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1. INTRODUCTION

The object of this note is to provide elementary proofs of two useful results on the
homology and cohomology of topological spaces with coefficients in the P-localized
integers Zp, where P is an arbitrary family of primes. The first result, due to A. K.
BOUSFIELD, is stated as Theorem 3.1 and asserts that a map f:X — Y induces
homology isomorphisms with Z, coefficients if and only if it induces cohomology
isomorphisms with Z, coefficients. The second result, due to D. SULLIVAN [3; p. 18]
is stated as Theorem 3.2 and asserts that a map f : X — Y induces homology iso-
morphisms with Z, coefficients if and only if it induces homology isomorphisms
with Q coefficients and with Z[p coefficients for all p € P. Our proofs are simple
and complete and are based on elementary observations on the homological algebra
of Zp-modules, which constitute the content of Section 2. Thus we regard Theorems
3.1 and 3.2 as generalizing the case P = II, the family of all primes, when, of course,
Zp, = Z.

In particular, we generalize in Section 2 the result due to STEIN-SERRE [2; p. 108]
that if A is an abelian group of countable rank with Ext (4, Z) = 0 then 4 is free.*)
The generalization presents no difficulty since, in fact, we get the same derived
functors Tor and Ext, whether we regard two Zp-modules 4 and B as Zp-modules
or as abelian groups.

2. THE HOMOLOGICAL ALGEBRA OF Z,-MODULES

Throughout this section 4 will be a Zp-module, where P is a non-empty family
of primes; the family complementery to P will be denoted P’. Since, for any Zp-
module B,

(2.1) Hom (A. B) = HomZ (A, B) , Ext (A, B) = Eth (A, B) s
P P
*) The celebrated Whitehead conjecture has, in the meantime, been solved by S. SHELAH.
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we will feel free to suppress Zp from the notation for Hom and Ext; we will likewise
suppress Zp from the notation for the tensor and torsion products and will in fact
write 4 * B for the torsion product of A and B. We note that Hom (4, B), Ext (4, B),
A ® B and A = B are all Zp-modules, since Zp is commutative.

Since Zp is a principal ideal domain (or, in view of the identifications above) we
have, exactly as (V. 4.3)—(V. 4.6) in [2]

Proposition 2.1. Let A, B, C be Zp-modules. Then
(i) (A*xB)@ C®(A®B)*CxA*x(BRC)DAD(B*C);
(ii) (A*B)xC = Ax(BxC),
(iii) Hom (4 * B, C) @ Ext (4 ® B, C) = Hom (4, Ext (B, C)) @
@ Ext (4, Hom (B, C)) ;
(iv) Ext (4 * B, C) = Ext (4, Ext (B. C)).
Corollary 2.2. Let Hom (B, C) = 0, Ext (B, C) = 0. Then Ext (A ® B,C) =0
for all Zp-modules A.
Proposition 2.3. If A is a torsion Zp-module, then Ext (A, Z) = Ext (4, Zp)-
Proof. Since Zp|Z is divisible we have an exact sequence Hom (4, Zp/Z) —
— Ext (4, Z) —»— Ext (A4, Zp). But Zp|Z is a P'-torsiongroup, so Hom (4, Zp|Z) = 0.
Corollary 2.4. If A is a finite Zp-module, then Ext (4, Z,) = A.
Proof. Certainly Ext (4, Z) = A if 4 is finite.

Proposition 2.5. If Ext (4, Zp) = 0 then A is torsionfree.

Proof. If A has torsion then Z/p < A for some peP and Ext (A, Zp) ——
—— Ext (Z|p, Z,). But, by Corollary 2.4, Ext (Z/p, Zp) = Z|p, so that Ext (4, Zp) * 0.

Theorem 2.6. If A is a Zp-module of countable rank with Ext (4, ZP) =0, then A
is free.

Proof. The proof proceeds exactly as in the case P = II, the collection of all
primes. First A is torsionfree by Proposition 2.5. Next we observe that a Zpy-module
of countable rank, all of whose submodules of finite rank are free, is itself free. Since
if Ext (4, Zp) = 0, then Ext (4o, Zp) = 0 for all submodules A, of 4, it now follows
that it suffices to prove that A is free if Ext (4, Zp) = 0 and 4 is of finite rank. Thus
we prove the assertion that, if A is a torsionfree, non-free Zp,-module of finite rank,
then Ext (A4, Zp) % 0.
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Now
Ext (A4, Zp) = Hom (A4, Q/Zp)/Im Hom (4, Q).

