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INTRODUCTION

As usual, we shall denote by C the set of all complex numbers which will be iden-
tified with the Euclidean plane R%. For M < C we shall denote by M and diam M
the closure and the diameter of M, respectively. Given ¢ > 0 we put

H (M) = inf ) diam M,,,
1

n=

where the infimum is taken over all sequences of sets M, = C with diam M, < ¢
such that

McUM,.

n=1
The linear measure (= length) of M is defined by
HYM) = lim #L(M).
0+

If K = C is a compact set, then A(K, 1) will stand for the class of all holomorphic
functions ¢ on C\ K with

|q0| <1, ¢(o)=Ilime(z)=0.
For any ¢ € A(K, 1) the derivative

¢'(0) = lim z ¢(z)
is available and the analytic capcity of K is defined by
¥(K) = sup {|¢'(x0)|; @ € AK, 1)} .
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This quantity plays an important role in a number of investigations in complex func-
tion theory (cf. [1]—[7]) and much research has been done on its relations to various
measures of K and, in particular, to #!(K) (cf. [8]—[10] where further references
may be found). If K is situated on a straight line, then the equality

WK) = % #*(K)

holds by a result of POMMERENKE (cf. [11], Satz 3, p. 272; see also [8], th. 6.2 on
p. 29). For general K the estimate y(K) < #*(K) yields the implication

HYK)=0=9K)=0

which also follows from a classical result of PAINLEVE [12]. The converse of this
implication does not hold and examples were exhibited by ViTuskin [13] and
GARNETT [14] (compare also [16], pp. 346 —348), showing that y(K) = 0 is possible
for disconnected K with #*(K) > 0. For compact sets K situated on sufficiently
smooth curves such a situation cannot occur, because y(K) can be estimated from
below by a multiple of #*(K); general smoothness restrictions on the curve (stronger
than the mere existence of a continuous tangent) sufficient for such estimates have been
established by IvaNov [15] (compare also [17]). The assertion that y(K) > 0 for every
compact set K with #Y(K) > 0, K situated on a rectifiable curve, is known as the
Denjoy conjecture (cf. [8], p. 36). It was shown by DAVIE [18] that the validity of
the Denjoy conjecture for C! curves would imply its validity for general rectifiable
curves.*) On the other hand MATYSKA has shown in [30] by modifying the method
of Vituskin [13] that there exists a non rectifiable curve y = f(x), with f satisfying
a Holder condition for every exponent less than 1, carrying a compact set K with
y(K) = 0 and s#!(K) > 0.

In the present paper we shall be concerned with geometric conditions on plane
continua Q (which need not be smooth, in general) guaranteeing the validity of an
estimate of the form

y(K) 2 const #(K)

for all compact sets K € Q. In order to be able to formulate our main result we shall
first introduce the following

*) Added in October, 1977: 1t has recently been proved by Calderon [31] that the singular
integral operator f—¢ ona C ! curve K, given by the Cauchy integral

o(t) = P. V.J‘ @ dr ,
K

t—1

is bounded in LP(K) for p > 1. This in combination with earlier results of HAVIN and HAVINSON
[10] (cf. p. 791) and Havin [32] (cf. p. 512) implies the validity of the Denjoy conjecture.
The authors are indebted to L. I. HEDBERG for the reference [31].
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Notation. Let
r={teG [ =1}

be the unit circumference. Given z € C we denote by

nz:c__p_C._-—_Z_

¢ -4

the projection of C\ {z} onto I'. For M < C the symbol y, is used to denote the
characteristic (= indicator) function of M. If Q = C is compact, we define for
0ell
N20) = Yxo(u), ueQ@~{z}, n(u)=0
(with the sum extended over all u € n; '(6)).
Thus N2(6) (0 < N%(6) < + ) denotes the total number (possibly infinite) of
all points in the intersection of Q with the half-line {z + 10; t > 0}. It is well known

that the function
NZ: 0 N2(0)

(which is called the Banach indicatrix of the mapping =) is Borel measurable (cf.
[19], p. 217) and we may adopt the following

Definition. If Q € C is compact, we define for any z € C
02(z) = j NY(6) d#4(0) .
r
Further we put
(1) V(Q) = sup v?({) .
LeQ
Our main result may now be formulated as follows.

Theorem. If Q < C is a fixed continuum (or, more generally, a compact set having
only a finite number of components), then for all compact sets K = Q the following
estimate holdg:

2) WK 2zt L ).

