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EXISTENCE OF MONOMORPHISMS OF PARTIAL UNARY ALGEBRAS

OLpiicH KOPECEK, Brno

(Received December 10, 1976)

1. MONOMORPHISMS

1.0. Notation. We denote by Ord the class of all ordinals and by N the set of all
finite ordinals.

Let 004, 0, ¢ Ord. We suppose that « < 00; < 00, for each « € Ord.

If & € Ord then we put W(x) = {8 € Ord; B < «}. Further, W(co,) = N, W(w0,) =
= N U {o0,}.

If A is a set we denote by IAI the cardinal number of A. Let ¢ be a partial map
from A into a set B. We put dom ¢ = {x € 4; there exists y € B such that (x, y) € ¢}.
If dom ¢ = A then we write ¢ : A — B. Further, if C = A, D = B then we put ¢C=
={px;xeC}, ¢"'D={xeAd; ¢xeD}, ¢|C=¢n(C x B) (the restriction
of ¢ on C).

Let A; be an ordered set with an order <; (i = 1,2). We put B = | (4, a) U

aedy

U U (45, ') and define an order < on B in the following way: if (1, a), (u, b) e B

a’edz

then we put

(t,a) S (u,b) ff t=u=A4,, a<,b or t=u=4,,
a<,b or t=A,, u=A4,.

Then we write B = A; @ A, and the ordered set B is called the ordinal sum of A,
and A,.

1.1. Definition. Let 4, B be sets, S; : 4 — Ord U {00, 00,}, S,:B—O0rd U
U {00y, 00,} arbitrary maps. Let F : A —» B be a map such that S;x < S,Fx for
each x € A. Then F is called a degree map (abbreviation a d-map) with respect
to Sy, S,. Further, if F is an injection then we speak about a d-injection.

1.2. Theorem. Let A, B be finite sets, S;: A — N U {o0, ®0,}, S,:B—=>NU
U {00y, ©,} maps. We put A* = S7'i, B' = S;'i for each ie N u {0, 00,}.
Then there is a d-injection F:A — B with respect to S;, S, if and only if
|4- U Al <|B- U Bi| for each ne N U {00, 00,}.

ieW(n) ieW (n)
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Proof. Necessity. Let there be a d-injection F: A — B. Let ne N U {004, 0,)
be arbitrary. Then, for each xe 4 — U A’ S,Fx = S;x ¢ W(n) holds and

ieW(n)
thus, Fxe B— U B. Hence F(4 — U A)< B— U B’ and we obtain
ieW(n) ieW(n) ieW(n)
|4 - U 4| =|F(4- U 4) = |B- U B
ieW(n) ieW(n) ieW(n)

Sufficiency. Since S;A is finite there is ny € N U {00,, 0,} such that n, =
= max S;A. Then |4™|=|4—- U A|=<|B—- U B|. Thus, there is a d-

ieW (no) ieW (no)

injection F, : A" — B.

Let now peN, let no > n; > ... > n, be the last p+1 elements in S;A4 and let
there be a d-injection F,: (J A" — B.
ieW(p+1)

If A= (J A" then the proof is complete. Therefore, let 4 += (J A",

ieW(p+1) ieW(p+1)
ie. S;A N W(n,) + 0. Then we put n,,; = max (S;4 n W(n,)). Hence |A"*| +
+] U a"=|a- U A]=|B~ U B|Further, U A"=A-

ieW(p+1) ieW(np+1) ieW(np+1) ieW(p+1)
— U A'andsince Fyisad-mapwehave F, U A" =F, (4~ U 4)c
ieW(np) ieW(p+1) ieW(np)
€B- U B'€B- U B. Thus, since F, is an injection we obtain
ieW(np) ieW(np,+1)
8- U BZ| U af-lp- U Bl-|F, U 4z
ieWnp+1) ieEW(p+1) ieW(np+1) ieW(p+1)
<|(B- U B)-F, U 4|=|B-( U B'UF, U 4")| It fol-
ieW(np+1) ieW(pt1) ieW(p+1) ieW(pt+1)
lows that there is an injection G : A™**>B — ( J B'‘UF, U 4"). Further,
ieW(np+1) ieW(p+1)
G is a d-injection and since F, |J A" and GA"*' are disjoint we obtain that
ieW(p+1)
F,yy = F,uGis a d-injection F,,, : | A" - B.
ieW(p+2)

