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Besides congruences, other significant relations on algebras which have many
applications are the so called compatible tolerances. This is the reason for in-
vestigating tolerances on algebras (see [4], [5]) and for finding conditions under
which these tolerances are not congruences (see [6], [7]). The aim of this paper is
to give a method of construction of compatible tolerances which are not con-
gruences from compatible relations (especially from congruences) and show that on
varieties these constructions characterize the existence of tolerances. In the second
part of the paper we introduce a method of construction of compatible relations
from orderings.

1. INDUCED TOLERANCES

Let A = (4, F) be an algebra. A binary relation R on A is said to be compatible
(with ) if for each n-ary f e F and arbitrary a;, b;e 4 (i = 1, ..., n) the following
implication is valid:

apbyeR for i=1,..,n=f(ay,...,a,),f(bs,...., b)>eR.

A binary relation T on a set M is called folerance (or tolerance relation) provided
it is reflexive and symmetric. Hence every equivalence is a tolerance and every con-
gruence is a compatible tolerance. Denote by A the identical relation on A4, i.e.
{a,byeA if and only if a = b. Let A = (4, F) be an algebra. Following [1],
denote by %() the lattice of all congruences on 2 and by v the lattice join in €().
Further, if 0 + R < A x A, then

O(R) = N{@e%(N); R = @}, iec. O(R) isthe congruence generated by R .

Theorem 1. Let A = (A, F) be an algebra and R, S reflexive compatible relations
onU. Put T=R.SNS.R. Then
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(a) Tis a compatible tolerance on U;

(b) if O(R). O(S) + O(S). O(R), then T is not a congruence.

Proof. The symmetry of T is evident. We prove the compatibility of T. Let
{a;, b)eTfor i=1,...,n and let f€ F be an n-ary operation. Then there exist
¢,d;e A with {a;, ¢;>eR, {c;; b€ S, Ka,d)yeS, {d;,b)yeS. Put a =

= f(ay,....a,), b=f(by,...,b,), ¢ = f(cy,...r¢,), d = f(dy, ..., d,). As R, S are
compatible, the above implies

{a,c)eR, {c,by)eS and {(a,dyeS, {d,by)eR,

thus {a, b) e R. S n S. R = T. The compatibility is proved. Clearly, the reflexivity
of R, S implies the reflexivity of T, thus Tis a compatible tolerance.

Further, suppose that @(R) . 6(S) + O(S). O(R) and T is a congruence on 2.
The reflexivity of R, S implies R, S = T. As Te (%), also O(R) = T, O(S) = T.
Hence

T=R.SNS.R<OR).0(5)nO(S).0R) < O(R) Vv O(S) =T,
ie. O(R).O(S)n 6(S). O(R) = O(R) v 6(S)
and by the formula for v in %() we obtain
O(R) v 6(S) = O(R). O(S) = O(S) . O(R)
contrary to the assumptions. The proof is complete.
Remark. The statement (b) of Theorem 1 cannot be converted, i.e. the permutability

of ©(R), 6(S) does not imply that Tis a congruence. This is shown by the following
example: .

Example 1. Let & = ({a, b, ¢}; {.}) be a groupoid with the following Cayley’s
table:

I a b c
a a b a
b b b b
c a b a

and R = {{a, a), <a, b), <{b,b), {c,cd}, S ={<a,a), {a,cd, <b,b), {c,c}.
Clearly, R, S are reflexive and compatible with . Let T=R.S n S. R. Since
R.S=S.R=RuUS, we find that T= R U S is not a congruence, because
it is not symmetric. Nonetheless, O(R), @(S) are permutable, because they are equal
to the Cartesian square of {a, b, c}.

440



Let us call Tthe induced (by R, S) relation, provided R, S are compatible relations
on A and T=R.SnS.R. For the case of congruences, the converse assertion
to (b) of Theorem 1 is true:

Corollary. Let R, S be congruences on W. The compatible tolerance T induced
by R, S is a congruence on W if and only if R, S are permutable.

Proof. If R, S are permutable, then T = R . S is a congruence. If R, S are not
permutable, then by Theorem 1, T'is not a congruence.

We say that an algebra U admits (induced) tolerances, if there exists an (induced
by relations different from A, T) compatible tolerance T on U which is not a congru-
ence. We say that a variety of algebras¥” admits (induced) tolerances, if there exists
A € ¥ which admits (induced) tolerances.

Theorem 2. A variety ¥~ of algebras admits tolerances if and only if it admits
induced tolerances.

Proof. If 7~ admits tolerances, then, by Werner’s Theorem from [3], there exists
A e ¥ and congruences @, @ € (W) which are not permutable. By Corollary, the
tolerance Tinduced by @, @ is not a congruence. Hence 7~ admits induced tolerances.
The converse assertion is evident.

Remark. If 7" is a variety, then, by Werner’s Theorem, ¥~ admits tolerances if and
only if 7~ has no permutable congruences. By Corollary, if an algebra 2 has no per-
mutable congruences, it admits tolerances. However, the converse statement for
algebras is not true in the general case, as is illustrated by the following example:

Example 2. Let % = ({a, b, c}; {*}) be a commutative groupoid with Cayley’s
table

[ Y
S S ENE)
SR ~TRS RIS )
LSS AR R Y

|
i

Then the relation R = {(a, b), Kb, a), <{b, ¢, {c, b)} U A is a compatible tolerance
which is not a congruence. However, 2 has only three congruences, namely A, the
Cartesian square of {a, b, ¢} and C given by the partition {a, b}, {c}, hence U has
permutable congruences.
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2. CONTRACTIONS

H. L. SKALA introduced the concept of contraction for pseudo-ordered sets and
proved that every pseudo-ordered set is isomorphic to a contraction of a partially
ordered set (see [2]) This concept can be generalized also to arbitrary relations and
modified also for compatible relations.

