Czechoslovak Mathematical Journal

Milan Medved
On a differential game of evasion described by a class of nonlinear Volterra

integrodifferential equations
Czechoslovak Mathematical Journal, Vol. 28 (1978), No. 3, 407-418

Persistent URL: http://dml.cz/dmlcz/101546

Terms of use:

© Institute of Mathematics AS CR, 1978

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz



http://dml.cz/dmlcz/101546
http://dml.cz

Czechoslovak Mathematical Journal, 28 (103) 1978, Praha

ON A DIFFERENTIAL GAME OF EVASION DESCRIBED
BY A CLASS OF NONLINEAR VOLTERRA
INTEGRODIFFERENTIAL EQUATIONS
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1. INTRODUCTION

We shall consider a differential game of evasion described by the integrodifferential
equation

(1) A1) + A (1) + j (:B(u(t — 1), oft — 1) 2(e) dr =
= f(u(®), o(t), w(1)) + pg(z(t), u(t), ot). w(1)) »

where z€ R", f, g € R", A is a square constant matrix, f(u, v, w) is a continuous
function with respect to all arguments (u, v, w)eU x Vx W, U = R?, V=V, x
XV, X ...xV, VicRY i=1,2,....,m, Wc R are compact sets; B(u, v) is
a continuous matrix function with respect to (u, v) e U x ¥, p€(— o0, o0) is a para-
meter. We shall suppose that the function g(z, u, v, w) is continuous and bounded
ontheset R" x U x V x W.

In the paper [1] a sufficient condition for existence of the strategy of evasion for
a differential game described by the differential equation

Z® + 420V + L+ A,z = f(u,v),

where A4; are constant square matrices, is given. That condition is different from -
those obtained by L. S. PONTRYAGIN, E. F. MisHCHENKO, N. SATIMOV and by others
(cf. [3], [4], [5])- The formulation and the proof of this sufficient condition is given
using the technique of convolutions.

In the paper [5] the problem of evasion for the game described by an equation of
the type (1) without the integral term is solved. The problem is solved as well as the
result is formulated by Pontryagin’s technique. We shall prove a sufficient condition
of evasion for (1) of the type of the condition obtained in [1] using again the technique
of convolutions. '
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Definition 1. A mapping E,(t; z,) defined on the set of measurable controls u(7),
01< o, u(t) € U, depending on t = 0 and on the vector of initial conditions z,
is said to be a strategy, if it possesses the following properties:

(1) For an arbitrary measurable function u(z), 0 < t < co and for an arbitrary
fixed z,, E(t; zo) as a function of ¢ is measurable with values in V' x W.

(2) If uy(z), uy(t), 0 £ T < oo are two controls and u,(t) = u,(r) most everywhere
on [0, T], where T is arbitrary, then E,(t, zo) = E,(1; zo) almost everywhere
on [0, T].

Let E(t; zo) = (Vi(t; zo), Wi(t, zo)), where V,(t; z5) = (V.X(t: zo), ..., V(5 z0)) €
€R™ x R” x ... x R™, W,(t;zo) € R".

2. FORMULATION OF THE PROBLEM

Let M be a subspace of R™ of a dimension <m — 2. The problem is to find a strate-
gy E(t; zo) such that the solution z(f), 0 < ¢t < o of the equation

(1) + A z(t) + J:B(u(t — 1), Vit — 13 20)) z(r) d7 =

= f(u(f), Et; 20)) + pg(=(), u(t), E.(t; 20))

with an initial condition z(0) = z, ¢ M does not intersect the subspace M for any
t 2 0, for an arbitrary control u(t) and for an arbitrary vector z,. We shall call
such a strategy an evasion strategy.

Using the technique of convolutions (cf. [1]), we can rewrite the equation (1) in
the form

(2) z + Axz + B(u(t), o(t)) x z = f(u, v, w) + pg(z, u, v, w),

where 4 = D * A, D is the inverse element of S (S is the function identically equal
to one) in the Mikusinski ring (cf. [1]).

