 2 0

for all ve L,(I, Vn H). Putting u(t) = u(t) + A w(t) into (31), where 1 > 0 and
we LI,V H), and by the limiting process 4 — 0 we have

j[x(t) — Au(t), w()]dt 20 forall weLyI,VnH)

because of Lemma 7. Thus,

J[X(t) — Au(t), w(t)]dt =0 forall veL(I,Vn H)

must hold (L,,(I, V n H) is a dense set in Ly(I, V n H)) and hence u(t) is a solution
of (1), (2). The rest of the proof follows from Lemma 6.
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Theorem 2. There exists a unique solution of the problem (1) (in the sense of
Definition 3).

Proof. If uy,u, are two solutions of (1), then u = u; — u, e L(I, Vn H)
satisfies

(32) L (d—’(‘i(t’-) , w(t)> dr + L[A uy(t) — A us(t), w()] dt = 0

for all w e Ly(I, V n H). For an arbitrary t, € I let us put

u(t) for 0ttt § T
Wto(t) = ( ) o
0 for 1, <t<=T
into (32) and we obtain

J; <d_u;(t£), u(t)) dt + J ;°[A uy(t) = Aus(t), uy(t) — us(f)]de = 0.

Thus, we deduce from (3) that

[7(%5 w0) ar = hutl ~ luto) 50

0
and hence u(t,) = 0 since u(0) = 0.
Remark 3. If u(t) is the solution of (1) and f(t) € C'(I, H) then, due to (21a), the
estimate
du(t) T

dr
dt

< Aus| + [70)] + j

0

df(v)
dr

Lo (I,H)

holds.

2. APPLICATIONS

In this section we shall apply the abstract results from § 1 to a sufficiently wide
class of nonlinear parabolic equations from the introduction.

Let ayx, &), ¢ e E* for M < k be real functions defined for x € Q and ICI < o0,
continuous in ¢ for a.e. x € Q and measurable in x for fixed & (the Carathéodory
condition).

The growth of ay(x, &) in ¢ is described by functions of a certain class .5, which
is essentially larger than the class of polynomials lul" — see [2].

Definition 4. ./ ; is the set of all real, continuous functions g(u), for which there
exists u; > 0 such that:
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i) u g(u) is convex and even for u = u, and lim (u g(u))’ = o;
u—* oo

i) there exists a constant C such that

g(2u) < Cg(u) for u = u,,
iii) there exists I > 1 such that

g(u) < Lg(lu) for u = u,.

Let g{(u) € M for |i| < k be such that g,(u) < g;(u) (or gi(u) = g;(u)) for u = u,
and for each pair i, j with |i[, | j| < k. Then the growth conditions are of the form

(33) Jax, O = €(t + 3 min (lg4&)]. [9,(&))

jl=
for all |i| < k and ¢ e E*.

In the papers [1] and [2] even more general growth conditions are considered.
Monotonicity (ellipticity) of our operator will be guaranteed by

(34) 'Iz;k(él - ’7:) [ai(x7 é) - ai(x9 ’7)] g 0
for all &, n e E“Y. We assume coerciveness in the form

(35) -Z:kéi ai(x’ f) 2 Cll.IZ;kéigi(éi) -C,.

By means of G(u) = u g,(u), |z[ < k we construct the Orlicz space L (2) — see
[14] and [1]. Now we define the space W§(Q):

W=Ws={ueLy(Q): DueLg(Q) forall |i| <k}
(D'u are distribution derivatives) with the norm

el = ol + % 10l

where |+ |¢, is the Orlicz norm in the space Lg,(). Let C3() be the set of all
functions defined on Q having derivatives of all orders and with support in Q.

Let us denote
W= Wt =C(Q),
where the closure is taken in the norm | +||. Now, by the form

(Au,v) = Y Dva(x, Du)dx where u,veW
|

i|=k

we define an operator 4 : W— W’ (W' is the dual space to W). Indecd, {33) implies
that a(x, Du) is a continuous and bounded operator from W into L, (L), where
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Lp(Q) is the dual space to L (). (For the proof see [1] Lemma 3, § 1 and Lemma 3
§2). Thus

a) A: W— W' is a continuous and bounded operator.

(34) implies that

b) A is a monotone operator.

Let us denote

[u]l = ¥ |[Dulg, -
lil =k
In [1] and [2] we have proved that
(36) lim ([u])“lf Y. D'uayfx, D(u + ug))dx = oo
[u]— o li| =k
for an arbitrary uo(x) € W. Thus, defining a function

r(t) = inf ) IﬂDiu ayx, Du) dx

=1 i<k
(see also [5]) we obtain
c) [Au, u] = [u] r([u]) with (t) > oo for t - oo. Let uo(x) € Wand

(37) D' ax, Dug) € L,(Q) for all H <k.

Now we apply the result of § 1 to the solution of the following problem:

(1) ‘Z_‘: +|ilzsk(_1)m D'ayx, Du) = f(x, 1),

29 u(x 0) = ug(x) e W,
D: u(.x, t)laQX(O,T) =0 for |= 0, 1, oeey k—1.

We shall assume

(38) 1%, 1) € Ly(0) . ”ﬂ;‘tﬁ

IIA

C forae. tel

L2(2)

(9f (x, 1)/ot is in the sense of distributions).

