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GENERALIZED DEDEKIND COMPLETION OF A LATTICE
ORDERED GROUP

JAN JakuBik, Kosice

(Received May 5, 1976)

The notions of the generalized Dedekind completion D 1(G) and of the archimedean
kernel A(G) of a lattice ordered group G were introduced in [10]. In this paper some
further properties of D,(G) are established.

In § 2 it is shown that to each direct decomposition of G there corresponds a direct
decomposition of DI(G). Namely, if G is a direct product of its I-subgroups G;
(i eI), then D(G)is a direct product of its I-subgroups D,(G;) (i € I). This generalizes
a result from [6] concerning archimedean lattice ordered groups. An analogous
assertion is valid for direct sums of lattice ordered groups. If G is epiarchimedean
and conditionally orthogonally complete, then D,(G) is epiarchimedean. If G is
strongly projectable, then so is D,(G). If G is projectable and A(G) is strongly pro-
jectable, then Dy(G) is projectable. If G is projectable, then D,(G) need not be pro-
jectable. If G is conditionally orthogonally complete, then so is D,(G).

Pairwise splitting lattice ordered groups have been studied by MARTINEZ [12].
Generalized Dedekind completions of pairwise splitting lattice ordered groups are
dealt with in § 3. It is proved that if G is a pairwise splitting abelian lattice ordered
group such that the archimedean kernel A(G) of G is conditionally orthogonally
complete, then D,(G) is pairwise splitting; the assumption of the conditional ortho-
gonal completeness of 4(G) cannot be omitted.

In § 4 the relations between higher degrees of distributivity of a lattice ordered
group G and those of DI(G) are investigated. Let f be a cardinal. For a lattice ordered
group H we write d(H) = o« if H is y-distributive for each y < « and if H fails to be
a-distributive. Let d(G) = a. If either A(G) is completely distributive or A(G) is
projectable, then d(D4(G)) = a. If A(G) is not completely distributive and d(G,) = p,
where G, is the Dedekind completion of A(G), then d(D(G)) = min {«, §}.

A lattice ordered group G is called g-complete if DI(G) = G. In §5 it is shown
that each lattice ordered group possesses a largest g complete convex [-subgroup.
This implies that the class of all g-complete lattice ordered groups is a radical class

[11].
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1. PRELIMINARIES

The standard terminology for lattices and lattice ordered groups will be used
(cf. BIRKHOFF [1], CONRAD [2] and Fucas [5]). The group operation is written
additively, the commutativity of this operation is not assumed.

Let us recall some notions and some results from [10]. Let G be a lattice ordered
group. An element 0 < ae G is called archimedean in G if for each 0 < xe G
there exists a positive integer n such that nx non < a. We denote by A(G) the I-sub-
group of G generated by the set of all archimedean elements of G. Then A(G) is
a closed l-ideal of G and A(G) is archimedean (i.e., each element 0 < a € A(G) is
archimedean in A(G)). If H is a convex I-subgroup of G and if H is archimedean,
then H = A(G). We shall often write A instead of A(G), when no ambiguity can occur.

For any archimedean lattice ordered group K we denote by D(K) the Dedekind
closure of K (cf. e.g. [1], Chap. XIII, § 13).

For each lattice ordered group G there exists a lattice ordered group D,(G)
fulfilling the following conditions:

(i) G is an I-subgroup of Dy(G);

(ii) D(A(G))is an l-ideal of D,(G);

(iii) if x € G and if X is a nonempty subset of x 4+ A(G) such that X is upper
bounded in x + A(G), then there is x, € D;(G) with sup X = x;

(iv) for each x o D(G) there exist x € G and X = x + A(G) such that X is upper
bounded in x + A(G) and x, = sup X holds in D,(G).

The lattice ordered group D,(G) is determined uniquely up to isomorphisms. More
precisely, if D' is a lattice ordered group fulfilling the conditions (i)—(iv) (with D’
instead of D,(G)), then there exists an isomorphism ¢ of D(G) onto D’ such that
¢(x) = x for each x € G and each x € D(A(G)).

