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REGULAR POLYGONS

STANISLAV SMAKAL, Praha
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In the year 1970, B. L. VAN DER WAERDEN [13] published the following theorem:
A pentagon in the space whose all sides are of the same length a and all angles of
the same magnitude o, is planar. It was my teacher K. HAVLICEK who called my
attention to this paper [13] which had attracted the interest of the mathematical
public both by the motivation which led the author to the proof of the theorem and
by its contents itself. It was already in 1970 that the above quoted theorem was
proved in another way by W. LUssy - E. TrosT [9] and by H. IRMINGER [8]. Later,
in 1972, new proofs of the theorem on planarity of the regular pentagon were given
by J. D. DUNITZ - J. WASER [5], S. SMAKAL [11] and B. L. van der Warden [14].
The proof presented by B. L. van der Waerden in [14] is due to G. BoL and H. S.
M. CoxetTer. Thanks to my correspondence with B. GRUNBAUM I have learnt some
other valuable facts concerning the development of this problem in a more general
context. This concerns the references [2], [6] and [12].

A. Auric [2] and G. VALIRON [12] in 1911 were probably the first ones to engage
in the problem of existence of regular polygons in the Euclidean space E>. Then the
problem was left unnoticed for a longer period, only to be solved synthetically
by A. P. GARBER V. 1. GARVACKI and V. JA. JARMOLENKO [7] in 1961. These
authors answer in their paper the question posed in a Soviet non-periodical journal
MatematiCeskoje prosvéséenije by V. I. ARNOLD in the following form: For which n
does there exist a spatial n-gon with all its sides of the same length a and all angles
of the same magnitude «? V. A. EFREMOVIC and Ju. S. ILJASENKO [6] in 1962 gave
a classification of regular polygons in Euclidean spaces of general dimensions. In
the paper they conclude that the immediate transfer of the definition of regularity
from the planar case to spatial polygons, satisfying the requirements of V. I. Arnold,
is rather far from the general understanding of regularity, and they start from the
following definition: A regular polygon is a closed polygonal (piecewise linear) line
that can be isometrically transformed into itself so that given side of the line is
transformed into an arbitrarily chosen side. The paper [6] is based on a study of
the group of all isometries which reproduce a closed polygonal line in the sense of
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the above definition. The classification itself consists in giving the projections of
motions which transform a polygon onto itself. Let us add for the sake of com-
pleteness that O. BoTTeMA [3] in 1973 proved by means of Euler’s (Cayley-Menger’s)
determinant that in the Euclidean space E* there exists for any « € (17, #7) an equi-
lateral pentagon with all angles equal to «, whose vertices generate the space E*.

The character of the problem implies that the notion of a regular polygon in
a Euclidean space E* (z > 2) can be interpreted in different ways. The polygons
studied in this paper could be called maximally regular, as they are the analogues
of planar regular polygons in the strictest sense. Our approach to the problem solved
as well as the subject itself essentially different from those used by other authors.
Our method is based on the properties of the Gram determinant with a cyclic matrix
and on quadratic forms — hence on rather elementary tools. The paper consists of
two parts. Part 1 is devoted to regular polygons with an even number of sides,
Part 2 deals with polygons with an odd number of sides. To distinguish these two
cases proved to be suitable from the view point of the method chosen.

REGULAR POLYGONS WITH AN EVEN NUMBER OF SIDES
IN EUCLIDEAN SPACES

1.1. Given a positive integer d, we shall study an n-gon 4,4, ... A, withn = 2d +

—>

+ 2 in the Euclidean space E??*!, We denote the vector 4;4;, in the n-gon by a;
(i =1,...,,2d + 2 cyclically) and assume that for all i and all k (k = 1,...,d + 1)

— w2 _ 2
(1) aa; =w", a0, =0a0a; 5515 = WX

An n-gon which satisfies (1) will be called a regular n-gon of order d + 1. Let us
notice that every regular n-gon in the plane is in the above sense a regular n-gon
of order d + 1. Without loss of generality we may always assume (with regard to
homothetic transformations) that w = 1.

The closedness of the n-gon implies a; + a, + ... + a,;,, = 0. Scalar multi-
plication of this identity by a vector a; yields in virtue of (1) for each i

d
(2) 1+2Y X+ X3, = 0.
m=1

In this section we shall derive some general relations which will be useful in the sequel.

Denote by G,.; = G(a;, @;.y, ..., a;,,) the Gram determinant of the vectors
a,d;,,,....9;,, (r=0,1,...,2d + 1). The Gram determinant G,4+, has a cyclic
matrix of the form '
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Gousz = | Xgo  Xaogs Xgo2s -+

Xas  Xgip> Xa» Xg—qr - ..
Xi—1> Xao  Xda+1> Xa»
Xg—2s Xa—1s Xa»  Xgiqgs - -
1, X, o X3 o Xz,
Xis 1, X X7,

Xgo  Xg—1s Xg—25 Xg—3s - -
Xa+1> Xoo Xa—1> Xa-25 -

i

X2, Xy

X3 X2

X4, x3

Xa  Xg+q
Xa-1> Xq

1, Xy

S

It is well known that the determinant of a cyclic matrix C of order n is a function
of the elements of € which can be decomposed into n linear factors of the form g(f) =
=¢; 4 cot + ¢35t 4+ ... + c,t"" ! with the coefficients c,, c,, ..
given ordering the first row of the cyclic matrix C. The n factors are obtained by
substituting in g(¢) for the variable ¢ successively all the n-th roots of one (cf. e. g. [4],

pp. 116 —117). In this way the Gram determinant G,,. , assumes the form

2d+2

Grpsr = H g(gu) , &, = CCS§

u=1

The factors g(e,) have in our case the following explicit expression:

d
g(e) =1+ Y x,(en + g2 m)
m=1

u

d+1

.. mu
+isin—— (u =
d+1

+ (1) %44y (w=1,..

2d+2

., ¢, forming in the

1,..,2d +2).

»2d +2).