1.3. Lemma. Let Ay, A, be finite sets, S;: A; > N U {0, w0,} maps (i = 1, 2).
We put A7 = S;'n for each n€ N U {0y, 00,} (i = 1,2). Let x;€ 4; (i = 1,2) be
such that Syx, = Syx,. We put 4; = A; — {x;}, A7 = (Si|2i)‘1n for each ne
eN U {ow, 00} (i =1,2). LetneN U {o0,, w0,} be arbitrary.If |4, — U Aj] £

X _ . _ . icW(n)
S|4, — U Ai|then |4, — U 4j| |4, - Uy 4.
icW(n) ieW(n) ieW(n)
Proof. We put S;x; = S,x, = p. Then
(4i— U 4) —{x} if n<p
A U 4= jerm where i=1,2
i [ i c 1=1, .
JeWm) A, — U A4 if n>p
JjeW(n)
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If neN U |0y, 0,4, n < I Ti i
{004, 0,} = p then IAI‘,&'-,}()A1|=|A1_ U 4l -1 <
i =T - 1eW(n ieW(n
§|A2*UA2I"1=|A2“UA5|. @
ieW(n) ieW (n)
If neNu{op o), n>p then |4, — Y 4| = |4, - U 4| <[4, —
i - —i ieW(n) ieW(n)
= U A2|=IA2_ U A2|~

ieW(n) ieW(n)

1.4. Definition. (a) Let 4 be a non-empty set, f a partial map from the set A
into A. Then the ordered pair 4 = (A, f) is called a partial unary algebra.

(b) Let A = (4, f), B = (B, g) be partial unary algebras, let F: 4 — B be a map.
Then F is called a homomorphism of 4 into B if x e dom f implies Fx € dom g and
Ffx =gFx for each x € A; we write F : 4 - B. If F is a homomorphism and an
injective map then F is called a monomorphism.

(c) The category of all partial unary algebras where morphisms are homo-
morphisms is denoted by #.

1.5. Definition. Let A = (A4, f) e %.

(a) We put DA = A — dom f.

(b) If A" = A then we put (4'>, = f'A’; especially, we put (x>, = f~'x for
every x € A.

(c) We put f° = id,. Suppose that we have defined a partial map f*~* from A
into A4 for ne N — {0}. We denote by f" the following partial map from 4 into 4:
if xedom f*~! and "~ Tx e dom f then we put f"x = ff" x.

(d) Let x € A be arbitrary. Then we define [x), = {y € 4; there is ne€ N with
x edom f" and y = f"x}.

(e) Let x, y € A be arbitrary. Then we put g4 = {(x, y) € A%; [x)4 0 [y)4 * 0}.
If o4 = A% then A is called a connected partial unary algebra (abbreviation
a c-algebra). The category of all c-algebras where morphisms are homomorphism
defined in 1.4(b) is denoted by %°. 7
' (f) Let A€ %°, x € A be arbitrary. Then we put [x)§ = [x), [¥)7" = {[x))4 —
— [x)4. Suppose that we have defined the set [x);” for n € N — {0}. Then we put
()" = [0

(8) Let A € %°, x, y € A be arbitrary. Then we put {y>.. = ¥4 — [*)a

(i) Let A =(A,f) e, x € A be arbitrary. Then the following assertions hold:

(@) [x)2"*Y = U <p)4, with disjoint terms for each n € N,
yelx) "

(b) 4 = U [x)," with disjoint terms.
neN

(See [7], 2.1 and [4], 3.9 (c).)
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1.6. Definition. Let 4 = (A, f) € %°. Then we define Z4 = {x € 4; there is ne
€N — {0} such that f"x = x}, R4 = |ZA|. '

(i) Let 4 = (4,f) e %°. If ZA + 0, x € A then there is n € N such that f"x € Z4.
(See [3], 1.17 (a).) ~