2 V(Q)+ =
Of course, (2) is of interest only if
(3) V(Q) < .

If Q is a straight line segment, then ¥(Q) = 0 and (2) reduces to

YK) = zln #YK).
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Let us note that (3) can be fulfilled also for curves Q that are not smooth and
contain many angular points. On the other hand, (3) is not fulfilled for many
arcs Q = Q(f) with the equation

y=f(x), 0=x=1,

where f:40, 1> - R! is continuously differentiable. If C!(<0, 1>) is the Banach
space of all continuously differentiable functions f on <0, 1) vanishing at 0 equipped
with the norm
I/ = max [£(x)],
0=x=1
then the set
{f e C'(<0, 1)); v?U(() = oo for all L€ Q(f)}

is residual in C*(<0, 1)) (cf. [20]).

The fact that the above theorem holds not only for arcs, but also for continua Q
submitted to (3), is based on Wazewski’s deep characterization of rectifiable continua
[21] (a formulation of Wazewski’s result is given below in the proof of lemma 1.6).

We first prove in section 1 that continua Q satisfying (3) are rectifiable. In section 2
we establish a “maximum principle” for the function v%(+): C - R} and finally,
in section 3, we give the proof of the main theorem and present several corollaries.

We shall start with the following

1.1. Proposition. Let us suppose that the points zy, z,, z5 € C are not situated
on a single straight line. If Q = C is a continuum such that v¥(z;) < o for j =
= 1,2,3, then #Y(Q) < .

Proof. If z € Q, then at least one of the straight lines determined by a couple of
the points z; does not contain z. In view of the compactness of Q it is sufficient to
establish the following lemma.

1.2. Lemma. Let Q = C be a continuum and suppose that the points z, z, are
different and

(4) v¥(z,) + v¥(z,) < .

If L denotes the straight line passing through zi, z,, then every point ze Q\L
has an open neighborhood U < C such that #(U n Q) < .

Proof. By a compact arc we shall always mean a homeomorphic image of a non-
degenerate compact interval. If C is a compact arc, then C° will denote the open arc
obtained by removing the end-points of C.
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Let us now fix compact arcs I';, I', = I' with the end-points 7; € I'yand §;erl,
(j = 1, 2) such that the following conditions (i)—(iv) hold:

(@) ynl, =09,

(i) 7 2) e 0 (G = 1,2)

(iii) K = n;,'(I'y) n =, (I';) is a compact set disjoint with L,

(iv) Q has a finite (possibly void) intersection with each of the half-lines (7)),

n.'(0;) (= 1,2).

Let us note that (iv) can be satisfied according to the condition (4) which guarantees
that each of the sets
(5) {0el; N2(0) < 0} (j=1,2)
is dense in I

We are going to prove that

H(KnQ)< o,

For this purpose it is sufficient to show that there s a constant k such that, for any
e >0,

Q) H(K ) € k[o0(z:) + o%(z:)]

Let us fix ¢ > 0 and divide the arcs I'y and I', into a finite number of non-overlap-
ping compact subarcs I'i, ..., I and T3, ..., I'* by means of the points y' =
=y5,7% .., =9, and 8! = §,, 8%, ..., 0™ = §,, respectively, in such a way
that

diam [n;'(M) n 2 '(My)] S e

and each of the half-lines

L O N
meets Q in a finite (possibly void) set (r = 1,...,n; s = 1,..., m). This is again
possible because the sets (5) are dense in I'. Every set

(7) n (M) nn ) (I3) n g,
considered as a subset of the space Q, has a finite relative boundary B (1 < r < n,
1<s<m).

Let us now recall a classical result of JANiszewski (cf. [22], p. 112):

If A is a proper closed subset of a continuum Q and C is a component of A,
then Cn QN A # 0, i.e. C has a non-void intersection with the relative boundary
of Ain Q.

Hence it follows that each of the sets (7) has only a finite number of components I';;,
p =1,.., n, Let us denote by ¥} the characteristic function of =, (I';) on I.
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Then
N2(O) =Y 3 £%(0) for Oer~ym,(B).

rsp=1 r,s

whence
) ) = [ NSO a0 2 L T e (7).