In virtue of (2) we have g(€,4+,) = 0. Further, it holds ¢,°"* = 1 and hence we obtain

successively

d
O(esams) = 1+ 3w [e047370m 4 (@eramnearaom]
m=1

4
+ (=D 2 =1+ Y xueT " + )+ (D xg s = g(e) -
m=1

This yields an important identity

g(e) = 9(e2a42-4) (k=1,..,d +1).

For any k and m the units &, & ™ are complex conjugate. Thus each of the factors

g(e,) is real.

Let us further consider the determinant J of the matrix

1_1,
€1,

1, o 1T

€3, 3 8n

2 2

83’ > 8"

n—1 n—1
5 83 E) £ 8;;
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When evaluating the determinant J we add 2d + 1 last columns to the first one in
the transposed matrix J7. Thus we obtain zeros in the first 2d + 1 places and the
number 2d + 2 in the last place. Developing the determinant by the first column

yields the identity J = —(2d + 2) J, where J, is a determinant of the form
2 d d+2 2d+1
£, €1, cey €9 -1, &7, R 1
2 d d+2 2d+1
€, €2, > €2, 1, & 7, > €2
2 d d d+2 2d+1
7 £, €5, e €y —1), &g 7, RN 1
1 = d d+1 d+2
-1, 1, ...,(——1),(—1) (=0, —1
2 d d+2 d+2 2d+1
ar2r Ea+2o - Eav2s (=177 €l cees B4y
2 d d+2 2d+1
€a+1> 20415 > S2a+1 — 1, €2a+1> <o €2a41

The ones and minus ones in the (d + 1)-st row and column alternate regularly which
is a consequence of the identity &j*' = ¢&j,, = (—1)/ (j = 1,...,2d + 1).

With the matrix of the determinant J, we proceed in the following way:
a) we subtract each m-th row (m = 1, ..., d) from the (2d + 2 — m)-th row,
b) we add each (2d + 2 — m)-th column to the m-th column.
After these changes, using moreover some well known properties of complex unities,
we can write the determinant J; schematically in the form

-1
1
J, : B
(=1
Jy=1-2,2 -2, .., 2= (=) | (=12 .., 1, —1
0 -
4 - U
0
Here the determinant J, is of the form
g+ et el el L, el 4 it k
g+ 3t et L, S+ s‘;“E
Jo=les+ &34 &+ .., &+ elt?
e et i e ettt e
]e,, +e™t g e e+t

The determinant Z has a zero matrix, the determinants B and U are irrelevant from
the view point of our problem. The identity J = —(2d + 2) J, together with the
scheme for J; imply immediately J = —(2d + 2) DoU where D, has the obvious
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meaning. Since ¢; + ¢, for i # u, the Vandermond determinant J is different from
zero and so is the determinant D,. The complex unities ¢; (j = 1,...,2d + 1) are
solutions of the equation

2d+1
Y y=0.
r=0

Thus the determinant J, has a symmetric matrix. If d + 1 = 2p (p positive integer),
then each odd row in the matrix of the determinant J, is antisymmetric while each
even row is symmetric with respect to the p-th column. If d + 1 = 2p + 1, then
each odd row in the matrix of the determinant J, is antisymmetric while each even
row is symmetric with respect to an axis passing between the p-th and the (p + 1)-st
columns. It follows from the symmetry of the determinant J, that the same holds
for its columns. From these facts and from the equation

we conclude finally that the sum of elements in each odd row of the matrix of the
determinant J, is equal to zero while the sum of elements in each even row is equal
to —2.

Let us now investigate the determinant D, in more detail. We have evidently

-1 |
J,
Dy =2

|
LG (ST (et

where the right hand side determinant is symmetric. Adding to the k-th row (k =
=1,...,d + 1) of this determinant all the other rows, we conclude from the above
mentioned facts about the determinant J, that in the k-th row of the determinant
we have —1 in the first d places and —% in the last place. Multiplying the k-th row
by —2 and, unless k = d + 1, multiplying the last row by 2, we obtain the following
identities in which the resulting determinant of the above operation is denoted by D,:

(3) D, = -2D, (m=1,..,4d)),
Dyiy = —Ds .

Since D, #* 0, it follows from (3) that also the determinants D,, and Dy are non-
zero. This fact will be used in the next section.

1.2. In this section we find necessary conditions for the existence of a regular
n-gon of order d + 1.
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The matrix Gus, determines uniquely a quadratic form G,g4(Y, ¥). The dis-
criminant G,44, of this quadratic form equals zero. All the principal minors of the
discriminant G,g4, Which are needed in order to determine the kind of the quadratic
form are the Gram determinants G, (r =0, 1, ..., 2d). Therefore, these minors
are nonnegative. Consequently, the quadratic form G4+ (Y, Y) is positive semi-
definite.

Let us first assume that in the Euclidean space E?¢*! there exists a regular n-gon
of order d + 1 whose vertices A, 4, ..., A, generate the space E2¢*1 Tn this case
the quadratic form G,44(Y, ) has the rank h = 2d + 1.

Throughout the paper, let E denote the unit matrix of the relevant order. It is
well known that there exists an orthogonal transformation which transforms the
quadratic form G,y ,(Y, ¥) into the canonical form

2d+2

Z lf)’?
i=1

where A; are the roots of the characteristic equation (G4, — AE| = 0. We shall
show that the linear factors g(g,) are roots of this characteristic equation. Moreover,
the factors g(gg+,) and g(,4+,) are simple roots while the factors g(e,,) are double
roots of the equation (m = 1, ..., d). In the proof we shall use the matrix J introduced
in Sec. 1.1. Evaluating the matrix product [G,,4, — g(&,) E] J, we obtain after some
modifications

[Grusr — g(am) E]) =

[g(e:) — g(em)] e, 0, e 0, ..., —g(sm)_il
eLg(e1) — 9(ew)], ety &y -0, s E2dt2-m -0y oy —g(En
= | eilg(:) — 9(e)], o, 820, e Eraraom 0y ot —g(Ey)
|
e e |
Lt g(er) — glem)] --or &2¥F1.0, ..., &3053-0 .0, ...y —g(en)] .