If x(¢) is a differentiable function, then D * x = %(f) + D * x(0) and therefore we
can rewrite the equation (2) in the form

(3) (D + A)xz + B(u,v) *z = f(u. v, w) + pg(z, u, w) + D * z,
or in the form
4 (I+8S*A)xz+ S*Bu,v)xz =

= S*f(u, v, w) + pS = g(z, u, v, W) + zo

where I is the unit matrix, i.e. the diagonal matrix with the element 6 in the diagonal
(0 is the unit element in the Mikusinski ring).
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The matrix I + S+ 4 has the inverse entire matrix R(S) =T — S* 4 + S «
* A% — ... (cf. [1]). Therefore, from (4) we get

(5) (I + S*R(S)* B(u, v))*xz =
= S * R(S) * f(u, v, w) + puS * R(S) * g(z, u, v, w) + R(S) * z¢ .

The matrix I + S % R(S) * B(u, v) has the inverse matrix R, ,(S) = I + T,,.,(S),
where

(6) Tawo(S) = —S = R(S) * B(u, v) + S? * R*(S) = B*(u,v) — ... .

The series (6) considered as a series of matrix function of the variable ¢ is uniformly
convergent in any circle with its center at the origin for arbitrarily given functions
u(t) € U, o(f) e V. This fact is a consequence of the following estimates:

| Tw.0)(S)] S |S * R(S) * B(u, v)| + |S* = R(S) * B*(u, v)| + ...,

where || is the euclidean matrix norm. For0 £t < T < oo, |S * R(S) = B(u, v)‘ <
< AIS * R(S)l <Afg |R(S)| dt = np < oo because R(S) is an entire matrix and
IB(u, v)| < Afor all (u,v) e U x V for some 1 > 0.

Denote Y(t) = S = R(S) * B(u, v). Then

ot
IS2 * R*(S) * B¥(u, v)| = Y(t — 1) Y(r)de| < njt < niT.
Jo
rt 2 2
|S3 % R3(S) % B3(u, v)| = || ¥(t — <) ¥*(z) dr| < n%% < ny @Z_T) i
Jo ! !
[t i-1
|S** RY(S) * Bi(u, v)] = || P(t — 7) ¥'"!(z) d1| < "T&ﬂ“ ,
Jo (i—1
Yi(t) = (¥ = ¥'"1) () and hence
2
IT(',,U)(S)[ = nr <1 + %TTT + (nT;;) + ) = npe"’ <

for every (u,v)eU x V.

After multiplying (5) by Ry,,,(S) we get a formula for the solution z, of the
equation (1)

(7 z,(t) = R(S) * zo + R(S) * T, ,(S) * zo + S * R(S) = f(u, v, w) +
+ Tu,o(S) * R(S) * f(u, v, W) + PR, ,(S) * S * g(z, u, v, w) .
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Let L be a subspace of R™ of a dimension k = 2, Which is a part of the orthogonal
complement of M = R™ Let n: R™ — R* be the linear map corresponding to the
orthogonal projection of R™ onto L.

From the form of T,,,(S) it is obvious that R(S) * Tiu,(S) = S * Q.. (S),
where  Q,.,(S) = —R*(S) * B(u, v) + S + R*(S) B*(u,v) — .... Denote by
¢(u, v) (S) the j-th column of the matrix # * Qu.0)(S)-

3. ASSUMPTIONS AND THE MAIN RESULT

(1) ¢,(u, v) (S) does not depend on v, ,, ..., U, Where v = (v1, vz, --.s Um); We shall
write ¢, vy, ..., v;) (S) instead of ¢,(u, v) (S). This condition is satisfied e.g. if
B(u, v) = diag(b,, b,, ..., b,,), where b(u, vy, 03, ..., 0;), j = 1,2, ..., m.

(2) (8)) e, vy oy 0) (S) = G(S) * (Po(us 1 02, -5 0)) +

+ S DU, 0,05 .. 0) + .. )+ 1), 1SjEm,

) Cms1(U, v, W) = % S % R(S) * f(u, v, w) +
+ # % T, ,(S) * R(S) * f(u, v, w) = H(S) * (¥o(u, v, w) +
+ S= ¥ (u,0,w) +...) + ¥(1),
where
(a) ¥{u,v,w), i =0, 1,2, ... are continuous functions on U x V x W; ®{(u, vy, ...

e uj), j=1,2,...m; i=0,1,2,... are continuous functions on U x
X Vi x ... xV;

(b) [#i(u, v, w)|, S a; for all (w,0,w)eU x Vx W, |®)(u, vy, ..., v;)|; £ By for
all (u, 1,05, ..,0) €U x Vy X ... x V;, i =0,1,2,..5j =1,2,..., m, where
a;, B;; are constants, |-'|1 is the euclidean norm in R* and the series
o+ S*d; + S*xdy + ...,
Bi[+S*Bi2+SZ*Bi3+-~’ l=1,2,
are entire functions of the variable #(d; = D = a;, B;; = D * B));

(c) the matrices H(S) and G,(S) are entire matrices over the Mikusinski ring and
det* H(S) # 0, det* G(S) = .0 for all j (det* is calculated as a determinant in the
- usual formal way using the ring multiplication);
(d) the functions (1), ®,(t), j = 1,2, ..., m do not depend on u, v, w.