Analogously
(8) v¥z2) 2 Y, Y AN (m(T7)) -

r,s p=1

Now we shall use the following simple geometric fact whose proof may be found
in [23], lemma 1.29:

For every compact set K disjoint with L there exists a constant k (depending on K
and on the mutual position of Land K) such that, for every couple of points {;, {, €K,

(9) ICI - CZ' = k[l”zn((l) - ”zl(‘:2)| + InZz(Cl) - “z;(CZ)l]-
Employing (iii) and (9) and using the connectivity of Iy we obtain the estimate
diam I'y < k[diam =, (I'y) + diam 7,,(I';)] <
< kLA (n, (7)) + 7 (re(T7))]

which together with (8,), (8,) gives

Y "2 diam I'f < k[v¥(z,) + v¥(z,)] .

r,s p=1

Sincediam I'> < gl £r<n, 1 <5
p

IIA

m,1 < p < n,), we have
HUK N Q) £ k[v¥z,) + v4z,)]
and the proof is complete.
Remark. Ideas similar to those employed in the above proof appear in [24].
1.3. Notation and remarks. Let J c R! be an interval and consider continuous

mapping ¥ : J — C. It is well-known that for every z e C\ ¥(J) there exists a con-
tinuous real-valued function 9%(+) on J such that

Y(t) — z = |[Y(t) — z|exp i 9(t), telJ.

This continuous single-valued argument 9Y is determined up to an additive constant;
if J = <a, b) is compact, then the increment

9%(b) — 9%(a)

is independent of the choice of that constant and represents a harmonic-function of
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the variable z € C\ y(J). If, besides that, y(b) = ¥(a), then the function
(10) z 1> 9¥(b) — 9¥(a)

is constant on each component of C\y(J).

Suppose now that C = Cis a compact arcand ¥ : {a, b) — C is the corresponding
homeomorphism. Then |$¢(b) — 9¥(a)| does not depend on the choice of the homeo-
morphism ¥ and we are justified to introduce the notation

94(b) - 8¥(a)] (z© C)

Acarg(z) =
for this quantity which depends on C and z only. The function

(11) z 1> Acarg(z)

is continuous and subharmonic on C\ C.

If { € C° then there are disjoint open sets G;, G, contained in C\ C such that
G; n C is a neighborhood of { in C, each of the functions (10), (11) is uniformly
continuous on G; (j = 1,2) and G, U G, is a neighborhood of { in C.

To see this it is sufficient to place the arc C on a Jordan curve C (which is always
possible by [22], p. 381) or, which is just the same, to extend ¥ from {a, b) to a con-
tinuous mapping ¥ : {a, b + 1> - C in such a way that J(b + 1) = §)(a) and
¥(u) * ¥(v) whenever 0 < |u — v| < b + 1 — a, u,ve<a, b + 1). By the Jordan
theorem, the complement of € = y/(<a, b + 1)) consists precisely of two com-
ponents G, E with En G = C, G U E = C. Since the function

21> [94(b) — $¥(a)] + [9¥(b + 1) — 9¥(b)]
remains constant on both G and E and the function
(12) 21> [99(b + 1) — 9¥(b)]

is continuous on C\ |/7(<b, b+ 1>), it is sufficient to fix ¢ > 0 less than the distance
of ¢ from §(<b, b + 1)) and put

G, = {zeG; ]z—C|<g}, G, ={z€E; |z—Cl<g}.

Then (12) is uniformly continuous on G, U G, = {z e C; lz - L’i < o} and, con-
sequently, the function (10) (and the function (11) as well) is uniformly continuous
on each of the sets G,, G,. ‘

We have thus seen that (11), (10) are continuously extendable to any point { € C°
“from both sides of C”. In particular, the function (10) (and the function (11) as well)
has at most two limit values at any { e C° and these depend continuously on (.
Consequently,

(13) {+ limsup Acarg(z)
z—>§',zEC\C

is a continuous function of the variable { e C°.

451



If f is a (real- or complex-valued) function and J is an interval in the domain of f,
then var [f; J] denotes the variation of f on J.

1.4. Lemma. Let C = C be a compact arc and let  : {a, b) — C be the cor-
responding homeomorphism. Then

v(z) = ;var [9¥; g7,

where J runs over all components of {a, b) \ l//“(z) and 8% is a continuous single-
valued argument of Y — z on J.

Proof. This follows easily from the Banach theorem on variation of a continuous
function (see lemma 2.2 in [25]).