If R is a binary relation on a set M, then a global relation R(M) is a relation on 2™
defined by:

X, Y) eR(M) iff there exist aeX, beY with <{a,b)€eR.

Let A = (4, F) be a partial algebra. Denote by 2(G) the so called global partial
algebra, i.e. A(G) = (2‘, F), where

f(Xq, ‘.l.,X,,) =0 whenever X;=0 forsome ie{l,...,n} and
f(Xy, ... X,) = {f(ay, ..., a,); a;e X, for i =1,...,n}
in the opposite case .

Hence, if % = (4, F) is an algebra and 2(G) its global partial algebra, then clearly
B = (2% — {0}, F) is a subalgebra (everywhere defined) of 2(G).

For a relation R on A and B S A the restriction of R on B, ie. Rn (B x B),
will be denoted by the same symbol R.

Let A = (4, F), B = (B, G) be algebras and R (or S) a compatible relation
on A (or B, respectively). We call (U, R) isomorphic with {8, S provided A and B
are isomorphic algebras and {4, R) and {B, S) are isomorphic relational systems.
For a partial algebra % = (4, F), R is compatible on 2 whenever {a;, b;> €R
implies . .. . .

{f(ag, . qq),f(bl, ... b)>eR provided f(ay,...,a,), f(by, ..., b,)

exist.

Definition. Let R be a compatible relation on an algebra 2, B = (B, F) a partial
algebra of the same type as U andP a compatible relation on B. We call (U, R)
a contraction of (8B, P) provided U is a subalgebra of B(G) with mutually disjoint
subsets as elements and R is the restriction of P(B).

A partial algebra B = (B, F)is partially ordered if there exists a partial ordering P
on B and P is compatible with B.

Theorem 3. Every algebra U with a reflexive compatible relation R is isomorphic
with a contraction of a partially ordered partial algebra.

Proof.Let A = (4, F) be an algebra and R a reflexive compatible relation on .
Put C = 4 x {0, 1}.
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1°. Suppose feF is n-ary and (ay. i), ..., (a, i,) € C. Define f((ay,iy), ...
eves (an i) = (f(ay, ..., a,), iy) provided i, = ... = i, only. Evidently, € = (C, F)
is a partial algebra of the same type as 2. o

2°. Introduce P on C by the rule:

{(a, i), (b, j)> € P if and only if (a, i) = (b, j) or {a, by e R and i < j. Clearly P
is reflexive. If {(a, i), (b, j)> € P and {(b, j), (a, i)y € P, then we have only one
possbility (a, i) = (b, j), hence P is antisymmetric. The transitivity of P can be proved
analogously, thus P is a partial ordering on C.

3°. Let {(a,, i,), (b, j,)> € P for r =1,...,n and f€ F be n-ary. If f((ay, iy), ...
s (@n 1)), f((by, 1), -5 (bysjn)) are defined, then iy = ... =i, j, =...=j,
and f((ay, iy)s - (A, i) = (f(ay, ..y @), iy), f(bys jo)s s (B Ji)) = (f(by, -~
weos bu)y j1)- If iy < jy, then i, = 0 and j, = 1 for every r, hence {a,, b,» € R and the
compatibility of R implies {f(ay, ..., a,), f(by, ..., b,)> € R, thus {(f(ay, ..., a,), i,),
(f(bs, ..., b,), j1)> € P. If iy = j,, then i, = j, for every r, hence (a,, i,) = (b,, j,)-
From the reflexivity of P we have also

(f(ay, .- a,), iy) = (f(bys ..., by), 1), iee. also
<(f’(al’ ey an)’ il)’ (f(bla LERE bn)5j1)> € P .
We have no other possibility, thus the compatibility of P on € is proved.

4°. Let €(G) or P(C) be a global partial algebra or relation, respectively, and
B = {{(a,0), (a,1)}; a€ A}. Then B = 2€ and B contains only mutually disjoint
subsets. Denote a* = {(a,0), (a, 1)}. If a}, ..., ay e Band fe F and f(ay, ..., a,) =
= a, then clearly f(af, ..., ay) exists and f(af, ..., ay) = a*, thus B = (B, F) is
a subalgebra (everywhere defined) of €(G) and ¢ : @ —» a* is an isomorphism of A
onto B.

5°. If <a, b) e R, then {(a,0), (b, 1)> € P and <a*, b*) € P(C). Conversely, if
<a*, b*) € P(C), then {(a, i), (b, j)> € P for some (a, i) € a*, (b, j) € b*. Thus either
(a,i) = (b,j) or <a,byeR and i = 0, j = 1. In both cases we have {a, b) € R.
Therefore also the relational systems <A, R), {B, P(C)) are isomorphic which
completes the proof.

A relation P on a set M is called a strict ordering provided P is acyclic and
transitive.

Theorem 4. Every algebra U with a compatible relation R is isomorphic with
a contraction of a strictly ordered partial algebra.

The proof is analogous to that of Theorem 3, only the relation P on C is defined
by the rule:

{(a, i), (b,j)>e P ifand onlyif <a,byeR and i<j.
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