The zeros in the m-th column of the resulting matrix are caused by the factor
[9(en) — 9(&,)] which appears in each element of the m-th column. Similarly, a factor
[9(¢2442-m) — 9(m)] Which is again zero appears in each element of the (2d +
+ 2 — m)-th column. The resulting matrix includes therefore two zero columns
and consequently, its rank is & < 2d. Since multiplication by a regular matrix cannot
influence the rank of a matrix, we conclude that the matrix G,44, — g(&,,) E has for
all m (m =1....,d) a rank h < 2d. Consequently, every factor g(e,,) is at least
a double root of the characteristic equation ]GZ,HZ - ,IEI = 0. It can be shown quite
analogously that the factors g(g;+,) and g(e,4+,) are at least simple roots of the
same characteristic equation. However, the characteristic equation has precisely
2d + 2 roots and thus we can replace the words ““at least” by the word “precisely”.
The closedness condition (2) implies that g(g,4+,) = 0. Moreover, we know already
that the quadratic form Gz,,+2(y, y) is positive semidefinite and its rank is h = 2d +
+ 1. Therefore it follows from the Law of Inertia for quadratic forms that all the

378



other roots of the characteristic equation [G
have the inequalities

(4) g9(e) >0 (’\'=1,...,d+])‘

Let us now consider the numbers x;, (k = 1,... 4 + 1) in the given ordering to
be the coordinates of a point X in the space E4*1 apd let us consider the following
problem: Which are the points of the space E‘*! whose coordinates satisfy the
inequalities (4) and the closedness condition (2)? To obtain a deeper geometrical
view of the matter, let us set g(&) = 0 (k = 1,...,d + 1) and denote the system of
these equations by (S,). Each equation of the system represents the equation of
a hyperplane in the space E4* !, The system (SO) has the explicit form

(S0)

2d43 — AEI = 0 are positive. Hence we

(&r  +& ) xy + (67 +el)x, + .o+ (] A+ + e X = — 1,
(e, +&Yx; + (83 +&2)x, + .o+ (e5 +e)xg+ e xgy = 1,
(eavr + 090" Xy + (6der + eib0) X2 + oo+ (8hey + €270) Xa + €43 1%00, = — 1.

The determinant of the system (S,) is the determinant D, which was introduced in
Sec. 1.1. We found there that it is nonzero. The hyperplanes determined by the system
(S,) have a common point R, whose all coordinates are equal to one. This result is
obtained immediately by substituting into the system (So) with regard to the fact
that the unities g, (k = 1,..., d + 1) are solutions of the equation

The closedness condition (2) can be written briefly in the form g(e,4+,) = 0 and
this equation may be considered again an equation of a hyperplane in the space E** .
If we replace successively the k-th equation (k = 1,...,d + 1) in the system (S,)
by the equation g(e,4,,) = O we obtain together d + 1 systems (S;), (S5), .--» (Sa+1)
of linear equations. Here the index indicates which equation of the original system
(So) was replaced by the equation g(€,4+,) = 0. The determinants of these systems
are the determinants Dy, D,, ..., D, introduced in (3). We know that all of them
are nonzero. Each of the systems (S,) has therefore precisely one solution which
represents in the geometrical interpretation the common point of the hyperplanes
determined by the given system (S,\.). The hyperplanes corresponding to the system
(So) together with the hyperplane g(¢,4+,) = O determine a simplex S = (R, Ry, ...
... Ry 1> in the space E4*!,

It is useful to introduce at this moment some new notions: Let the points Ry, Ry, ...
..., R, generate the space E-.
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a) The simplex S = (Ry, R, ..., R:> in the space E* is the convex set of points
iijj with 0Zw; <1 and Y w;=1.
i=0 i=0

b) The face g, (k = 0, L, ..., z) of the simplex S = {(Rq, Ry, ..., R;) is the convex

set of points

w;R;

J°J

-

with @, =0, 0<Sw;<1 for j+k and Yo;=1.
j=0

J J

c) The open face g, of the simplex S = (R, Ry, ..., R.) is the convex set of points
Y w;R; where 0 <w; <1 and Yow;=1.
i=1 j=1

d) A boundary point of the face g, is any point of the face g, which does not belong
to the open face g,.

Let us consider once more the simplex S = (Ry, Ry, ..., Ry4+ ). The coordinates
of the vertex R, are known. By solving the systems (S,) of linear equations we obtain
the coordinates of the other vertices R, (k = 1, ..., d + 1). Thus we have

2d+1 2 2, - d+1 d+1
R = [ek + & g + et &+ttt gl + & ]
' s T -

s eee s

2 2 2 2
(k=1,...,d+1).

Passing to the goniometric representation and adding the point R, we have

(5) Ro=[1,1,...,1],
k
sz[cos r .cos2ﬁ—,cos3—kn—,..-, cosd k?r , (=)
d+ 1 d+1 d+ 1 d+ 1

(k=1,..,d+1).

As mentioned above, our problem would be solved by satisfying simultaneously
the closedness condition (2) and the inequalities (4). In the geometrical interpretation:
If there exists in the space E***! such an n-gon of order d + 1 with n = 2d + 2
whose vertices A;, A, ..., A, generate the space E??*!, then the point X =
=[x, X35 .- X441] whose coordinates have the same meaning as in (1) must
belong to the intersection of the hyperplane g(ey4+,) = O with that part of the
space E‘*' in which the inequalities (4) hold. We shall show that this intersection
coincides with the open face g, of the simplex S = (Rg, Ry, --., Ryy 1)

Let us denote by e the vector in the space E*! with all its coordinates equal to — 1.
The straight line X = P + et passing through the origin of the coordinate system is
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incident with the vertex R, of the simplex S =< ¢ Ro, R

5 «-+» Rgy1). This line inter-
sects the hyperplane g(£24+2) = 0 for t = 1] . o

(2d + 1). The point of intersection

_ [_ I 1 1
2d + 1 2d+1’""—2d+l]
lies on the halfline opposite to the halfline PRy, since the vertex R, corresponds to the

value of the parameter ¢ = —1. It is easy to verify that the point M is a point of the
open face g, of the simplex S = (Ry, Ry, ..., Ry, ;) since