1.5. Lemma. If Q < C is a continuum fulfilling (3), then #*(Q) < oo.

Proof. If Q is contained in a straight line, then #Y(Q) = diam Q < co. In the
opposite case we may pick up three points z,, z,, z3 € Q that are not situated on
a single straith line and apply proposition 1.1.

1.6. Lemma. If Q = C is a continuum with #*(Q) < oo, then there is an in-
creasing sequence of sets K,, each of them being a union of finitely many disjoint
compact arcs, such that

UK, = Q\Z, #YZ)=0.

n

Proof. If Q4, ..., Q, are disjoint continua contained in Q, then

IIA

k
Y diam 0, < ¥ #Y(0)) < #7(0).
=1 i=1

We see that

W = sup ) diam Q; < o0,
i

where the supremum is taken over all finite disjoint systems of continua Q; = Q.
In other words, Q is rectifiable in the sense of Wazewski [21]. WazZewski proved
that then there exist a mapping

Y :<0,2W) - Q
onto Q and a sequence of open arcs*) C, < Q such that the set

T = <0,2Wy~y~}UC,)

*) By an open arc we mean a homeomorphic image of (0, 1).
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has linear measure zero and ¢ fulfils the Lipschitz condition
0st<uZ2W=[Y(t) — ()| < |t — uf.
Consequently, #*(y(T)) = 0 and, in view of the inclusion

Z =0\UC, = Y(T),

we have #!(Z) = 0. Each open arc C, can be expressed as a union of an increasing
sequence of compact arcs Cy (k = 1, 2, ...) and the sets

K =

n

c

J
1

I C =

J
have all the required properties.

1.7. Proposition. Let Q = C be a compact set with #*(Q) < + o, having only
a finite number of components. If ze C\ Q, then

(14) v%(z) = sup Y. 4, arg(z),

i=1
where the supremum is taken over all finite systems of mutually disjoint compact
arcs Cq,...,C, < Q. .

Proof. Let us fix ze C\ Q. Given a system of dijoint compact arcs C; = Q
(j=1,...,n) defined by the corresponding homeomorphisms ¥; : {a;, b;> = C;,,
we have by lemma 1.4

v(z) = var [9¥; <a;, b;>] 2 Ac,arg(z),

whence we get writing C = () C;

ji=1
v9z) 2 v92) = ¥ v(2) 2 ¥, 4, arg (2) .
i=1 j=1
Fix now an arbitrary number
(15) d < v%z).

By lemma 1.6 there is an increasing sequence of compact sets K,, = @, each consisting
of a finite number of disjoint compact arcs, such that (as n — )

K, 7 O\Z, #%2)=0.
Consequently, #!(n(Z)) = 0 and for 0 € I'\ n(Z) we have
N¥(0) ~ N(0),
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whence

o (z) = f NE(0)a(0) 7 f N2(6) d#1(6) = y(2).

r

We can thus fix a natural number m with
v*(z) > d.
If K,, consists of disjoint com'pact arcs C; (j = 1,..., k) defined by the homeo-
morphisms ¥; : {a;, b;> = C;, C) C; = K,,, then by lemma 1.4
k a k
j;lvar [9¢%; <a;, b,>] =jngcj(z) =v"(z) > d.
We may thus fix numbers d; < var [ 94 <aj, b;>] such that

d;

1

v

d.

-

J

For every j there are disjoint non-degenerate intervals

<a_,1'9 b})a L] <a.';j’ b_’;’> < <aj’ b1>
such that

5 atr) — ot > d;.
Defining C} = y;(<aj, b)) we get

nj k
Y Acparg(z) > Y d;2d
r=1 j=1

™=

1

j

and the arcs C7 are mutually disjoint. This completes the proof of the equality (14).

2

In the introduction we have associated with every compact set @ = C and every
z € C the quantity v%(z) (which is sometimes called the cyclic variation of Q at z).
Estimates of the function v%(+) on C\ Q in terms of its supremum (1) on Q are
useful in various investigations in potential theory (cf. [26]). In § 3 we shall need
a precise form of this “maximum principle” in the following formulation.

2.1. Proposition. Let Q = C be a compact set having only a finite number of
components and define V(Q) by (1). Then for any z € C the estimate

(16) v¥z) £ = + V(Q)
holds. ’
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Before going into the proof of this proposition we shall recall several known
auxiliary results.