1.7. Lemma. Let A = (4, f) € %°, x, y € A be arbitrary. We put p, = min {neN;
Jf"x € ZA}. Then the following assertions hold:

@) U ye U [03" then (0a= e
XD ax if x¢ZA,
b) (x), = -
) & {<X>A,x o {f*'x} if xeZA.
(©) If ¥ = /™%, pEN — {0, po} then {yda = ¥ax v (/77 'x}.
(d) If y = fx where poe N — {0} then {y)>4 = {¥)ax VY (7 1x, FRA* R

(©) If x <24 then <y {<y>4.x if ye NU{O)[X)I"
€ X € then <y = neN —
Wy u i) if v =frx, peN — {0}

(f) If x¢ZA then

DPax i velxio U
D=\ v {775} if y=/" peN —{0,po}.

Dae Q{7 x, fRAPT I} iy =[x
Proof of (a). Let y € [x);" where n € N — {0}. Then (y), < [x); **" by L5(f).
Hence {y>,n [x)4 =0 by (i) (b) which implies {}Dax = y>s— [x)a = Pu

Proof of (b). If x ¢ ZA then {x), N [x), = O by 1.5 (d)and 1.6 and thus {XD4,x =
= u— [¥)a = u

If x € ZA then (x4 N [x), = {f®* 7 'x} by 1.5 (d) and 1.6 which implies XD =
= (xp, — {f7x}

Proof of (c). Let y = f?x, pe N — {0, po}. Then {y)>,n [x), = {f"’lx} and
therefore, <yD4. = >4 — {7 'x}.

Proof of (d). Let y = fPx where poeN — {0}. Then (y),0 [x)4 =
= {fr " x, fR4* 77 x} and we have () . = <4 — /77 'x, fRA+TPo~ix),

(¢) and (f) are consequences of (a), (b), (c), (d) and (i) (b).
1.8. Definition. Let A = (4, f) € %°. Then we define

(a) the set KA = {x € A — ZA; there is a sequence (X;);cy such that x; € dom f
for each i e N — {0}, xo = x and fx;4+; = x; for each i € N};
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(b) A = ZA, A™' = KA, A° = {xe 4; {x), = 0}; if «€Ord — {0} is arbi-
trary and if the sets A* have been defined for each x € W(x) then we put A* =
={xed— U A% (xD,c U 4"}

xeW(®) xeW(2)

(c) 94 = min {x € Ord; A* = 0};

(d) a map SA4:A4 - Ord U {ow;, 0,} by the condition SAx = x for each
x € A%, x € W(34) U {00,, 0,}; SAx is called the degree of x.

(iii) Let A4 = (A, f) € %°. Then

(a) (KAU ZA, f | KA U ZA), (ZA, f | ZA) are subalgebras of 4,

(6) || 5 1.

(c) DA + 0 iff the following conditions hold: R4 = 0 and there is x € A such
that |[x),| < No.

(See [4], 2.10, 2.15 (a), 2.1 and 2.9.)

1.9. Definition. Let A € %°.

(a) The set DA U KA U ZA is called the kernel of A. If DAUKA U ZA + ¢
then we say that 4 has the kernel.
(b) If DA = 0 then we denote by dA the only point with the property {d4} = DA.

(iv) Let A = (A, f) e %, x € A be arbitrary. Then

(a) SAx = oo, implies (x>, N A®* * 0,

(b) SAx = o0, implies {x), N A®* * 0,

(c) SAx = aeOrd implies that W(a) is cofinal with SA(x),,

(d) S4x e}Ord, x edom f", where n €N, implies SAf"x = SAx + n.

(See [4], 2.17 (a), (b), 2.25 (b) and 2.26 (a).)

1.10. Lemma. Let A = (A, f) e ¥°, x€ A be such that SAx € Ord. Let « € Ord.
Then the following assertions hold:

(a) SAx > « iff there is y € (x4 such that SAy = a.

(b) xd>a— U A*+0iff xed— U A~

LeW(a) AeW(a+1)
Proof of (a). Let y € (x), be such that SAy = a. Then SAx = SAy > SAy = «
by (iv) (d).
Let, on the other hand, SAx > a. Then there is y € (x>, such that SAy > « by
(iv) (c).