If X is a subset of G and if sup X = x, exists in G, then x,, is the least upper bound
of X in D,(G) (and dually). D(G) coincides with D(G) if and only if G is archimedean.
The lattice ordered group D,(G) is said to be the generalized Dedekind completion
of G. We have 4(D4(G)) = D(A(G)). The l-ideal D(A(G)) is closed in D,(G). If G is
abelian, then D,(G) is abelian as well.

For each x, € D,(G) there is x € G and a € D(A(G)) such that xo = x + a. If
0 < x, € Dy(G), then there are elements 0 < x, € G, 0 £ a, € D(A(G)) with x, =
= x; + a;. In fact, if D(A(G)) = {0}, xo = x + a, x€ G, ae D(A(G)), then a = 0
and x = 0. Let D(A(G)) # {0}; then D(A(G)) has no least element. Hence there is
x' €x + D(A(G)) with x" € G, x" < x, (cf. the condition (iv) above). Put x; = x" v 0,
a; = —x; + Xo. Then x; €x + D(4(G)), 0 £ x; < x,, 0 £ a, € D(A(G)), x, =
=X; + a;.

Let X < G. The set

X’={geG:lg| A |x| = 0 for all xe X}

is called a polar of G. The set X% is said to be a polar generated by X;if card X = 1,
then X% is called a principal polar.
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2. DIRECT DECOMPOSITIONS

Let us recall some notions concerning direct products and direct sums of lattice
ordered groups (cf. e.g. [6]).

Let I be a nonempty set and for each i el let G; be a lattice ordered group. We
denote by G, = H,-E, G; the direct product of the lattice ordered groups G;. Thus G,
is the set of all mappings f:1 — UG, such that f(i) € G; for each i €1, the lattice
operations and the group operations being defined coordinatewise. For iel we
denote G' = {fe G, :f(j)=0forall jel, j + i}.

Let G be a lattice ordered group and let ¢ be an isomorphism of G onto G,. For
each i e I we put G{ = ¢~ '(G'). Each G is said to be a direct factor of G. We write
also G = H?e, G{. The I-subgroup of G generated by the set U;.; G¢ will be denoted
by Y iy GY and called the direct sum of G (i €I). If I is finite, I = {1, ..., n}, then

2, GY =Y 2, G? and we denote it also by G @ ... @ G..

Each direct factor of G is a closed I-ideal in G. A convex I-subgroup H of G is
a direct factor of G if and only if it fulfils the following conditions:

(a) For each 0 < geG the set S={0<heH :h < g} possesses a greatest
element.

If H is a direct factor in G and 0 £ g € G, then the greatest element of the set S
will be denoted by g(H) and it is said to be the component of g in H. For any g € G
we put g,(H) = g (H) — g1 (H). Let H be a direct factor of G; then H’ is also a direct
factor of G and the mapping ¥(g,) = (¢:(H), g,(H?%)) is an isomorphism of G onto
H x H° Let G = []5;G? and let ¥ be a mapping of G into [];; G{ such that
¥(g,) (i) = g{G?) for each g, € G and each i el. Then ¥ is an isomorphism of G
onto [[is GY.

The following two assertions are easy to verify.

2.1. Lemma. Let G be a lattice ordered group and let {G;} ., be a system of direct
factors of G such that
(i) G; 0 G, = {0} whenever j and k are distinct elements of J;
(i) 9 = Vs 9(G;) for each 0 < g € G;
(iii) if 0 < h; € G; for each je J, then Vje; h; exists in G.
Then G = [[$%; G;. Conversely, if G = 1% Gj, then (i), (ii) and (iii) are valid.

2.2. Lemma. Let G be a lattice ordered group and let {G} ;.; be a system of direct
factors of G such that the conditions (i), (ii) from Lemma 2.1 are valid and

(iv) for each g € G, the set {je J : g(G;) = 0} is finite.

Then G = Y3, G;. Conversely, if G = Y 5.; G;, then (i), (ii) and (iv) are valid.

The condition (a) yields

2.3. Lemma. Let G be a lattice ordered group, let H be a direct factor of G and
let K be a convex I-subgroup of G. Then H N K is a direct factor of K.
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2.4. Lemma. Let G = H?e, G,; and let K be a closed convex l-subgroup of G.
Then K = H?E, (K n Gy).