2 ¢ 1

6 = R,+ — Ry, .
© 2d+1m§1 2a+1 7

Hence each point of the segment MR, belongs to the simplex S = (Ry, Ry, ..., Rg4 ().
The origin P which is an interior point of the segment MR,, is an interior point of
the simplex. Substituting the coordinates of the origin P into all linear factors g(sk)
we find g(g) = 1 (k = 1, ...,d + 1). Hence the inequalities (4) are really satisfied
in the intersection K of open halfspaces determined by the hyperplanes whose equa-
tions are g(g,) = 0, and the simplex S = (Ro, Ry, ..., Rg4 () is a part of this inter-
section. On the other hand, the intersection K is at the same time the only part of
the space E‘*' in which all inequalities (4) hold simultaneously. Indeed, passing
from K to any other part of the space E‘*%, at least one of the inequalities (4) is
violated.

We shall now illustrate the general method explained above by two relatively
simple examples.

1. Let us consider a regular tetragon of order 2 in E3. The decomposition of the
Gram determinant G, into linear factors is obtained by substituting successively all
fourth roots of unity into the relation g(f) = 1 + x;t + x,* + x,t°:

9(e) = g(i) =1 — x5,
g(e2) = 9(—1) =1 = 2x; + x5,
g(es) = g(=i) = 1 — x5,
g(es) = g(1) =1 + 2x; + x,.
The vertex R, = [1, 1] is the solution of the system (S,):
-x, = —1,
—2X; + x, = —1.

The vertices R; = [0, —1], R, = [—1, 1] result from solving the systems (S,), (S,)
which arise from the system (S,) by replacing first the former and then the latter
equation by the closedness condition g(e,) = 0. The equations g(g,) = 0 (u =
=1, ..., 4) yield in this case straight lines in a plane, the face g, is the segment R, R,,
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the open face g is the set of all interior points of this segment. We shall show later
that each interior point of the segment R;R, corresponds to a regular spatial tetragon
of order 2, the point R; corresponds to a square and the point R, corresponds to
a degenerate regular tetragon on the line which arises from “running” through the
unit segment twice in one as well as in the opposite direction (see Fig. 1).

X3
g(q)\ X,
Re 7o SN
2 N,
//) 9% \\\\RO

/ e
-y \
l/ e /
! v 7 R
/ - / % 3
/ < R
R, Xy A 1
N “
Fig. 1. Fig. 2.

2. Consider a regular hexagon of order 3 in the space E°. By decomposing the
Gram determinant G we obtain the linear factors g(e,) (u = 1, ..., 6) which constitute
the system (S,). This system yields the vertex R, = [1, 1, 1] of the simplex S =
= (Ro, Ry, Ry, R3):

Xy — X3 —X3=—1,
—xl—-x2+X3=—1,
—2x; + 2x; — X3 = —1.

The systems (S,), (S2), (S;) result from replacing successively the k-th equation
(k = 1,2, 3) by the equation

2xy + 2x5 + x3 = —1.
Solving these systems we obtain the vertices R, (k =1,2,3):
Riz[%’ _%,"'1]3 R2=[_%7 _%,1]9 R3=[_]91:""1]

The simplex S = (Rg, Ry, R,, R3) lies in a space E* (see Fig. 2). The face g, is the
triangle R;R,R;, the open face g, is the set of all its interior points. It is worth
noticing that all vertices of the simplex lie on the surface of a cube with the length
of edge equal to 2 (for the tetragon from Example 1, all vertices lie on the perimeter
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of a square with the length of side equal to 2). The point of intersection of the body
diagonals of this cube coincide with the origin P of the coordinate system, the
faces of the cube pass through the unit points on the axes parallelly to the coordinate
planes.

The fact that the vertices of the simplex lie on a perimeter of a square for the
tetragon on the surface of a cube for the hexagon is not incidental but follows
from (5).

We conclude the investigation of necessary conditions for the existence of a regular
n-gon of order d + 1, whose vertices generate the space E2¢*1, by the following

Theorem 1. Let the coordinates of a point X = [x,, X5, ..., x,,“] have the same
meaning as in (1). If there exists for n = 2d + 2 a regular n-gon of order d + 1
whose vertices generate the space E***! then the point X lies in the open face o,
of the simplex S = (R, Ry, ..., Ryy > whose vertices are given by (5).

Let us now assume that there exists for n = 2d + 2 a regular n-gon of order
d + 1in E***! whose vertices generate a subspace of dimension h where h < 2d + 1.
Then a nonzero Gram determinant of order h can be selected from the matrix G,,, ,
and the quadratic form G, z(y, y) has the rank h. However, the rank of the quadratic
form G, (Y, y) is determined by the number of nonzero roots 2, = 9(&) (k =
=1,...,d + 1) of the corresponding characteristic equation |G2d+2 - AE| = 0.
One zero root is obtained from the closedness condition (2). If h = 2d + 1 — 2uv,
then also the double roots i, = g(e,,), ..., 4., = g(e,,) are equal to zero, where
{ty....,7,} is an arbitrary nonvoid subset of the set {I,...,d}. All other roots
satisfy the inequalities (4). The point X = [xy, ..., X44,] Whose coordinates satisfy
all the above requirements belongs to the intersection of the faces go, 0., - --> €,
and hence is a boundary point of the face go. A similar situation occurs, from the
view point of the result, if & = 2d — 2v. In this case the simple root 441 = g(€s+1)
as well as the double roots 4, = g(,), .-, A, = g(e.,) are necessarily equal to zero,
{t4, ..., 7,} being an arbitrary proper subset of the set {1, ..., d}. The other roots
are positive according to (4) Now the point X belongs to the intersection of the faces
00> Qa+1> Qs ---» O, and is again a boundary point of the face g,.

Theorem 2. Let the coordinates of a point X = [x,, x,, ..., X,11] have the same
meaning as in (1). If there exists for n = 2d + 2 a regular n-gon of order d + 1
in the space E***1 whose vertices generate a subspace of a dimension h < 2d + 1,
then the point X is a boundary point of the face g, of the simplex S = (R, R, ...
-+ Ray 1> whose vertices are given by (5).