(b) is a consequence of (a).

1.11. Convention. Let 4 = (A,f)e %, B= (B, g)e%. 1f we speak about
a d-map (d-injection) F : 4 — B we already mean a d-map (d-injection) with respect
to SA, SB (see 1.1).
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1.12. Definition. Let 4 = (A, ) e %°, B = (B, g) € %°. Then

(a) we put H(A, B) = {(x,x’)e A x B; for each neN, xedomj" implies
x' e dom g" and SAf"x < SBg"x'},

(b) we define

(4, B)e h-Ad iff (1) RB+ 0 implies RB|RA*),
(2)RB =0 implies H(A,B)+0;

(c) weput Mo(4, B) = {(x, x')e H(4, B); RB + Oimpliesxe ZAu U [d4);},

‘ ieW(RB)

(d) supposing that DA = @ implies R4 = RB we define (x, x') € M(4, B) iff
the following conditions hold: (x, x") € M(4, B) and if we define a map Fy : [x), —
— [x')g such that Fof"x = g"x’ for each f"x € [x), then there is a sequence of maps
{F,:[x)2" > [x)3"; n € N} such that, for each n € N and each y € [x) ", F,sy | <3Du «
is a deinjection and F,, {yd4. S {F,¥p "

(e) we define

(4, Byem-Ad iff (1) DA =0 implies R4 = RB,
(2 M(4,B)=*0.

(v) m-Ad < h-Ad. (See [7], 3.17.)

(vi) Let A, Be %°. Then there is a monomorphism of 4 into B if and only if
(4, B)e m-Ad. (See [7], 3.21.)

2. EXISTENCE OF MONOMORPHISMS

The characteristic condition of the existence of monomorphisms contained in (vi)
is rather complicated because of the definition of M(4, B) (1.12(d)). In the following
special cases, it can be simplified.

2.1. Definition. We put %G = {4 = (A, f) e U*; |[<x)4| < N, for each x € A}.

2.2. Lemma. Let A = (A,f)e€%S. Then

(a) 94 = w,,

(b) S44 = N U {o0,, 00,}.

Proof of (a). Let, on the contrary, 94 > w,. Then there is x € 4 such that
SAx = w, by 1.8(c). Further, W(w,) is cofinal with S4{(x), by (iv) (c) and thus
](x>A| > ISA(x)AI = N, which is a contradiction to 4 € %§.

(b) follows immediately from (a).

2.3. Definition. Let d, d ¢ (N — {0}) U {w,}. We put N; = (N — {0}) U {w,, d, d},
N, =N - {0}.

*) p| q for p, ¢ € N means that p is a divisor of q.
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(a) We define a relation

(®) <, on N, in this way: if a, b€ N, then we put a <, biff (1) a, be N — {0},
asbor (2) ae(N-{0})u{we}, b=w, or (3) ae(N—{0})u{d}, b=d
or(4)b=d;

(ﬂ) <, on N, in this way: if a. be N, then we put a <, b iff b l a.
(N4, N, are ordered sets. Compare [5], 1.16, 1.17.)

(b) We put Co = N; @ N, (see 1.0) and we denote the order on Cy by =,.
Further, if (N, a), (N5, b) € C, (where a €Ny, beN,) are arbitrary then we put
(for brevity) a = (N,, a), b = (N, b).

(¢) If a, b € C, are arbitrary then we put a 2 biff (1) a Zoband (2) beN,
implies a e Ny — {w,, d} or a = b.
(d) Let 4 €%;. Then we define

RA€N, if RA+0,

deN, if RA=0, KA+0, DA=0,

deN, if RA=0, KA+0, DA+0,

94 €N, if RA=0, KA=0.

A =

(vii) Let A4, Be %. Then

(a) DA =0 iff yA € {wy, d} UN,,

(b) (4, B) € h-Ad implies x4 =, xB.

(See [5], 1.12 and 1.23.)

2.4. Lemma. Let A, Be %;, Then

(@) x4 Z xB iff (1) x4 <, xB and (2) DA = 0 implies RA = RB,

(b) (4, B)e m-Ad implies x4 < B.