(e) Denote by [¥o(u, v, w)] the smallest linear subspace of R* containing all points
¥o(u, v, w), (u,v,w)e U x V x W.Let us suppose that the subspace [ ¥o(u, v, w)]
has the largest possible dimension among all representations (9).
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We shall say that the parameter (v, w) in the expressions (8j), (9) has complete
maneuverability, if

(A) for every 1 < j < m, there exists a subspace M; of R* such that c¢;(u, vy, ..., v;)

(S)e M; for all (u, vy,...,v;)€U x V; x ... x V; and either cj(u, vy, ..., v;)
(S) = 0 or the set
(10) F; = n coy, ®(u, vy, ... v;_y. ;)
(U01,50.,0j-1)EUXV X XV
contains interior points of the space M;, where coy, d>{,(u, Ugyeeey Uiy, vj)
denotes the convex hull of the set of all points ®y(u, v, ..., v;_4, vj), v;eV;

for (u, vy, ....,v;-,) €U x V; x ... x V;_, fixed;
(B) neither c,,4,(u, v, w) (S) = 0 nor does the set

(1) Furi1= N cop ¥o(u, v, w)
(u,0)eUxV
contain interior points of the space L, where coy ¥o(u, v, w) denotes the convex
hull of the set of all points ¥o(u, v, w), w e Wfor (u, v) e U x V fixed.

Theorem 1. If the parameter (v, w) in the expressions (8j), (9) has complete
maneuverability, then there exists a number p, > 0 such that for all p, Iul <u
there exists an evasion strategy. Moreover, there exist numbers 1, v, 0 > 0 and an
integer 1 such that for the distance o(z,(), M) of the point z,(t) from the subspace M
the following estimate is valid:

(12) o(z,(1), M) = 16 (Q(Z"g:)’ M)M@ + |zl(t)[,)’+1

for 0 £t < oo, where A, v, 0 > 0, | are constants depending neither on the course
of the game nor on z,(0).

Remark. The integer ! from Theorem 1 is equal to min (I, ..., I), where H(S) =
= H,(S) * diag (S", ..., S™)x Hy(S), I, <1, <...L, H{S), i =1,2 are entire
invertible matrices. It was shown in [1] that an arbitrary entire matrix H(S) has
such a representation.

For the simplicity of computations we can assume without loss of generality that
the origin of the space L is an interior point of the set F,,, ;. Denote by Q the closed
k-dimensional cube with the center at the origin, with sides parallel to the axes and

such that Q <int [} cop Yo(u, v, w) (int P denotes the interior of a set P
(u,0)eUxV

relative to L).

Lemma 1 (see [1], §5). Let a(u, v) = S" = K(S) * (po(u, v) + S * ¢@,(u, v) + ...),
where K(S) = KW(S) * A(ly, ..., I,) * K?X(S), K')(S), K®(S) are entire invertible
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matrices, I; S 1, £ ... <, = 1, A(l;, ..., ) = diag (S", S™, ..., §"), @, are con-

tinuous in (u, v) €U x V, U, V are compact sets. Let int [ co, o(u, v) # 0. Then
uelU
for a sufficiently small cube Q < intco, @y(u, v) with its center at the origin,
uelU

there exists a number T such that for any € > O there exists a measurable function
u()e V,0 < t < Tsuch that

(13) (1), o(0) + 77 %¢] < &

for 0 £t £ Tand for arbitrarily prescribed u(t) e U, &€ Q, where the calculation
of v(t) requires the values u(z), 0 < v < t and & only (||p(t)] = sup |f} p(z)d1]y).
te[0,T]

Sketch of the proof. Let ueU be fixed. Since int () co, @o(u, v) * 0, there

uelU

exists a finite number of points vy, vy, ...,v,€ V such that Q < co {@o(u, v,),

@0, v1), - .., Polu, v,)} for a sufficiently small cube Q. The fact that ¢@o(u, v) is con-

tinuous on the compact set U x Vimplies that for each u € U we can choose values

vfu), i = 0,1, ..., r (ris independent of u) such that v,(u) is a measurable function.
Denote pu) = @q(u, v u)), i =0, 1,...,r. Then

(14) Q < int nuco {po(u), py(u). ..., p(u)} .