This follows from Lemma 2.1 and Lemma 2.3.
Analogously, from Lemma 2.2 and Lemma 2.3 we obtain

2.5. Lemma. Let G = Z?E, G; and let K be a convex Il-subgroup of G. Then
K=Y0(KnG).

Let G be a lattice ordered group and § + X = D,(G). We denote by cl(X) the
convex [-subgroup of D,(G) generated by the set X. If X is an [-subgroup of D,(G),
then ¢,(X) is the set of all y € D,(G) with the property that there are elements x,, x, €
€X with x; £ y < x,. If G is archimedean and ® + X < D(G), then we denote
by ¢o(X) the convex I-subgroup of D(G) generated by X. If we do not suppose that G
is archimedean and if 0 + X € A(G), then ¢o(X) = ¢,(X) (here the symbol ¢, is
taken with respect to D(A(G))).

2.6. Proposition. Let G be an archimedean lattice ordered group and let H be
a direct factor of G. Then co(H) is a direct factor of D(G). The lattice ordered
group co(H) is the Dedekind closure of H. For each g € G, g(H) = g(co(H)).

Proof. Let 0 < de D(G). There exists g € G with d < g. Put g, = g(H) and
gi Ad=d; Thend, eco(H)and d, < d. Let 0 < xecy(H),x < d Hencex < g
and there is g, €e H with x < g,. Thus x < g A ¢g,. Since H is convex in G, we
obtain g A g, € H and hence, H being a direct factor of G, g A g, < g,. Therefore
x < g, A d = d,. This shows that ¢o(H) is a direct factor of D(G).

From the construction of the Dedekind closure it follows immediately that for
each convex [-subgroup H, of G, cO(H,) is the Dedekind closure of H;.

Let 0 < g€ G. Put g, = g(H). Then g, € ¢;(H) and g, < g. Assume that there
exists i € ¢o(H) with g, < h < g. There is g, € H with h < g,. Hence g; < h <
< go A g =gandg, A ge H. Since H is a direct factor of G, we have a contradic-
tion. Thus g, = g(cO(H)). Since each element g, € G can be written as g, = g5 — g4
with g5, g, € G*, we get g,(H) = g,(co(H)).

2.7. Proposition. Let G be an archimedean lattice ordered group, G = H?EI G,.
Then D(G) = []%r co(G)).

Proof. According to 2.6, each ¢o(G;) is a direct factor of D(G). We have to verify
that the conditions (i) (ii) and (iii) from 2.1 are fulfilled with G;, G, J replaced by
co(Gy), D(G), I.

Let j, kel, j # k. From G; n G, = {0} we obtain ¢o(G;) N ¢o(G;) = {0}, hence
(i) is valid. Let 0 < g e D(G). For jel denote g; = g(co(G;)). There exists h e G
with g < h. Put h; = h(co(G;)). Hence h; = g; for each jel. By 2.6, h; = h(G;)
for each jel. Thus by 2.1, h = Vh;. Since g =2 g A h; 2 g; and since g A hje
€ ¢o(G;), we have g A h; = g;.
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Therefore
g=gAnh=gna(Vh)=V(g A hj)=Vg;.
Hence (ii) holds.
Let0 = g;€ ¢o(G;) for each j e I. Then for each j e I there is h;e G; withg; < h.

According to 2.1 there exists VVh; = h in G. Hence the set {g;} 1 is upper bounded
in D(G) and so Vg exists in D(G). Therefore (iii) is fulfilled.

Remark 1. According to 2.6 we can also write D(G) = o D(G)).

Remark 2. In [6] it was shown that if G, (i eI) are integrally closed directed
groups, then D(][G,) is isomorphic with [](D(G))).
The proof of the following proposition is similar to that of Prop. 2.7.

2.8. Proposition. Let G be an archimedean lattice ordered group and let G =
= Y01 G, Then D(G) = Y0, ¢o(G)).

2.9. Lemma. Let G be a lattice ordered group and let H be a direct factor of G.
Then ¢,(H) is a direct factor of D(G).

Proof. Let 0 < x,€ D,(G). There are elements x'€ G*, ae D(A(G))* with
xo = x' + a. Denote x; = x'(H), x, = x'(H°). Then x" = x; + x5, X; A x, = 0.
According to [10], Thm. 2.18, A4 is a closed convex I-subgroup of G and hence
by Lemma 2.4 we have
A=(AnH)®(4An H),

thus according to Prop. 2.7
(1) D(A) = co(A N H) @ co(4 n H),

where co(4 N H) is the convex I-subgroup of D(A) generated by the set A n H, and
analogously for ¢o(4 n H°). Clearly

) co(An H) S ¢,(H), co(Adn H’) < c,(H).