Proof of (a). Let x4 =< xB. Then x4 <, xB. Further, let DA = @. Then x4
€ {w,, d} U N, by (vii) (a).

Now, if RB = 0 then yB e N; which implies y4 € N,, i.e. R4 = 0 and we have
RA = RB.

If RB + 0 then yB = RBeN, which implies yd e N; — {wy, d} or yB = xA
by 2.3 (c). Since x4 ¢ N; — {w,, d} we have RB = yB = yA = RA.

Let, on the other hand, y4 =<, xB and let D4 = § implies R4 = RB.

Let yBeN,. Then RB # 0. If DA =+ 0 then x4 € N; — {w,, d} by (vii)(a) and
if DA =0 then RA = RB # 0 which implies y4 = R4 = RB = xB. It follows
that x4 < 1B.

Proof of (b). Let (4, B)e m-Ad. Then x4 <, xB by (v) and (vii)(b). Hence
x4 < xB by 1.12 (e) and by (a) of this lemma.
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2.5. Definition. Let n € N U {005, 905} be arbitrary. Then we put

F1) i
WHn) = W(n ) 1.f neN
W(n) if ne{o,;, 0} (see1.0).
2.6. Lemma. Let A = (A,f) €5, x€ A, ne N U {0, ©,} be arbitrary. Then
Da— U AA£0iffxed—- U 4.

ieW(n) icW*(n)
Proof. Let ne N. If SAx € W(34) then the assertion holds by 1.10 (b). If Sdx €
e{o0,, 0,} then xed®™ uA™* S A— U A and (xDy— U 4'2dn
ieW*(n) ieW(n)
A (A7 G A7) + 0 by (iv) (). (b).
Let n=o00,. If ye{x>, — U A’then ye A®* U A whichimplies x = fy e A% U

ieW(n)
U A2 by (iii) (a) and 1.8 (b). If, on the other hand, xe 4 — | A'=A®' U A®*
icW*(n)
then (x>, — U A" 2 (xD4 N (4° U A%?) % 0 by (iv) (a), (b).

ieW(n)

Similarly, the assertion holds for n = o0, by (iii) (a) and (iv) (b).

2.7. Definition. Let 4 = (4, f) € %;. If there is a sequence {c,; ne N u {0y, 00,}}

such that foreachne N U {00y, 00,}andeachxe 4 — U A, t(x), - U Ai| =
ieW*(n) iW(n)

= ¢, holds then 4 is called homogeneous (with the sequence {c,}).

2.8. Definition. Let A = (4,f)e%;, B = (B, g)e %, let B be homogeneous
with the sequence {c,}. Then B is said to be a majorant of A if y4 < yB and if, for

arbitrary n e N U {00, 00,}, [<xD4 — U A'| £ ¢, holds for each x € A.
ieW(n)

2.9. Theorem. Let A, Be %5, B be homogeneous. If (A, B)e m-Ad then B is
a majorant of A.

Proof. yA < yB by 2.4(b).

Further, let B be homogeneous with the sequence {c,}. Let (x, x') € M(4, B).
Then (x,x') € M(4, B) and there is a sequence of maps {F,:[x);" = [x');";
neN} such that for each f"x € [x),, Fof"™ = g"x’ and for each ne N and each
Y €[X)3" Fouy | ¥Du is a d-injection and Fpy 19D S <Fuddpcn

1. Now let y € 4 be arbitrary. Then is n € N such that y € [x);" by (i) (b). It will
be shown that there is a d-injection of {y), into {F,y)g.

la. Let x € ZA. Then x’ € ZB because (x x') € H(4, B).