2.2. Remarks. Let  :<a, b) > C be a homeomorphism, ¥({a, b)) = C, and
fix &e(a, b), Y(¢) = {. We shall denote by 9,(f) and 9/_(t) a continuous single-
valued argument of ¥(t) — { on (&, b) and on {a, &), respectively.

According to lemma 1.4

(17) v(0) = var [8f,; (& bY] + var [99¢_; <a, &)],

so that the assumption v“({) < oo implies the existence of the limits
lim 8¢, (1) = 9¥(¢+), lim 9_(r) = 9¥(¢-)
&+ t—>&—

and, in particular, the existence of half-tangent vectors

() = lim v - ¢ = expid(é+),

&+ |l//(t) - C|
(0 = _rl—i};l— I—:Z—Eg—:%l = —expid(¢-).
Under the assumption
(18) V(C) = sup v(z) <
zeC

(which will always be fulfilled below) the half-tangent vectors 7% ((), t%({) are thus
available for all ¢ € C°.

We shall say that z is an angular point of C if either z is an end-point of C or else
z € C° and 1%(z) % t¥(2). It is easily seen that the set of all angular points of C is
at most countable (cf. [27], p. 464). Consequently, the set of those { € C° at which
a unique tangent vector t¥({) = t¥({+) = t¥({—) exists is dense in C. [Of course,
this follows also from the known fact that a rectifiable arc C has a unique tangent
' — almost everywhere on C.]

Let us now suppose that { = ¥(£) is not an angular point of C and put v = i 7({)
[here i denotes the imaginary unit],

A(L) = dgy- +j a9y, .
{a,f) ©.b>

In accordance with 1.3 we denote by 9%(r) a continuous single-valued argument
of Y(f) — z on {a, b) whenever z € C\ C. Then

(191) rl_{r;l+[9f+,v(b) - '9?+rv(a)] = A(C) +7,
(19) lim [87(8) — 8¢-(a)] = AQ) 7.
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as it follows from [28], th. 2.11 (cf. also 1.1 and 1.5). We have already seen in 1.3
that the function (10) has at most two limit values at {. Since the limits (19,) and (19,)
are different, we conclude that {IA(C) + 7t|, IA(C) — n|} is just the set of all limit
values of the function (11) at {. Hence we obtain

2.3. Lemma. Let C = C be a compact arc satisfying (18) and suppose that
{ € C is not an angular point of C. Then

(20) limsup  Acarg(z) < o) + 7.
z—>{,zeC\C

In particular, the set of those { € C for which (20) holds is dense in C.

Proof. We have just seen that

(21) limsup Acarg(z) = max {|4(() + =, |4(() — =]} .
z—(,zeC\C

Employing (17) we get
|4(0)] < var [9¢_; <a, &)] + var [8{,; (& bY] = v%(0)
which together with (21) yields (20).

Now we are in position to present the following

2.4. Proof of proposition 2.1. We may clearly suppose that ze C\ Q and (3)
holds. Fix an arbitrary d < v%(z). By proposition 1.7 there is a finite system of mu-
tually disjoint compact arcs Cy, ..., C, contained in Q such that

(22) d < _ZlACj arg(z).
=
The function

q: CHZIAC, arg (C)
i=

n
is continuous and subharmonic on the complement of K = |J C; and
j=t

(23) lim g¢) = 0.

Besides that, g({) < ¥ v“({) is bounded on C\ K by proposition 1.5 in [28].
=1
If n € C,, then the function

(Y Ag, arg (0)
k=2

is continuous in the vicinity of #. Defining
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w(n) = limsup d¢ arg(() + Y, 4c, arg(n),
{—-neC\NK k=2

we have thus

(24) limsup  ¢(0) < w(n) .
{—n, L€ C\Kk

As we have observed in 1.3., w is a continuous function of the variable # € cIf
n € CY is not an angular point of C,, then lemma 2.3 gives

wn) £+ %) + Y Ac,arg(n) S+ Y v%n) = n + () < n + V(Q).
K=2 k=1
Since the inequality
(25) w< 7w+ V(Q)

holds on a dense subset of C,, we infer from the continuity of w that (25) holds
everywhere on C3. According to (24) we have

(26) limsup () £ 7 + V(Q)
{—>n, CEC\K

for all # € C3. Of course, the same inequality holds for # € C_‘,-’ foranyj=1,...,n.
We see that (26) holds for all but a finite number of points # € K. This together with
(23) and the boundedness of g permits us to conclude on account of the maximum
principle for subharmonic functions that

(27) g<mn+V(Q) on C\K.