To find a solution of the inequality (13) it suffices to find a solution of the inequality
(15) 18(u(t). v) + ofn)] <

where B(u(t), v) = @o(u(t), v) + S * @, (u(1), v) + ..., w(t) = =K ~*(S) * S* = £&. Denote
Bu(t) = ZO[‘PO(“(‘),‘ oiu(1))) i+ Sx @y (u(t), viu(1))) i+ S % @(u(2), vi(u(t)) it ... 1,
where p; = 0 are such numbers that ) u; =1, u = (Ko, Hy, ..., i,). Using the con-

i=0
dition (14) it is possible to prove by the method of successive approximations that for

¢ € Q there exist measurable functions uilt) 20, Y uft) = 1 for t € [0, T] such that
i=0

(16) Buw(t) + 0ft) =0, te[0, T]=1.
By [2, Lemma 4.1] there exist disjoint subintervals I, i =0,1,...,r, Y1, =1
i=0

such that if we define v(t) = v{f) = v,(u(t)) for tel,, i =0,1,...,r, then

(17) |B(u(t), o(t) = Buo(®)] < &, te[0. T].

The equality (16) and the inequality (17) imply

1BGu(t), v(0)) + 0] < |Bu(t). o(t) = Buo®] + [Bun(®) + (0] se.
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Lemma 2. For a sufficiently small cube Q, there exists a number T > 0 such
that for any & > O there exists a measurable function E(t) = (vy(£), v,(2), ..., v,(1),
w(t) eV, x ... x V,, x W, 0 £t < T such that

(N;) lei(u, v1 vz, .. 0) (S)]| S &
for j=1,2,...,m,
(N) lem+ 1(u v, w) (S) + £1¢| < &

for 0 < t < Tand for arbitrarily prescribed u(t) e U, & € Q, where the calculation
of E(t) requires the values u(t) on the interval [0, t] and the point & only.

Proof. For B(u, v) = 0 the lemma follows from Lemma 1. Let B(u, v) % 0. By
Lemma 1 there exists a measurable function v,(f) € V3,0 < ¢ < Ty, T, > 0 such that
this function solves the inequality (Nl) on the interval [0, T] for an arbitrarily
prescribed u(r) € U, where the calculation of v,(t) requires the values u(z), v € [0, £]
only. Denote vl(t) = rl(t, u, s). Now, by Lemma 1 we can find a measurable function
v,()eV,, 0 £t £ T, T, > 0, which solves the inequality (N,) for an arbitrarily
prescribed (u(t), v4(¢)) €U x V;. Denote this solution by v,(f) = ry(t, u, vy, ).
Let vy(f) = ry(t, u, &). Then vy(t) = ry(t, u, r4(t, u, &), &) and this means that the
calculation of v,(f) requires the values u(), 7 € [0, £] only. Proceeding step by step
in this way we can find a measurable solution () = (vy(£), v(2), ..., va(f)) € V; x
X V, X ... x V, of the system of inequalities (N;) on an interval [0, T3], T5 > 0,
such that the calculation of the functions vj(t), j=1,2,..., m requires the values
u('r), 7€ [0, t] only. Now, by Lemma 1, if Q is sufficiently small, there exists a number
T > 0 such that there exists a measurable function w(t), 0 <t £ T for which
(04(2), v3(2), - .., v,(2), W(t)) is a solution of the inequality (N) and the calculation
of w(t) requires the values u(t) [0, t] and the point ¢ only. This proves Lemma 2.

Proof of Theorem 1. The formula (7) for the solutien of the equation (1) and
the formulas (8j), (9) imply # * z,(f) = # % R(S) % zo + # * R(S) * T, ,(S) * zo +
+ %S * R(S) * f(u, v, w) + # = Tuw(S) * R(S) * f(u, v, w) + p#t * Ry, ,(S) * S =
*g(z,u,w) = R+ R(S) * 2o + S x c;(u, v1) (S) * 2§ + S = cy(w, vy, v,) (S) %23 + ...
cooF SHe (U, 045 0,) (S) % 2 + S % iy (u, 0, W) (S) + pft % S * R(S) * Ry, (S) *
* g(z, u, v, w), where z{ are components of the vector z,.