Theorem 3. If the assumptions (33), (34), (35), (37) and (38) are satisfied then there
exists a unique solution u(x, t) (in the sense of Definition 3) of the problem (1), (2')
and the estimate

”u"(x’ t) - u(x’ t)lliz(n) é C(uO’ f) n_l

holds, where u"(x, t) is Rothe’s function.
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Proof. First, we verify that (38) implies that F(t) = f(x, t) is a Lipschitz con-
tinuous abstract function from <0, T) — L,(R). From (38) we easily deduce that

af(x 9)|° ds< Clt — 1|2

17Ge 1) = £, )| ooy =

L2(2)

If we put H = L,(Q) and V = W then our operator A satisfies the assumptions
(2)—(4) from § 1, where Vn H = V. From the estimate

sup |[Auo, ]| = sup J- Y. D'v afx, Dug) dx| <
loliZas 1 lofizagy 12 M=k
= Y sup J.vDiai(x, Dug)dx| < C
1= s

we deduce that Aug € L,(2) = H and hence (5) is satisfied, Thus, Theorem 1 and
. Theorem 2 imply Theorem 3.

Remark 4. If we replace (38) by a weaker assumption

f(x, 1)
ot

(38 f(x 1) e LAQ), €Ly(Q),

Theorem 3 remains true. Indeed, from (38’) it follows that f(x, t;) is well defined
in the sense of traces (see [4]) and following the estimate before the relation (12)
we find out that the estimate

t t 0
5 1565 1) = £ 1), = 3, PRI 0] g oY
i1 L 0t Ly0)
holds and hence (compare with (12), (13))
S — U 0
BTt = |Auo| @ + [ 1) L2y + “ / =
h La@) L2(Q)

éA%+chm@+H“

Lz(Q))

If we solve (1'), (2') with nonhomogeneous boundary conditions in (2') then we
suppose that (2') is given by means of a function u(x) € W, i.e.,

(2 u(x,0) = uo(x) and D, u(x, t)soxo,r) = Dy to(X)ion
for =1,2,....,k—1 and t€(0, T).
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Theorem 3'. If the assumptions (33), (34), (35), (37) and (38)’ are satisfied, then
there exists a unique solution u(x, t) of (1'), (2") (in the sense of Definition 3) and
the estimate

lu"(x, ) = u(x, 1)]Z,@) < Cuto, f) . n~*

holds, where u"(x, t) is Rothe’s function defined in the introduction.

In this case we shall consider the problem

% Ly (1 D a (s, Dluo + 7)) = S(x,1),

ot |il=k

z(x,0) =0, D, 2(x, ?)]arzx(o,r) =0

for 1 =0,1,...,k — 1, té(O, T). Now we define the operator A by means of the
duality form

(Az, v) =J Y, D'vayx, D(ug + z))dx .
o lilsk

Easily we find that A satisfies all the assumptions of § 1 and hence Theorem 3’ is
a consequence of Theorem 1 and Theorem 2, where u(x, t) = z(x, t) + uo(x).

Remark 5. The assumption that {¢;}}- is a uniform partition of the interval
<0, T) is not essential in this paper. All theorems, lemmas and estimates are valid
if we consider an arbitrary partition {tj};=1 of <0, T), whose norm converges to
zero with m — oo. In this case in Lemma 6, Theorem 1, Theorem 3 and 3’ the
estimates

[u(t) — u(t)|* £ C max |ty — tj—i]
=12,

hold.
The results from § 1 and § 2 can be applied to the following examples:

1. Ou + Y (=)' D[I(x) g{D'u)] = f(x, 1)
ot  ieM
where M = {i, |i| = k} is a subset of multiindices {i, |i| < k}, 0 < ¢, = I{x)€

€ L,(), g{(u) € 4 for ie M and gi(s) 2 0 for |s| < co.
The assumption (5) can be guaranted by the following properties:
i) (d'/ds’) g(s) for i€ M are continuous for |s| < oo,
ii) ug(x) € WZ{(Q) (Sobolev’s space),
iii) I{(x) e C!"(Q).
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2.
(39) gﬁ_ii<%

ot i=10x,; \|0x; 0x

Vi

-2 8u> S )

where p = 2. For the condition (5) it suffices to assume uo(x) € C*(Q).
3.

(Z—u— du + a(x,u) = f(x, 1),
t

a(x, t) satisfy the Carathéodory conditions and
i) there exists g(s) € 45 such that la(x, s)| =C(1+ lg(s)l),
if) sa(x, s) = Cysg(s) — Cy,
iii) (s, — s2) [a(x, s;) — a(x, s;)] = 0 for a.e. xeQ.
For the condition (5) it suffices to assume uo(x) € W3(Q) and a(x, uo) € L,(Q).

4. Let us consider the equation (39) with Neumann boundary conditions
(39") u(x, 0) = uy(x),
oul?
> |

i=1 |0x;

where u,(x) € C*(Q).
In this case we define 4 by the duality

(Au, v) = f y & |a(uo+u>

——cos (v, x))|eax 0,1y = 0
axi

P72 Nug + u) doe
0x;

13

i=1 0x axi

We put H = L,(Q), V = W,(®) and u, = 0 (in (1)). If we denote by u(t) = u(x, 1)
the solution of (1) (guaranteed by Theorem 1 and Theorem 2), then u(x, t) + uo(x)
is the weak solution of (39), (39").
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