1.3. In this section we shall show that to every point X = [xy, X,, ..., Xz4] lying
on the face g, of the simplex S = (Ry, Ry, ..., Ry1{> in the space E4*1, there cor-
responds a regular n-gon of order d + 1. A way how to construct thijs n-gon will
also be suggested.
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Let us choose an arbitrary point X = [x;, X, ..., X,41] which belongs to the
face go of the simplex S = (Ro, Ry, ..., Rg4). The point X can be easily associated
with a quadratic form whose matrix Gj,,, is formally coincident with the
matrix G,y ,. The orthogonal transformation D = A"G%,, ,A brings the quadratic
form G%;,,(y, ) to the canonical form

2d+2

D(y,y) = "ZI 9(e.)ys -

We have proved in Sec. 1.2 that each point X = [xy, X,, ..., X,4,] which belongs
to the face g, satisfies g(g) =2 0 (k=1,...,d + 1). Hence the quadratic form
D(y, y) is positive semidefinite and the Law of Inertia of quadratic forms implies
that the same holds for the quadratic form G3,, (¥, y). The relation D = A"G},,,A
implies further that G3,,, = ADAT,

Let us denote by W the matrix which results from the matrix D by replacing each
element g(g,) by the element [g(g,)]"/* (k = 1, ...,d + 1) and the element g(54+,)
by [g(e24+2)]">. Obviously D = W2, The orthogonal transformation Q = AWAT
transforms the matrix W into the matrix Q and

Q? = AWATAWAT = AW2AT = ADA” = G%,,, .

The elements of the i-th row of the matrix Q can be interpreted as coordinates of
a vector a; in the vector space of E***? with an orthonormal basis (i = 1, ..., 2d + 2).
The matrix Q is symmetric and the vectors a; fulfil both the closedness condition
and the conditions (1). The discriminant G%,,, is in fact the Gram determinant
G4+2- Consequently, given a fixed point X € g, we can construct in a unique way
up to the location a regular n-gon of order d + 1 whose sides are suitable locations
of the vectors a,, a,, ..., Gy 4 5.

If we choose an arbitrary point Z lying in the hyperplane g(szd”) = 0 but not
belonging to the face g, of the simplex S = {(Ry, Ry, ..., Rg1 ), then at least one of
the coefficients g(g) (k = 1,...,d + 1) of the quadratic form D(y, y) is negative.
Neither the quadratic form D(y, y) nor the quadratic form G344 (Y, y) obtained
by the inverse transformation are positive definite and hence the discriminant G54, ,
is not in this case the Gram determinant.

To each point X of the face g, of the simplex S = {Rq, Ry, ..., Ry4,) there
corresponds a regular n-gon of order d + 1. We have now to determine the space
generated by the vertices of this n-gon. (2) implies g(ezd”) = 0. If the point X
belongs to the open face g, then all the coefficients g(g) (k = 1,...,d + 1) are
positive. The quadratic form D(y, y) has the rank h = 2d + 1. A Gram determinant
of order h = 2d + 1 selected from the matrix G,,, , is nonzero and the vertices of
the n-gon generate in this case a space of dimension h = 2d + 1. If the point X
belongs to the intersection of the faces o, 0, - --» @, Where {7y, ..., T,} is an arbitrary
nonvoid subset of the set {1,...,d}, then the coefficients g(e,), -, g(e,,) of the
quadratic form D(y, y) are zero and its rank is h = 2d + 1 — 2v. The vertices
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of the n-gon generate a space of dimension h = 2d + 1 — 2v since a certain Gram
determinant of order h = 2d + 1 — 2v is in this case different from zero. If the
point X belongs to the intersection of the faces o, €4+ 1> 0,5 - - -» 0z, Where {rl, oo Ty}
is an arbitrary proper subset of the set {1, ..., d}, then the rank of the quadratic form
D(y, y)is h = 2d — 2v and hence a certain Gram determinant of order h = 2d — 2v
selected from the matrix G, . , is positive. The vertices of the regular n-gon of order
d + 1 generate in this case a space of dimension h = 2d — 2v.

In particular, the regular n-gons corresponding to the vertices R, (m =1,.., d)
of the simplex are planar. The rank of the quadratic form D(y, y) at the vertex R,
is h = 1. If we admit this singularity, this represents a “regular n-gon of orderd + 1
which results from running through a chosen segment alternately (d + 1)-times
in each of the both directions.

The investigation of the existence problem being completed, we are ready to for-
mulate the results. '

Theorem 3. Let X = [x; x,, ..., X;4] be an arbitrary point of the open face g,
of the simplex S = (Rq, Ry, ..., Ry (> whose vertices are given by (5). Then
there exists for n = 2d + 2 a regular n-gon of order d + 1 whose vertices generate
the space E***' and the coordinates of the point X have the same meaning as in (1)

Theorem 4. Let X = [x, x,, ..., X44 1] be a boundary point of the face g, of the
simplex S = {Rg, Ry, ..., R4+ 1) whose vertices are given by (5)

a) If the point X belongs to the intersection of faces g.,, ..., 0., Where {ty, ..., 7,}
is an arbitrary nonvoid subset of the set {1, ..., d} and X ¢ 0441, then there exists
for n'=2d + 2 a regular n-gon of order d + 1 whose vertices generate a space
E**~2"*1 and the coordinates of the point X have the same meaning as in (1).

b) If the point X belongs to the intersection of faces @441, 0, ---» 05, Where
{t1, ..., 7.} is an arbitrary proper subset of the set {1, ..., d}, then there exists for
n = 2d + 2 a regular n-gon of order d + 1 whose vertices generate a space E**~%"
and the coordinates of the point X have the same meaning as in (1).