Sublemma 1. Let u;, > 0. If ¢(zo, M) > O, then for u such that }u[ < p, and for
a sufficiently large number A,

2 > Q(Zoa M) or Q(Z()s M)
(18) o(z,(1), M) 2 S for 0<¢< ——_—A(l + o) .

The proof of this sublemma is the same as the proof of the inequality (5.4) in [1].
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Sublemma 2, For a sufficiently small number T > O there exists a number
v > 0 such that for any z,

(19) W1+ |z(8)]) 2 1+ |zo|s
Sor p = uy.

Proof. The formula (7) implies that for 0 < t < T, |z,(¢)], 2 |20]s — Tx(1 + |2o]1)
for Iul < py if y'is a sufficiently large constant. Then 1 + |z,‘(t),1 2(1- Ty .
(1 + |zo|y)- If Tis so small that 1 — Tx > 0, then the inequality (14) is valid for
V= 1/(1 - Ty).

Sublemma 3 (cf. [1, Lemma 5.1]). There exists > 0 so small that that for an
arbitrary vector z, there exists a point é(zo) € Q such that

(20) | % R(S) % zg — Sxt' % &(z0)|, 2 04'*', 0t <T.

Now we choose a number ¢ > 0 which satisfies the following inequalities:
+1
(1) ¢ <30T"*', ¢ < AT, ‘§> 9(%)

where A is chosen large enough to satisfy Sublemma 1.

Let us suppose that at the beginning of the game at the time t = Qitis Q(z,,(O), M) >
> a. Choose a control (v(t), w(t)) arbitrarily. If for some t = t,, o(z,(t,), M) = o,
then define a control (u(z), w(?)) on the interval [¢,, t, + T] so that

(22) (o(r), w(t)) = E(t — t; u, &(z,(t,)). e)eV x W

where E(t, u, ¢, €) is a control satisfying the inequalities (8j), (9) for given ¢ > 0,
u(t)e U and ¢ € Q.

Sublemma 4. If (v(t), w(¢)) is a control defined by the equality (22), then there

exists a number p, > 0 such that for all p, u] nyTH
o\ 1 1
(23) (a) Q(Z,,(f), M) = 16 <E> mll—)ms £t + T,
(b) ozt + T, M) = 0.

Proof. The estimate (18) and the inequalities (21) imply that for

0t < M) __ d ;
= AL |zt A+ |z(t0)])

o(z(1), M) 2 g 20 (%)le 0(%)’“(—1;-'2_”(115'7)71 _
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Now, suppose that
o

— <t
AL+ |z,(t)])

The boundedness of g implies that there exists a constant ¢ > 0 such that for 0 £
Sttt + T |y £y,

|S * R(S) * Ry o(S) * g(z,s u, v, w)|; S ¢

— 4, £T.

for all (u, v, w) €U x V x W. From this and from the Sublemmas 1—4 we obtain
the following estimates:

el M) = 22,0y = [2 R(S) s 20 — S+ (1 = 1 # Ealer) +
+ Sx(t — 1) x &z,(t1)) + S * cpiy(u, v, W) (S) +
+ Sxcy(u,0)(S)*z) + ... + Sxc,(u vy, ... v,)(S)*zo +
+ uS * 2 % R(S) * R o(S) * 9z, w, v, w)|, 2
Z | *R(S)*xzo — Sx(t — 1) * &(z(t,))]; — i
e = ) ) + a5 )] = 5 ) 5]
—pe z 00 — 1) — & — ez, (1,)] 1 — pe. -

If 4 and ¢ are so small that

o I+1 1
0<£1+ z \t + uc < min(3160(- _— 0T’+1 N
(o o) e <min (39(3) e 97°7)

then

YA S
o(z1), M) z 0 </1) 1+ |Z,,(t1)11)1+1

9<%)1H(1 + ‘Zuztl)ll)'“

for t; <t <ty + Tand o(z,(t; + T), M) = 10T'*' > 0. From this and from the
inequality (19) we conclude

= [e(1 + |z,(ts)]s) + pel 2

=

N

saefe\ o1 <1<
24)  olzt). M) 2 40 <M) Gy s sET
and ¢(z,(t; + T), M) 2 o.