We prove that, under the given hypotheses on A4,
(2.2) |[Hom (4, Q)| = X,, |Hom (4, Q/Z;)| = ¢;

this will certainly establish the assertion.

Let S = (ay, ..., @) be a maximal independent set in A and let 4, be the sub-
module generated by S. Then a homomorphism from A4 to Q is essentially just
a function S — @ and plainly there are N, such functions. Thus the first part of (2.2)
is established.

To establish the second part we first observe that [Hom (Ao, @/Z,)| = N,. Since 4
is not free, Ay + A. Let b, € A — A, and let n be the smallest positive integer m
such that mb, € A,. Such an m obviously exists since b; depends on S. Then n € P;
for if n = n'n” with n’ € P', n" € P, then n"b, = (1/n’) (nb,) € A,. It is then plain
that, given ¢ : 4, - Q/Z, we have n distinct extensions of ¢ to A, = (Ao, b,).
For if y is such an extension, then yb, is an element x of Q/Z, such that nx =
= ¢(nb,). We may identify Q/Z, with Z,,/Z = Q/Z. Then the equation nx =
= ¢(nb,) has n solutions in @/Z and, since ¢(nb,) € Zp./Z and n € P, every solution
in fact lies in ZP,/Z. Thus ¢ has n extensions to 4, with n > 1. Call one such exten-
sion ¢, and write n = n,.

We now proceed exactly as in the classical case. Since 4, is free we know that
A, # A. Choose b, € A — A, and let n, € P be the smallest positive integer with
n,b, € A;. Then ¢, has n, extensions to 4, = (A, b,). We thus find a sequence

of elements b,, b,,..., and modules A4y = 4, € 4, = ... with b;e 4; — 4,_,
and positive integers n; € P, n; > 1, which are minimal for the property that n;b; €
€A;_y, i=1,2,.... If A=A, then there are plainly ¥,+nn,... = ¢ homo-

morphisms from A to @/Z, and each extends to A since Q/Z, is divisible. Thus
(2.3) ]Hom (4, Q/ZP)| >ec.

However if A is a torsionfree Zp-module of countable rank it is certainly countable,
so that, trivially,

(2:9) |[Hom (4, Q/Z,)| < ¢,

and so (2.2), and hence Theorem 2.6 follows. Note that it follows from (2.2) that if 4
is torsionfree, non-free of finite rank, then

(25) |Ext (4, Z,)| = ¢

We proceed to make a special study of Ext(Q, ZP). To this end we first state
proposition whose proof exactly parallels that of the special case P ="1I.
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Proposition 2.7. Let p € P. Then

(i) A is p-torsionfree if and only if Ext (4, Zp) is p-divisible;

(i) If A is p-divisible, Ext(A, Zp) is p-torsionfree. Conversely, if Ext (A, Zp)
is p-torsionfree and Hom (A, Zp) = 0, A is p-divisible.

Corollary 2.8. Ext (Q, Z,) = R.

Proof. By Proposition 2.7, Ext (Q, Zp) is p-torsionfree, p-divisible for all p € P.
But Ext (Q, Zp) is a Zp-module, so it is torsionfree, divisible, and hence a vector
space over Q. By (2.5), [Ext (Q, Z)| = ¢, so that a basis for Ext (Q, Zp) as a vector
space has cardinality ¢. But R is a vector space over Q with a basis of cardinality ¢,
so that Ext (Q, Zp) = R as Q-vector spaces.

Remark. Since P is non-empty, it follows that Hom (Q, Zp) = (0. We thus obtain
the commutative diagram, with exact rows, and columns
Hom (Q, Zp/Z)>— Ext (Q,Z) -— Ext(Q,Z,)
| t 1

i T T
Hom (Q, Z,/Z) >~ Hom (@, Q[Z) -»— Hom (Q, Q/Z,)

| |

A A
Hom (Q,Q) = Hom(Q, Q)

Since Hom (Q, Zp[Z) + 0, it follows that the homomorphism Ext(Q, Z) —
— Ext (@, Z,.), induced by the embedding Z < Z,, is surjective but not injective
(unless P = I1, of course). Notice that, although the middle row splits, the splitting
will not be compatible with the embedding of Hom (Q, Q) ~ Q.

