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The purpose of the following paper is to prove an integral formula for quadratic
differential forms on an orientable Riemannian manifold M. Let Q = a;; du’ du,
a; = a;; and let 2,, ..., A, be the eigenvalues of a;; (at m e M), wy, ..., w, the cor-
responding orthonormal eigenvectors and K;; the sectional curvature corresponding
to {w;, w;}. Our integral formula reads

(*) J * (a‘i‘B V,aly — a® Vvarzﬁ) du’ =
oM
= | {Vpa?V,a’, — Va* Vsa,, — ¥ (2, — 45)* K4} do .
M a<B
For a Codazzi tensor a;; = a;; satisfying V,a;; = V,a,; we get the known formula;

see [1].

1. Let M be a connected orientable n-dimensional Riemannian manifold, its
metric being ds?. In a suitable domain U = M, let us consider a field of coframes
(o', ..., @") such that

1) ds® = § 00" ;

throughout the paper, we are going to use the summation convention and i,j, ...
.. B, ... =1,...,n Then there is, in U, a unique field of matrices of 1-forms
| wi]| such that

@) do’ = " A @), 3,07 + 0,0 =0.
Indeed, let us write
(3) do' = AL0" A of, Aj + Al;=0.

434



Suppose the existence of matrices |[w]| satisfying (2). From (2,) and (3).

(4) o* A (0] — Alo?) = 0,

and we get the existence of functions Bj; such that

) o] = AL,0" + BLw*, Bl — Bl =0.

Substituting into (2,), we get

© Oiudfy + Ojedi + 01Bj + 8;,B} = 0,

and permutations of indices lead to

(7) 01l + 0% + 1B + O.Bij =0,
OxeAGi + 05045 + 04,B; + 0, Bri = 0.

Subtracting (7) from (6), we have
3) N Bjy = 0%55, A8, + 65,48,
i.e.,

(9) (1){ = (A{)’ + 5‘11'5‘9!_1451 + 6”5/])"’4?«) o’

Now, it is easy to see that | (see (9)) satisfy (2).

The curvature tensor RJ, of M is defined by the relations
(10) do} = of A of — Rj,0* A o, Ry + Rl =0;
it satisfies the well known symmetry relations
(11) 0,R%; + 6juRiuy =0, 0;,Ry; = 6,Ry;;,

0;aR% + 61aRiy; + 0,RS; = 0.

Let us change our coframes (@', ..., @"); let the new ones be (%, ..., "), and let

(12) ds? = 6,18 ,
(13) o' = Rir*.
The matrix ||R]| is orthogonal, i.e.,

(14) 04RIRE =5, .
Denote by || R{|| the inverse matrix to |R{[, i.e., let

(15) RiR} = ReR] = o).
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Let the matrix ||7]| be associated with the coframes (7', ..., 7"), i.e., let ¢} satisfy
(16) dii =1" A}, 0,05+ 0;,17=0.

Then we have the following assertion: It is

(17) t) = RidR} + RiRlwj .

The proof is obvious.

2. On M, let a quadratic differential form Q be given; let us restrict our con-
siderations to the domain U. By means of the coframes (@', .... ") or (7', ..., 7"),
respectively, Q may be written as

(18) Q = a,ﬂw“'w” = d,,pTaTﬂ; a;; = 4aj;, ﬁij = dji .
Hence

P B
(19) a;; = agRiR; .

The covariant derivatives b;; = b;; of the tensor a;; with respect to the coframes
(o', ..., @") let be defined by

(20) da;; — a0 — a,;0] = b;;,0".

Substituting into the analogous equations

(21) dd; — a,75 — a5 = b7,
we get
(22) bij = b, RiRIR],

and b, are components of a tensor.
The exterior differentiation of (20) yields

(23) (db;jp — byjp0} — bipi — bij,w}) A o =

= }(a,Rjp, + aR%,) 0F A o

as well as the existence of functions ¢;j,; = ¢;4; such that

a a o
(24) dbijk - bujkwi - biakwj - bijawk = cijkawa s
—_— © a
(25) Cijkt = Cijik = — R — a,jRYy,; .

On U, define the 1-forms
(26) = 5aﬂ5yaaaabﬂ76ws s> T = 5ap6y6awbpwwe .

Because of (19) and (22), the forms t, and T, are globally defined over all M.
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Let the well known *-operator be given by

(27) s0' = (-1 o' A AT AT AL AW
ie, o' A*0'=' A... A 0" =:do.

We easily obtain

(28) d %1, = 0%676%(by by + GuCpyap) 4O,

d * Ty = 5“55?655¢(ba7£bﬂ¢6 + a,yc,,g‘;q,) do .
Using (25) we have
(29) d * (‘rl - 1"2) = {5aﬁ6765€¢(baa¢bﬁya - bmyebﬁq;ﬁ) -
— 5“ﬂayza&(6”"5”’"’ + 57¢56¢) R;W} do .
Further,

30 0%a_,a;(07%6%Y + 5%0¥)RE,, =
b (273

= X(0w)* - X Ripa = 23 auippReop + 5 3 B aysd™(870% + 5700%) Ry ;

y¥a d*e 0¥

(31) Zambm,,,,w + Y Y a,8%67by 0,

a¥e B,7,06

Z Appbagp™ + Y, Y a,,6%67bp 00" .

a¥y B,0,¢

Let m e M and let 44, ..., 4, be the eigenvalues of Q at m. Then the point m is called

an umbilical point of Qif A, = ... = A,.

Theorem. Let M be an oriented Riemannian manifold and Q a quadratic differen-
tial form on M. Let us suppose: (i) all points of the boundary M of M are umbilical
points of Q; (ii) all sectional curvatures of M are positive; (iii) for the invariant

(32) B := 6676 byeybpys — buyebpps)
of Q, we have

(33) B=<0

on M. Then all points of M are umbilical for Q.

Proof. Because of (29)—(31), we have the integral formula

(34) 0= LM «(ty - ) = L (B = X (1~ 1) K do.
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Here A, ..., 4, are the eigenvalues of Q at m, wy, ..., w, the corresponding o:tho-

normal eigenvectors and K, the sectional curvature corresponding to {Was wg}.
' Q.E.D.
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