Since at the end of the evasion maneuver the point z,(t, + T) is outside the o-
neighborhood of the space M and the number T is fixed for the next menauvers,
we can extend the game for an arbitrarily long time, where for all 1 we get the esti-
mates (23). This proves Theorem 1.
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Example. Let the game be described by the system of equations

(25)  x(t) + a, x(1) + Mv,(l — 1) x(r)dt

JO

w+ ugy(x, y, z, u, v, w),

('t

9(t) + ay y(t) + | va(t — 7) ¥(r)dz

JO

Il

—w + ugy(x, y, z, u, v, w),

#(t) + a; 2(2) + mv3(t — 1) z(7) dt

Jo

It

w + ugs(x, y, z, u, v, w),

dimx =dimy =dimz =1, ueU, veV, weW, U, V,W are compact sets,
g;:R> x U x Vx W-R',i=1,2,3 are continuous and bounded, €(—o0, )
is a parameter, a;, i = 1, 2, 3 are constants.

Let M = {Z =(x,y,z)eR*|x — y =0, z=0}. Then the orthogonal com-
plement of M is the set M* ={Z = (x,y,2)eR®|x + y = 0}. Let L= M".
Then the matrix of the orthogonal projection onto L is

-0 e =s 0
n=_|-1 10| and #=_|-5 & of.
2l 0 01 2l 0 0

if we denote

then we get the system of the form (1), where

A = diag(ay, ay, a3), B(u,v) = diag(vy, 05, 05), f(u, v, w) =

w Jg1
=| Wi, g =192
w g3
R(S) =] —-S*xA+ S?«A4*— .. = diag (RI(S), RZ(S), R3(S)) ,
where
R(S)=0—Sxd;+ S*«d; —..., i=1,2,3.
Then
Qu.o(S) = diag (QG(S), QG(S), Qn(S))
where

Q%,‘;),v)(S) = —R?(S) *v; + S * R?(S) xol — ...
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#xQ,.,(S) = 5 -5 6 0= 0 o2(S) 0
0o 0 0 0 gi’v,(s)
[2En®) —e@u(s) o
=5 [-e® ol o
0 0 Qlu(S)
ie.
Qluln(S)
‘ l u,v
i 0)(S) = 5 | ~QGM(S) | €M ={Z = (x,p.2)eR*|x + y =0, = = 0},
- 0
| - 02,(3)
Cz(u, Ul) UZ) (S) = E 53)1))(5') € MZ = M[ >
0
1 0
c3(u,vl,vz,v3)(S)=— 0 €M3={Z=(x,y, z)eR3|x=0’ y =0}.
E,‘:'),,)(S)

The functions Q(2,(S) have the form

0(S) = v; + S x ¥ (u, Ui en )+, i=1,2,3

and therefore

Uy —0,
1 2
YJ()(u’ vl) = “vl . qlo(u, Ul, 1)2) = 02 s
0 0
0 v,
3 ) _ - . B
‘I’o(u, Uy, Uy, 03) =0 |.F, = N coy, Y’O(u’ yl) =coy, | —v, |,
1)3 uelU . O
—v,
— 2
Fz = n Coy, ‘I’O(u, vy, l)z) = COy, v, |,
(u,v))eUxV, 0
-0
= 3
F3 - n COy, !PO(“! Uy, Uy, 1)3) = COy, 0
(u,01,02)eUXV XV, ;
3

It is clear that if co V; $ 0, i ~ 1, 2, 3, where co V; denote the convex hull of the
set V,, then all the sets F;, i = 1,2, 3 contain interior points of the set M ;» Tespec-
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tively. Now, we shall show thatif int co W= 0, then the set F, = [ coy Yo(u,
v, w) contains interior points of the set L. Indeed, (u,0)eUeV

ﬁ * R(S) * R(u.v)(S) *f(“, v, W) =

o =6 0
1
| =6 6 Of*x[R(S)+ S*R(S)* Qu.u(S)] *f(u, v, w)
2 ,
0 0 o
and hence
'Po(u,p,w)=§ -0 S Ol*|—w|=- |-2w
0 0 d w w

Therefore if co W contains interior points, then

2w
F, =coy | —2w
w

contains interior points, too. All assumptions of Theorem 1 are fulfilled and therefore
for sufficiently small u there exists an evasion strategy.
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