3. HOMOLOGY WITH Zp-COEFFICIENTS
Theorem 3.1. Let P be an arbitrary family of primes, and let f : X — Y be a map
of topological spaces. Then
fa: Ho(X; Zp) > Hy(Y; Z,)
is an isomorphism if and only if
f*: HXY; Zp) > HXX; Zp)
is an isomorphism.

Proof. By passing to the mapping cone of f, it suffices to show that, if Wis a topo-
logical space and H,, H* refer to reduced homology, then

(3.1) H(W;Zy) =0 ifand onlyif H*(W;Z,) =0.
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This is obvious if P =0 since H¥(W; Q) = Hom (H4(W; Q), Q) so we assume
P + 0. Now H"W;Zp) = Hom (H(W; Zp), Zp) ® Ext (H,_,(W; Z;), Z), so that
certainly H¥(W; Zp) = 0 if Hy(W; Zp) = 0. Conversely, suppose that H*(W; Z,) = 0.
Then, for each n,

Hom (H,(W; Zp), Zp) = 0, Ext(H(W: Zp), Zp) = 0.

Thus, by Corollary 2.2, Ext(Q ® H(W; Z;), Zp) = 0, and, by Proposition 2.5,
. H,(W; Zp) ist torsionfree. Thus if H(W;Zp) + 0, Q ® H,(W; Z;) is a non-trivial
vector space over @ and we are in contradiction with Corollary 2.8. This proves
that H,(W; Zp) = 0, establishing (3.1) and hence the theorem.

Theorem 3.2. Let P be an arbitrary family of primes and let f : X — Y be a map
of topological spaces. Then

Jet Ho(X; Zp) > Hy(Y; Zp)
is an isomorphism if and only if
fx 1 Ho(X; Q) > Hy(Y; Q)
is an isomorphism and
fa: Ho(X; Z]p) > Hi(Y, Z]p)
is an isomorphism for all pe P.
Proof. Again it suffices to show that if Wis a topological space then
(3-2) Hy(W;Zp) =0 ifand onlyif Hu(W;Q)=0 and H(W,Z[p)=0
forall peP.

Since H,(W; Zp) is the P-localization of H,W it follows immediately (see also
Lemma 4.3 of [1]) that

(3-3) Hy (W, Zp) = 0 if and only if H,Wis P'-torsion .

Now H(W; Q) is the rationalization of H(W; Zp). Moreover, since, for p € P,
Z|[p is P-local,

H,(W; Z|p) = H(W; Zp) @ Z|p ® Tor (H,_,(W: Z,), Z|p) .

It is thus plain that if H(W;Zp) = 0, then H,(W; Q) = 0 and H,(W; Z[p) = 0
for all p e P. Since, by (3.3), Hi(W; Q) = 0 if and only if H,W is a torsiongroup,
it is obvious that the converse implication of (3.2) follows from (3.3) and

(3.4 H,(W; Z|p) = 0 implies that H,W has no p-torsion .

In fact, we prove a stronger result than (3.4), namely
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Lemma 3.3. Let A be an abelian group. Then

(i) Tor (4, Z|p) = 0 <> A has no p-torsion

(ii) Tor (A, Z[p) = 0, A® Z|p = 0 <> A is p’-local.

Proof. The exact sequence Z >2— Z —— Z/p yields the exact sequence
O—»Tor(A,Z/p)—»A—’;A—>A®Z/p—>0.

Thus Tor (4, Z|p) = 0 <> p : A — A s injective <> A4 has no p-torsion, establishing
(i); and Tor (4,Z[p) =0, AQ Z[p=0<p: A — A is bijective <> 4 is p-local,
establishing (ii).

It is plain that Lemma 3.3 establishes (3.4) and hence completes the proof of (3.2).

Remarks. (a) We may obviously replace homology by cohomology in Theorem
3.2.

(b) It was observed in [4] that, if the homology of X, Y is of finite type then
Sw i Ho(X; Zp) = Hu(Y; Zp) if and only if f,: Hy(X; Z|p) = H(Y; Z[p) for all
p € P, provided that P is not vacuous. This may be regarded as a corollary of Lemma
3.3, since if A is finitely generated and p’-local then A is finite. Thus, we infer from
H.(W; Z|p) = 0 for all pe P, with H,W of finite type, that H,W is P’-torsion, so
that Hy(W; Zp) = 0.
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