Theorems 3 and 4 enable us to conclude the existence problem by the following

Theorem 5. In a Euclidean space E? there exists for every even number n > z
a reqular n-gon of order 1n whose vertices generate the space E*.
I

REGULAR POLYGONS WITH AN ODD NUMBER OF SIDES
IN EUCLIDEAN SPACES

2.1. We shall now study an n-gon A4, ... 4, in a Euclidean space E** (d 2 2)
with an odd number n = 2d + 1 of sides. We shall apply the same method as in the
preceding case of regular polygons with an even number of sides. Except for necessary
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modifications we shall preserve also the notation. We shall proceed more briefly if
only the nature of the problem allows it. On the other hand, we shall pay more
attention to all points in which the two cases differ. We shall show that regular
n-gons of order d with an odd number n = 2d + 1 of sides (which we are going to
define immediately) do not exist in spaces of odd dimensions and generating them.

—_—
We shall assume that the vectors of the sides a; = A;A;,, of the given n-gon
satisfy for all i (i = 1,...,2d + 1 cyclically) and all k (k = 1, ..., d) the relations

w2 _ 2
(7) a;a; =w", a8, =00, 541k = WXg.

An n-gon satisfying (7) will be called a regular n-gon of order d. Every regular
planar n-gon with an odd number of sides n = 2d + 1 is in the sense of the above
definition a regular n-gon of order d.

We shall again simplify our reasoning by assuming w = 1. The closedness con-
dition is now

d
(8) 142Yx,=0. :

m=1

The Gram determinant G, is associated with a cyclic matrix

1, X1y Xas  weey Xgogs Xgo Xgy  Xge—qs - -es X2, Xy
X, 1 Xis  cees Xgoay Xg—1s Xa»  Xg, ceey X3, Xy
11Xy, Xy 1 ceey Xg—35 Xg—2s Xg—1. Xa» coey X, X3
G _ || Xd-1> Xa-2, Xa-35 » 1, X1, X2, X3, > Xas X4
2d+1 =
X4, Xda—1> Xd-2> > X1s 1, X1 X2, > Xd—1, Xg
Xy Xgp Xa-1> > Xz, Xy, L X1, > Xa—2> Xg—y
X2, X3 Xa s Xg» Xg—1, Xa—2, Xa-3» ~ 1, X4
X, X2, X3 > Xas Xa» Xa—1> Xd-2> Xis 1 i
Itis
2d+1
Gary = H g(su)
u=1
where

.. 2nu
+ 181
2d + 1 2d + 1

&, = COS (w=1,...,2d + 1).

An explicit formula for the factors g(g,) is

d
gle) =1+ X xu(er + &2 (u=1,...,2d + 1).
m=1
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In virtue of (2) we have g(&2a+ 1) = 0. Further,
9(&) = 9ezasr-) (k=1,....d).

Arranging the determinant J of the regular matrix

IS U T |
| €1y &3y ...y €24 E2441 !|
j= 8‘;" 85’ L] 8%4, 8§d+1 |
.................... i
"_sfd> sgd’ Y] 8%:’ 8§:+1 J

leads to the identity J = (2d + 1) DoU. Hence we see immediatelly that Dy # 0
and the determinant D, is written explicitly in the form

| 2d 2 2d—-1 d d+ 1!
leg + ey, er e, L., 8y g
2d 2 2d—1 d d+1
DO=182+82,82+82 s ey €3 + &
| 2d 2 2d-1 d d+1;
leg + &5 &g + 8", ..., g +Eg |

Complex unities &; (j = 1,..., 2d) are solutions of the equation
2d
Yy =0.
r=0

Therefore the sum of elements of each row of the matrix of the determinant D,
equals —1. By symmetry, the same holds for the columns. Adding to the k-th row
(k = 1,..5 d) of the matrix of the determinant D, all the other rows, then multi-
plying the k-th row by —2 and denoting the determinant of the resulting matrix
by D, we obtain

© D= —2D, (k=1,...,d).

Since D, # 0, all the determinants D, are nonzero as well.

2.2. The matrix G,4,; determines a quadratic form G4 (Y, y) which is positive
semidefinite and has the canonical form

2d+1

D(y,y) = .,;1 g(e.) v2 .

These assertions can be verified in the same way as the analogous properties of the
quadratic form G, (Y, ¥) in Sec. 1.2. Since g(gz4+1-1) = 9(&) forall k (k = 1, ...
... d), all coefficients g(&) appear twice in the canonical form of the quadratic form
while the coefficient g(sz,H ,) appears only once.
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First we shall assume that there exists for n = 2d + 1 a regular n-gon of order d
in the Euclidean space E?? whose vertices generate the space E*%. Then it follows
from the properties of the Gram determinant that the quadratic form szﬂ(y, y)
has the rank h = 2d. According to (8) we have g(g;4+1) = 0, hence all the other
coefficients of the positive semidefinite quadratic form D(y, y) are positive. Hence

(10) g(g) >0 (k=1,...4d).

The numbers x, (k = 1,...,d) in the ordering given by the indices are inter-
preted again as coordinates of a point X in the space E%. We ask which points of the
space E? have the property that their coordinates fulfil the inequalities (10) and the
closedness condition (8). Setting g(g,) = 0 (k = 1, ..., d) we have a system of equa-
tions (S,) in the form

2d—-1

(& + &) x, + (& +6 Hxy+ ..o+ (el + 61 )xg= -1,

(S0) (g2 + &Y%, + (B +& )xy+ ..+ (3 + 8 )x, = —1,
0,

(0 + &3 x; + (60 + & )Xo + oo 4 (e + 887 )xg= —1.

The system (S,), being an analogue of the identically denoted system from Sec. 1.2,
has a nonzero determinant D,. The hyperplanes of the space E corresponding to
the system (So) have an only point in common, namely R, with all coordinates equal
to one.

We replace successively the k-th equation of the system (S,) by the closedness
condition g(€;4+;) = 0. Thus we obtain altogether d systems (S,), (S,), ..., (S4)
of linear equations with determinants D, from (9) which we know to be nonzero.
Each of the systems (S;) has therefore a unique solution which represents in the geo-
metrical interpretation the common point R, of the hyperplanes determined by the
corresponding system (S;). The hyperplanes given by the system (S,) together with
the hyperplane g(g,54) = O determine again a simplex, in this case a simplex
S = (Ry, Ry, ..., Ry) in the space E“. The vertices R are now of the form

2d 2 2d—1 3 2d—-2 d d+1
R I:sk + &% & + & & + & & + &
k= -

, , __] (k=1.2,...4d).