If (y>4 = {¥Da then neN — {0} by 1.7 (¢). Hence F,y € [x')z" and {F,y)p =
= (F,y>g. by 1.7(e). Tt follows that F,, | {y>4 is a d-injection of {y>, into
<F.y)s '
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If, by 1.7(e), <¥Da= PaxV{f’ 'x} then n =0, y =["x; hence Foy =
= Fof? = g?x’ and thus (Foy>p = {Foy)p. U {g° 1x'} by 1.7(e). Further,
Fof?'x = g»~'x’" and we obtain that F, | (y),. U Fo|{f? 'x} is a d-injection
of {y>4into {Foy)Dp-

1b. Let, on the other hand, x ¢ ZA. Then ZA = 0 because if we had Z4 + 0
then we should have DA = @ by (iii) (c) and RB = R4 = 0 by 1.12(e) which is
a contradiction to (x, x') € M(4, B) by 1.12 (c). Thus,

Oax if ye{x}ju U [x7"
Da= { neN = (0} by 1.7 (f) .
Waxo{fP7'x} if y=frx, p*0

Iba. Let now {y>4 = {yDax Then F,  {y>q= Foy{Pux S F¥ipx S
S (F,yygand thus F, ., | {yD 4 is a d-injection of <y}, into (F,y)s.

1bb. Let {y>4= {yDarY {f7 'x} where y = fPx, p + 0. Then Foy = Fof*x =
= g’x'.

If x' € ZB then {(Foy>p = {Foy)p. v {g? 'x'} by 1.7 (e).

If x' ¢ ZB and if we put p, = min {n € N; g"x’ € ZB} then

F UYLt if p#*
(Foypy = {Formsr o . ,} oot o TP by T(f).
(Foydpa V{9771, g "P71X'} if p = po
Since (Fo U F1) {y>4 = Fi{yDax YV {Fof? 'x} S (Fop)p. Y {977 'x"} = (Foyds

we obtain that Fy | (y),. U Fo|{f?"'x} is a d-injection of {y>, into <Foy)p.
2. Let ye A, me N U {00, o0,} be arbitrary.
Let y e [x);" Then by 1 there exists a d-injection of {y), into {F,y>s which
implies [()>4 = U Al £ [KFys— U Bfby 1.2.
ieW(m)

ieW (m)
If yedA— U A then SAy¢ W*(m) and we have SBF,y ¢ W*(m) because
icW*(m)
SBF,y > SAy. Thus F,ye B— |J B’ and we obtain ’(F,,y),, - Vv Bi| = ¢,
icW*(m) ieW(m)
by 2.7. It follows that [{y>4 — U 4| < ¢,
ieW(m)
Nowifye U A'then[<yds— U A =0by2.6; therefore [<y>,— U 4 <
icW*(m) ieW(m) ieW (m)
< Cpe

Consequently, B is a majorant of 4.

2.10. Lemma. Let A = (A4,f)e%;, B = (B,g)e¥; be such that RA = RB.
Let xe DA U KA U ZA, (x, x") € My(A, B) be such that DA * 0 implies x = dA.
Let neN, ye[x);", y'e [x")z" be such that n =0 implies y = f?x, y' = g?x’
forsomepeN.If](y)A - v% )A"] = [(y'>3 —.#{ )Bi]for eachmeN U {0y, 00,}

then there is a d-injection of {y)ax into {y'Dp x-
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Proof. 1. Let R4 # 0. Then RB # 0 and (x, x') € Z4 x ZB by 1.12 (c).

If n =0 then y = fPxe ZA, y' = gPx' € ZB where pe N. We can suppose that
P # 0. Thus {(yD4 = Max {fP71x}, ¥ Dp = (D Y {977 %'} by 1.7 (¢) and
since SAf?"!x = o0, = SBg” x’ it follows that there is a d-injection of <{y), .
into {y">p .- by 1.3 and 1.2.

If n>0 then (yDg = ¥Daw VP8 =<y Dp. by 1.7(e) and therefore there
is a d-injection of {y), . into {y>g .- by 1.2.

2. Let RA =0. Then RB = 0.
2a. Let DA = Q. Then x = dA.

In this case, {y>4 = (¥Pax by 1.7(f) because yed = {dd} u U )[dA);i

ieN—{0
by (i)(b). Further, y'e{x'}u U [x)z’ because ye[dd), y e[x')s imply
ieN—{0}

y = f%4, y = g°x' = x' and since x’ ¢ ZB we have {y'>p = {y'Dp . by 1.7 (f).

Therefore, there is a d-injection of {¥> 4, into {y">g .- by 1.2.

2b. Let DA = . Then x € KA which implies [x), S K4, [x')y < KB because
(x,x')e H(A, B), ZA = ZB = 0.