Combining (27) and (22) we get
d<mn+ V(Q).

Since d was an arbitrary number satisfying d < v%(z) we arrive at (16).

3
Now we shall supply the proof of our main result formulated in the introduction.

3.1. Proof of the theorem. Let Q € C be a compact set with ¥(Q) < oo consisting
of finitely many components. Let us consider an arbitrary compact set H < Q with
#'(H) > 0 and fixa 6 €(0, 1). Let K, # Q\Z be a sequence of compact sets with
the properties described in lemma 1.6, #%(Z) = 0. We have then for suitable K = K,

H'(KnH)z o' (H).
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LetK = U C;, where C; = ¥,(<0, 1)) are disjoint compact arcs and ¥/; : €0, 1) = C;
j=1

are the corresponding homeomorphisms (j = 1, ..., m). Since #'(Q) < co by lemma
1.5, each /; must have bounded variation on <0, 1) and the same holds of real-valued
functions Im ey i» € {—m, ). The identifinite variations of the functions v,
Im ei“t//j determine in the usual way Borel measures on <0, 1) which will be denoted
by var y;, var Im e""ys;, respectively. Put H; = y; '(H n C;). Then there is a real-
valued Baire function f; on <0, 1) such that

il =1, 70, 1>~ H)) = {0}
flfjdlm¢j=varlm¢j(Hj).
0
Let us define for ze C\NH
)
?(z) = dz//,t
SR ey ertZCh

Note that f; = 0 outside H; = y; '(H), so that @ is holomorphic on C\ H; besides
that,

lim ®(z) = 0.
If 97’ denotes a continuous single-valued argument of ¥; — z on <0, 1), then we
get from lemma 1.4

[Im &(z)| = ' i Jlfj do¥| < ivar [9%7;€0,1] = i v9(z) < vY(2),
i=1 ) j=1 i=1

which together with (16) implies
(28) [Tm &(z)| < = + ¥(Q).
Next we obtain

(29) [@/(e0)| = lim |z 0()] =

ijf,-
i=1Jo

The inequality (28) permits us to conclude that the function

=|iflfjd¢j > —_~§m:varlm1//j(Hj)‘
ist)o =1

] —_ xp—@.__

F 2(V(Q) + =)
1 + exp —J-di——
2(V(Q) + m)
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belongs to A(H, 1) and (29) results in

’(oo), > ‘W Z\ar Im y(H;) .

FC) = e

Consequently, by the definition of the analytic capacity,

WH

var Im Y/ (H;) .

4(V(Q) +n ).I
Since the analytic capacity is invariant with respect to rotations, we have also for
any a € { —m, 1)

m

4(V(Q) Iﬂ) ,Z var Im e y(H,) .

Using the well-known formula

if var Im ™ Y (H;) do = #'(H n C))

-n

y(H) 2

(cf. [33], lemma 13 on p. 59 and also the definition of the so-called linear variation
on p. 17) we get

1 i 1
WH) 22— Y A#'(HAC) = ——— H#'(H).
Since 6 € (0, 1) was arbitrarily chosen, we arrive at

WH )_WWI(H)

and the proof is complete.

3.2. Corollary. Let Q = C be a compact set with (3) consisting of finitely many
components. Then, for any compact set H = Q, the inequalities

(30) W) H'(H) < y(H) < #'(H)

are valid; in particular,
y(H) = 0< s#*'(H) = 0.

Proof. The first inequality occurring in (30) has been proved in 3.1, while the
second inequality (which can be further improved) is known — it follows from the
elementary fact that y(H) < r; + ... + r, if H can be covered by circular discs of

radii r, ..., r, (cf. [4]).
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3.3. Corollary. Let Q = C be a compact set with V(Q) < oo consisting of finitely
many components. Then for each couple of compact sets H; = Q (j = 1,2) the
inequality

W(Hj o Hy) < 2(V(Q) + =) [¥(H,) + 7(H2)]

is true.

Proof. This follows at once from the inequalities established in 3.2.

3.4. Remark. The above corollary shows that the analytic capacity y is semi-ad-
ditive on subsets of Q provided Q has the properties described in 3.3. Further
comments on the semi-additivity property of the analytic capacity may be found
in [29].
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