From (1) it follows that @ = a, + a, with 0 < a; € co(4 0 H), 0 £ a, € ¢o(4 0 H’),
thus a; A a, = 0. By (2), a; e ¢,(H), ay € ¢;(H’), hence x; A a, =0,x, A a, = 0.
Thus x, + a, = a; + x, and so X, = X; + a; + X, + a,. Because (x; + a;) A
A (%2 + a;) =0, we get

(3) Xo = (x; + ay) v (x; + a,).

Clearly x; + a,€c,(H), x, + a,e¢,(H’). Let 0 < x"ec,(H), x" £ X,. Then
x" A (%, + ay) = 0, thus from (3) we obtain

x"=x" A xo=x"A(x; + ay).
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Hence x; + a, is the greatest element of the set {0 < hy € ¢,(H) : hy < X,}. There-
fore in view of (a), ¢,(H) is a direct factor of D,(G).

2.10. Proposition. Let G be a lattice ordered group, G = [|%; G,. Then D(G) =
= n?el C](Gi)-

Proof. According to Lemma 2.9, each ¢,(G;) is a direct factor of D;(G). We have
to verify that the conditions (i), (i) and (iii) from Lemma 2.1 are satisfied for the
system {¢,(G;)};; in D,(G). If j, keI are distinct, then G, n G, = {0} and hence
¢i(G;) n ¢y(Gy) = {0}. Thus (i) holds. Let 0 < ge D,(G). Suppose that g =
= Vjes 9(¢4(G;)) does not hold. Then there is x; € D,(G) with 0 £ x, < g such
that g(¢,(G;)) < x, is valid for each je J. Put x, = —x; + g. There is 0 < x€ G
with x < x,. Since G = [[%; G, there is i € I such that x(G;) > 0. Hence x(c,(G,)) >
> 0 and thus

g(c,(Gi)) < g(cl(Gi)) + x(cl(Gi)) =x;+x=g.

Since g(c,(G;)) + x(¢4(G;)) € ¢4(G;), in view of (a) we must have g(c,(G;)) +
+ x(¢4(G;)) < g(c4(G;)), which is a contradiction. Therefore (i) is valid.

Let 0 < g, € ¢,(G,) for each iel. There are elements 0 < x,€ G, 0 < a; e D(A)
with g; = x; + a;. Further, there are elements y; € G; with g; < y;. Hence x;, a; € G;
for each iel. From G = [[%; G; and from (jii) it follows that there exists x =
= Vi X;in G. Let i €I be fixed. According to Lemma 2.4 and Prop. 2.7 we have

4 D(A) = [[er co(4 0 Gj) »
where the symbol ¢, has the same meaning as in the proof of Lemma 2.9. Hence
a; = Vja afco(A 0 Gy)).

Since a; € ¢,(G;) we have afco(4 N G;)) € ¢;(G;). From this and from the relations
afco(A4n Gy))ecy(G;), ¢(G)) ney(Gy) = {0} we obtain afco(4d N G;)) =0 for
each j€l, j + i. This implies that a; = afco(4 N G;)) € ¢o(4 0 G;). Thus according
to (4) and Lemma 2.1 there exists a € D(4) with a = V a,.

We have

x+a=Viax)+a=Via(* + a) = Vi Vjulx; + a)) .
If i,j€l, i # j, then x; A a; = 0, thus

x;+a;=x;va;£(x;+a)v(x;+a).
Therefore
xX+a= Viel(xi + ai) = Vi g;.

Hence (iii) is valid and the proof is complete.