2 2 2 2

Arranging the formulas and adding the point R, we obtain

(11) Ro=[L1...,1],

2kn 2kn 2kn 2kn
R, =] cos , COs 2 , cos 3 y e.,co8d —— |
2d + 1 2d + 1 2d + 1 2d + 1

Let us remind that our aim is to find those points X = [x,, X,, ..., X;] in the
space E? whose coordinates fulfil both the closedness condition (8) and the inequali-
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ties (10). The closedness condition (8) holds for every point of the hyperplane
g(azdﬂ) = 0. We shall show that both the conditions simultaneously are fulfilled
only for the points X = [x, x,, ..., x,] belonging to the open face g, of the simplex
S = <{Rg, Ry, ..., Ryp).

Let us denote by e the vector in the space E* whose all coordinates are equal to — 1.
The straight line X = P + et passing through the origin of the coordinate system is
incident with the vertex R, of the simplex S = (Ry, Ry, ..., R;>. This line intersects
the hyperplane g(g,44,) = 0 for ¢ = 1/2d. The point of intersection T = [—1/2d,
— 1/2d, ..., —1/2d] lies on a halfline opposite to the halfline PR, since the vertex R,
corresponds to the value of the parameter t = — 1. The point T'is the center of gravity
of the face g, of the simplex S = (R, Ry, ..., R;> which is an immediate con-
sequence of (11):

d
(12) 7=L YR, ".
dm=1

Hence the point T belongs to the open face g, and each point of the segment TR,
is a point of the simplex S = (Ry, Ry, ..., Rg). The origin P of the coordinate system
is an interior point of the segment TR, and consequently, it is also an interior point
of the simplex S = (R, Ry, ..., R;). Substituting the coordinates of the origin P
into the linear factors g(g,) we find that g(¢;) = 1 (k = 1, ..., d). Hence the inequali-
ties (10) hold in the intersection K of open halfspaces determined by the hyperplanes
g(&) = 0 to which the simplex S = (Rq, Ry, ..., R;> belongs. On the other hand,
the intersection K is the only part of the space E? in which all inequalities (10) hold.
Indeed, when passing from the intersection K into another part of the space E‘
always at least one of the inequalities (10) is violated. This fact together with the
closedness condition (8) leads to the open face g,.
Let us introduce an illustrative example.

Example. Let us consider a regular pentagon of order 2 in the space E*. Linear
factors are obtained by substituting for ¢ into the relation g(f) = 1 + x,¢ + x,* +
*) B. MISEK in 1959 published a paper [10] in which he studies the volume of the convex hull
of an (n + 1)-gon in the Euclidean space E". B. Mi3ek looks for an (» + 1)-gon in the space E"
with a given perimeter L, whose convex hull has the maximal volume ¥, and derives the inequality

V<a_n (n+1)n—1 1/2
=a|l o

where a = L[(n + 1). B. MiSek proved that the extremal case of this inequality occurs for the
equilateral (n 4+ 1)-gon with the property that any two sides of the polygon form the same
angled with cos @ = 1/n. This extremal (z 4+ 1)-gon corresponds to the point M from (6) or to
the point 7 from (12). The point M may be interpreted as the center of gravity of the system of
vertices R, from (5) where the vertices R, (m = 1, ..., d) have the weight 2 while R, ; has the
weight 1. The point T is analogously the center of gravity of the homogeneous system of vertices
R, from (11).
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+ X,% + x,1* successively all the fifth ro0ts of one:

. 2n /5
9(81)=9(€4) =g(cosg§£+ism —;)z I+ — X, — X5,

4 5 —1 45
9(e2) = g(&3) = ¢ (cos i’;} isin —5E> =l t v X+ TN X3

gles) = g(1) = 1 + 2x; + 2x,.

The vertex Ry = [1, 1] of the simplex S = (Rq, R, R,) is the solution of the system
of equations (Sy)

H=1+ 5 x, — 31 + 5)x,

— 31+ 5 x, + 4(—1 + J5) x,

-1,
—1.

The coordinates of the vertices R, = [%(_1 +J5), H=1—J5)]. R, =
= [H(—1 = /5), 4(—1 + /5)] are the solutions of the \s/ys)teni(s (S)) ar:ii 2_192) wtzlich
result by replacing the first and then the second equation in the system (So) by the
closedness condition g(ss) = 0. Evidently it is possible to determine the coordinates
of the vertices directly from (11). The lines with equations g(z,) — 0, g(z) — 0

aqd g(es) = 0 determine a simplex S = (R, Ry, R,) in the plane, the face g, is the

)
- Ro
/
/
/
/
/
—l
/ %
/
Ry

Fig. 3.

segment R;R,, the open face g is the set of all interior points of this segment (see
Fig. 3). It will be shown later that the vertices R,, R, correspond to regular planar
pentagons (a convex pentagon corresponds to Ry, a starlike pentagon to R,) while

the interior points of the segment R;R, correspond to regular pentagons of order 2
which generate the space E*.
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It is of interest that in the case of a regular n-gon of order d with an odd number
n = 2d + 1 of sides the vertices Ry, ..., R; of the simplex S = {Ry, Ry, ..., R
do not lie on the surface of a certain cube as was the case with regular n-gons of order
d + 1 with an even number n = 2d + 2 of sides.

We formulate the results of the above considerations in

Theorem 6. Let the coordinates of a point X = [x,, x5, ..., X,] have the same
meaning as in (7) If there exists for n = 2d + 1 a regular n-gon of order d whose
vertices generate the space E**, then the point X belongs to the open face g, of the
simplex S = {(Ry, Ry, ..., R;) whose vertices are given by (11).