If ye{x}u U [x)i then <yd4=<yDa. by 1.7 (f). Further, y'e{x'} u

. ieN—{0 .

U U [x)s' because y e [x), y' €[x)p and we complete the proof again by 1.2.

ieN—{0}

If y =fPx where p >0 then )’ = g?x’ and thus {yD, = {¥Ds. L {77 'x},
y'yp = Y Dp. v {g” ¥’} by 1.7(f) because ZA = ZB = 0. Since SAf?"'x =
= o0; = SByg” x’ there is a d-injection of {y), . into {¥"Dg .- by 1.3 and 1.2.

2.11. Theorem. Let A, Be U be such that A has the kernel, B is homogeneous
and DA # 0 implies RB = 0. If B is a majorant of A then (4, B) e m-Ad.

Proof. Let 4 = (4, f), B = (B, g) and let B be homogeneous with the sequence
{cis neN U {0y, 00,}}. Since x4 < xB we obtain that DA = § implies RA = RB
by 2.4 (a). Further, we take x € DA U KA U ZA such that R4 = 0 implies x € ZA
and DA + 0 implies x = dA.

If R4 + 0 then RB = RA # 0 by (iii)(c) and 1.12(¢) and we take x’ € ZB.
Then (x, x') € H(A, B) and further (x, x) € Mo(4, B) by 1.12 (c).

Let now R4 = 0. Then RB = 0 because RB = 0 implies DA = ) and R4 = RB
which is a contradiction to R4 = 0. Since y4 =< yB there is x’ € B such that SAx <
< SBx’ by 2.3(d), (c) and (iv)(e). If x = d4 then directly (x, x') e H(4, B) =
= M(A4, B) by 1.12(a), (c) because ZA = ZB =  and it follows that (x,x’)e
¢ H(d, B) = M(d, B).

We define-a d-map F : [x), — [x')g such that Fof"x = g"x’ for each f"x € [x),
(see 1.12 (a)). Let n € N be arbitrary. Suppose that we have defined a d-map F, :
:[x)z" = [x')5" It will be shown that there is a map F,, : [x); "+ — [x') "+
such that for each ye[x);", F,i; I {¥Yax is a d-injection and F,.1{y>4x S
s <Fny>l,x'-
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Let y € [x);" be arbitrary. Since B is a majorant of 4 we have |<}'>A - k)( Ail =
ieW(m)

< ¢, for each me N v {ool, 002}. Further, SAy < SBF,y because F, is a d-map.
Let meN U {o0,, ©,} be arbitrary.
If F,yeB— U B then I(F,,y),, - U Bi| = ¢,, because B is homogeneous.

ieW*(m) ) ieWSm)
Thus [(y4— U A= [KFyds— U B
ieW(m) ieW(m)
If F,ye U B' then SBF,y e W*(m) which implies SAy e W*(m). It follows
icW*(m)
that [<y>, — U A4Y = 0by2.6. Hence [<yD4— U 4| =0=|<Fps— U Bl
ieW(m) ieW(m) ieW.(m)
Thus for each meN u {0, ©,}, ‘(y}A - U Ai| < |(F,,_v>,, - U B‘I and
ieW(m) ieW(m)

we obtain that there is a d-injection FJ,, : {yD4, = {F.y>g . by 2.10.

Ifweput F,,., = U F),, then F,,, is the map sought for.
yelx) "
Consequently, (x, x') € M(4, B) and finally, (4, B) e m-Ad.

2.12. Theorem. Let A, B € % be such that A has the kernel, B is homogeneous
and DA #+ Q implies RB = 0. Then the following assertions are equivalent:

() There is a monomorphism of A into B.

(B) (4. B)e m-Ad.

(Y) Bis a majorant of A.

The assertion is a consequence of (vi), 2.9 and 2.11.

2.13. Corollary. Let A € %° be finite and complete, B € %y homogeneous. Then
the following assertions are equivalent:

() There is a monomorphism of A into B.
(B) (4, B) e m-Ad.
(Y) Bis a majorant of A.

Indeed, if A is finite then 4 € %g and it has the kernel.
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