2.11. Proposition. Let G be a lattice ordered group, G = 0., G;. Then Dy(G) =

= Z?EI C1(Gi)-
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Proof. According to Lemma 2.9, each ¢,(G;) is a direct factor of D,(G). Analo-
gously as in the proof of Prop. 2.10 we can verify that the conditions (i) and (ii) hold
(we use Prop. 2.8 instead of Prop. 2.7). Let x, € D(G). There are elements x € G,
a € D(A) with x, = x + a. Both the sets {iel:x(G;) # 0} and {iel: a(co(4n
N G;)) * 0} are finite. For each i€l we have x(G)) = x(c,(G))), a(c,(G)) =
= a(co(A4 N G)). Hence x4(cy(G;)) = x(G;) + a(co(A N G;)) and thus the set
{iel :xo(cy(G;)) + 0} is finite as well.

A lattice ordered group G is said to be epiarchimedean, if each homomorphic
image of G is archimedean. Epiarchimedean lattice ordered groups were investigated
by CoNrAD [4].

Let x € G. The least convex I-subgroup of G containing the element x will be
denoted by ¢(x); it is said to be a principal convex I-subgroup of G. Similarly, if
xo € Dy(G), then we put ¢,(xo) = ¢;({xo}). The following result has been proved

in [3]:
2.12. Theorem. A lattice ordered group G is epiarchimedean if and only if each
principal convex l-subgroup of G is a direct factor of G.

For Y = D,(G) we denote
Y# = {geD,(G):|g| A |y| =0 for each ye Y} .

A set S % 0 of strictly positive elements of G will be said to be disjointif s; A s, =
= 0 for each pair of distinct elements s;, s, of S. The lattice ordered group G is
called (conditionally) orthogonally complete if each (upper bounded) disjoint
subset of G possesses the least upper bound in G.

2.13. Theorem. Let G be an epiarchimedean lattice ordered group. Suppose
that G is conditionally orthogonally complete. Then D(G) is epiarchimedean as
well.

Proof. The lattice ordered group G is archimedean and hence D(G) exists.
Moreover, D(G) = D,(G). Let 0 < g, € D(G). There exists g, € G with g, < g,.
By using the Axiom of Choice we infer that there exists a disjoint subset S of G such
that (i) s < g, for each s€ S, and (ii) if 0 < h;€ G, hy A s =0 for each s€ S,
then hy A g, = 0. The least upper bound of S in G will be denoted by g,. Clearly
g, =< go. From the construction of g, it follows that

) (921" = {0o)?.

Since G is epiarchimedean, ¢(g,) is a direct factor of G. Thus according to Prop. 2.6,
cy(c(g,)) is a direct factor of D(G). Clearly ¢,(c(g,)) = c4(g,). Further, we have

(6) Cl(gz)li = {gz}ﬁ .
From (5) and (6) we obtain
Cl(gl) = {92}” = {go}w .

300




Since go € {go}*’, we have ¢,(go) S ¢,(92)- On the other hand, g, < g, yields
¢1(92) € ¢1(go)- Hence ¢,(go) = ¢4(g,)- Therefore c4(go) is a direct factor of D(G).
Thus according to Thm. 2.12, D(G) is epiarchimedean.

Remark. It can be shown by examples that if G is epiarchimedean, then D(G)
need not be epiarchimedean. (Cf. Example 6.4 below.)

The following remark will be useful in the sequel: if X is a lattice ordered group
and if Y,, Y, are l-subgroups of X with Y; < Y3, then Y, < Y,.

2.14. Lemma. Let G be a lattice ordered group, G = [|y.; G,. Then a(G)n G =
= G; for each i€l

Proof. Let i € I. We have to verify that ¢,(G;)n G = G,. Let 0 < x e ¢(G)nG.
Then x = V¢ %(G,), x(G;) = 0, hence x(G;) € ¢,(G;) for each jel. If j # i, then
x(Gj)e Gj c Cl(Gj); according to Prop. 2.11 we have Cl(Gi) N C,(Gj) = {0}, thus
x(G;) = 0. Therefore x = x(G;) € G,.

2.15. Lemma. Let G be a lattice ordered group, G = [2,; G,. Then D(A(G))) =
= ¢,(G;) 0 D(4).

Proof. Clearly A(G;) = A N G;. According to 2.4 we have 4 =[]0, (41 G)),
hence A = [[5.; A(G;). In view of Prop. 2.7 we obtain D(4) = [[i; D(A(G;)). Thus
D(A(G;)) < D(A). Let 0 < x € D(A(G;)). There exists y € A(G;) with x < y. Then
y € G, hence x € ¢,(G;) and therefore

D(A(G))) € ¢(G)) n D(A).