Let us now start from the assumption that there exists for n = 2d + 1 a regular
n-gon of order d in the space E*? whose vertices 4,, 4,, ..., A, generate a subspace
of a dimension h, where h < 2d. Then there exists a Gram determinant of order h
selected from the matrix G,,,; which is different from zero and the quadratic form
G,a+4(y, y) has the rank h. The rank of the quadratic form Gg44(Y, y) coincides
with the number of nonzero coefﬁcients.of the quadratic form

2d+1

D(y,y) = u; g(e.) yi -

Here we arrive at the essential contradistinction in comparison with the situation
occuring for regular polygons with an even number of sides. Each of the factors
g(&) (k = 1,...,d) is a double root of the characteristic equation |G,q4; — 2E| = 0
and hence it appears twice in the canonical form D(y, y) of the quadratic form
G,a+1(Y, y). Consequently, the quadratic form G4y 4(y, y) cannot have the rank
h = 2k — 1. The closedness condition (8) gives one zero coefficient. If h = 2d — 2v,
then there are zero coefficients g(t,), ..., g(t,) where {zy,...,7,} is such a subset
of the set {1, . d} that 1 £ v £ d — 1. For all other coefficients of the quadratic
form D(y, y), the number of which is h = 2d — 2v, we have necessarily the inequali-
ties (10). The point X whose coordinates satisfy all the above conditions lies in the
intersection of the faces @o, 0,5 - -, ¢;, and is a boundary point of the face g, of the
simplex S = (R, Ry, ..., Rp).

Theorem 7. Let the coordinates of a point X = [xy, x5, ..., X;] have the same
meaning as in (7) If there exists for n = 2d + 1 a regular n-gon of order d in the
space E*? whose vertices generate a subspace of a dimension h < 2d, then h is even
and the point X is a boundary point of the face g, of the simplex S = {Ry, R, ...
..» Rg> whose vertives are given by (11).

2.3. In the same way as in Sec. 1.3 it can be shown that to each point X belonging
to the face g, of the simplex S = {(Rg, Ry, ..., Ry, and only to such a point, there
corresponds a regular n-gon of order d with an odd number n = 2d + 1 of sides.
Formally, the cylic matrix G, , from Sec. 1.3 is replaced by the cylic matrix G2, ;
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and it is shown that the latter coincides with the matrix G4+ ;. The resulting matrix Q
which satisfies the identity Q> = G}, ; has obviously the order 2d + 1. The elements
of the i-th row of the matrix Q are again interpreted as coordinates of a vector a,
in the vector space of E2**! with an orthonormal basis (i = 1,...,2d + 1).

However, other conclusions are to be expected when considering the problem of
the space generated by the vertices of the n-gon 4,4, ... 4,.

First, let us choose a point X in the open face g, of the simplex S = (Ry, Ry, ...
...» Rg>. Then g(ez44,) = 0 and all coefficients g(,) (k = 1, ..., d) of the quadratic

form
2d+1

D(y,y) = u; 9(e.) y2

are obviously positive. The quadratic form D(y, y) and hence also the quadratic
form GZdH(y, y) have the rank h = 2d. Therefore a certain Gram determinant of
order 2d selected from the matrix G, is positive. Consequently, to each point X
belonging to the open face g, corresponds a regular n-gon of order d whose vertices
generate a space of dimension h = 2d.

Now let us choose a point X to be a boundary point of the face g, of the simplex
S = {(Ry, Ry, ..., Ry). Such a point X lies in the intersection of faces ¢, 0;,» ---» 0s,
where {7, ..., 7,} is a subset of the set {1, ...,d} with 1 < v < d — 1. This means
that the coefficients g(€24+1)> 9(:,). - - 9(.,) equal zero and the rank of the quadratic
form Gz,,ﬂ(y, y)is h = 2d — 2v. A certain Gram determinant of order h = 2d — 2v
selected from the matrix G,,,, is positive. The vertices of the n-gon generate in this
case always a space of an even dimension h = 2d — 2v.

The extremal case occurs at the vertices R, (k =1,.., d) where v = d — 1 and
h = 2. Each vertex R, corresponds to a regular planar n-gon with an odd number
n = 2d + 1 of sides for which the regularity of order d coincides with the regularity
in the current sense if the word.

Theorem 8. Let X = [X,, X5, ..., X,] be an arbitrary point in the open face g,
of the simplex S = (Rq, Ry, ..., R;)> whose vertices are given by (11). Then there
exists for n = 2d + 1 a regular n-gon of order d whose vertices generate the
space E** and the coordinates of the point X have the same meaning as in (7).

Theorem 9. Let X = [X{, X,, ..., x,] be a boundary point of the face g, of the
simplex S = {(Ro, Ry, ..., Rg) whose vertices are given by (11). If the point X
belongs to the intersection of faces o,,, ..., @, where {t, ..., 1,} is a subset of the
set {1,...,d} with 1 <v<d — 1, then there exists for n =2d + 1 a regular
n-gon of order d whose vertices generate the space E**~2 gnd the coordinates of the
point X have the same meaning as in (7).

Taking into account the trivial case of an equilateral triangle omitted until now for
the sake of simpler formulation, we can summarize the results concerning the existence
problem as follows:
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Theorem 10. In a Euclidean space E** there exists for every odd number n > 2z
a regular n-gon of order %(n — 1) whose vertices generate the space E?*=,

In a Euclidean space E**~1 there exists for any odd number n no regular n-gon
of order %(n — 1) whose vertices generate the space E**1.

The theorem on planarity of a regular pentagon in E* published in 1970 by B. L.
van der Waerden [13] is a special case of our Theorem 10. Actually, B. L. van der
Waerden [13] as well as (in a more general setting) V. I. Arnold [1] require only
that any two sides have the same length and that the angles of any pair of adjacent
sides be equal. Nonetheless, it is seen from the relation (3) in our paper [11] that
in this special case the assumptions guarantee the regularity of order 2. This is not
true for n-gons with an odd number of sides which are regular in the sense of Arnold’s
definition provided n = 7. As was shown by A. P. Garber, V. I. Garvackijand V. Ja.
Jarmolenko [7] who solved Arnold’s problem, such regular polygons in the space E*
do exist.
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