Let 0 < x € ¢,(G;) n D(A). There exists a subset {a,} < 4 and an element a € 4
such that 0 < a, < a holds for each a,, and Va, = x is valid in D(4). From the con-
vexity of ¢,(G;) we obtain a; € ¢,(G;) and hence, in view of Lemma 2.14, a, € G;
for each a,. Moreover, a, = a,(G;) £ a(G;), hence {a,} is an upper bounded subset
of A(G;). Thus {a,} is an upper bounded subset of D(A(G))). Since D(A(G)) is a direct
factor of D(A), it is a closed I-subgroup of D(A4) and hence x € D(A(G;)). Therefore

¢(Gi) N D(4) = D(A(G))).

2.16. Lemma. Let G be a lattice ordered group, G = ||%; Gi. Then ¢;(G,) =
= D(G,) for each iel.

Proof. Let i €I be fixed. We have to verify that the conditions (i)—(iv) from the
definition of D,(G) (cf. § 1) are fulfilled with G and D,(G) replaced by G; and ¢,(G;),
respectively. The validity of (i) is obvious. From Lemma 2.15 it follows that (ii)
holds.

Let 0 < y € ¢,(G,). There are elements 0 < y € G,0 < a € D(A) with yo = ¥ + a.
By the convexity of ¢,(G;), both y and a belong to ¢,(G;). According to Lemma 2.14
we have y € G;. Further, from Lemma 2.15 we obtain a € D(A(G),)).
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Now let xq € ¢;(Gi). There are elements yo, zo € (¢,(G5))* with Xo = Yo — Z.
Let y,a be as above. Analogously, there are elements z € G; and a, € D(4(G,))
with zo = z + a,. Further, there is a, € A(G;) such that a; < a,. Puta; = a, — a;.
Then we have a; € D(4(G))), a5 2 0, zy = z;, — a3, z; = z + a, € G;. Hence

Xo=yt+tat+ay—z;=y—z +a,

with 0 £ a4 € D(A(G;)). Hence there exists an upper bounded subset {a,} of A(G,)
with a4 = Va, (holding in D(A(G,)), and hence also in D(G)). Thus {y — z, + a,}
is an upper bounded subset of y — z, + A(G;) and xo = V(y — z; + a;). There-
fore (iv) is valid.

Let x € G; and let {x,} be an upper bounded subset of x + A(G,). Hence {x,} is
an upper bounded subset in x + A. Thus the least upper bound x, of {x,} in D(G)
exists. Since ¢;(G;) is convex in D,(G), the element x, must belong to ¢,(G;). Hence
the condition (iii) holds.

From Prop. 2.10 and Lemma 2.16 we obtain

2.17. Theorem. Let G be a lattice ordered group, G = [[%; G;. Then D(G) =

= H?sl Dl(Gi)'

Analogously we can verify the following assertion:

2.18. Proposition. Let G be a lattice ordered group, G = Y w; G;. Then D,(G) =
= Z?EI Dl(Gi)~

A lattice ordered group G is said to be projectable (strongly projectable) if each
principal polar (each polar) of G is a direct factor of G.

2.19. Theorem. Let G be a strongly projectable lattice ordered group. Then
Dy(G) is strongly projectable.

Proof. Let X, = D,(G). We have to verify that X§ is a direct factor of D;(G)-
Without loss of generality we can assume that X, < (D4(G))*.PutX = {xe G:0 =
< x < x, for some x, € X,}. In [10] (Proof of 3.4) it has been shown that X% = X*
is the set of all y € D,(G) with the property that there is a subset {y,} = (X°)* with
|¥] = V..

Since G is strongly projectable, we have

G = Xéé @ X&

and hence, in view of Prop. 2.10,
Dy(G) = ¢y(X%) @ ¢4(X?).

It suffices to verify that X§ = ¢,(X?).
Because X’ = X’ = X}, we have ¢,(X°) = ¢,(X5) = X5, hence ¢(X%) = Xb-
Let 0 < z € X&. There is a subset {z;} = (X%)* such that z = Vz; holds in D1(G):

302




We have {z;} < ¢;(X°) and since ¢,(X°) is a direct factor of D,(G), it is a closed
l-subgroup of D,(G). Thus z € ¢,(X°) and hence X} < ¢,(X?).

2.20. Theorem. Let G be a projectable lattice ordered group. Suppose that A(G)
is strongly projectable. Then Dl(G) is projectable.

Proof. Let g, € D;(G). We have to verify that {g,}** is a direct factor of D(G).
Since {go}** = {|g,|}**, we may assume that g, = 0. There are elements 0 < g € G,
0 < ae D(4) with g = g + a. The l-subgroup {go}"” is a direct factor of D,(G)
if and only if {g,}” is a direct factor of Dy(G).

Since G is projectable, we have

G={g}" ®{g}’
This implies by 2.10

D,(6) = ¢,({g}”) ® ex({9}’) -

Denote ¢,({g}*’) = F,, ¢,({g}°) = F,. Then g is a weak unit in F,. Put a; = a(F)
(i=1,2),g9, = g + a,. Clearly g, € F,, a, € D(A).

There is as € A with a, < a;. Put X = [0, a,] n A (the interval [0, a,] being
taken with respect to D(4)). Because A is strongly projectable, we obtain

A=X®@®X°.

Denote a(X*) = a,. Since a,€ 4 = G, {a,}” is a direct factor of G and thus
F; = ¢,({a,}*)is a direct factor of D,(G). It is not difficult to verify that a, is a weak
unit in F;. From this we infer that F; < F,. Hence there is a direct factor F, of D,(G)
such that F, = F; @ F,; thus

D|(G)=F, @F;®F,.

Let 0 < he{g,}®. Hence gy A h =0and thus g A h =0, a, A h = 0. Since g
and a, are weak units in F; and F, respectively, we have h(F,) = 0 = h(F5). Thus
h = h(F,) e F, Therefore {g,}’ < F,.

Conversely, let 0 < he F,. Thent A h = 0for each 0 £ te F, @ F;. By putting
t =g, + a, =g, we obtain go A h =0 and hence he {g,}*. Thus F, = {go}’.
Therefore {go}ﬂ = F, is a direct factor of D,(G).

If both G and A(G) are projectable lattice ordered groups, then D,(G) need not
be projectable (cf. Example 6.2 below).

The following result has been obtained by RoTkovi¢ [13].

(*) Let G be a conditionally orthogonally complete archimedean lattice ordered
group. Then G is projectable.

2.21. Theorem. Let G be a conditionally orthogonally complete lattice ordered
group. Then D (G) is conditionally orthogonally complete.
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Proof. Let Z = {z;}i be a bounded disjoint subset of Dy(G). Let z; € Dy(G)
be an upper bound of Z. There exists ze G with z; < z. For each i el there are
elements x;€ G, a;e D(A) such that 0 < x,, 0 < a;, z; = x; + a,. I i,jel, i j,
then x; A x; = 0 = a; A a;. Hence there exists x = Vx; in G.

Let i eI be fixed. If a; = 0, we put X; = {0} If a; > 0, then we choose a maximal
disjoint subset X; of the set [0, a;] N A. The set X, is upper bounded in G, hence
there exists ¢; = sup X; in G. Since A is a closed I-subgroup of G, we have ¢, € 4.
If i, j are distinct elements of I, then ¢; A ¢; = 0. Because A4 is a convex [-subgroup
of G, it is conditionally orthogonally complete and hence, according to (*), it is
projectable. Let D; be the principal polar in A generated by the element c;; thus D;
is a direct factor of 4. We denote by E; the convex I-subgroup of D(A) generated
by the set D;. By 2.10, E; is a direct factor of D(A4).

For each i€l there is b;e A with a; £ b; < z. Denote d; = by(D;). Then 0 <
= d; £z for each iel and d; A d; = 0 whenever i, j are distinct elements of I.
Hence there is d = Vd; in G; since A is closed in G, we have d € 4.

If a(E;) < a,, then there is 0 < a€ A with a £ a; — a,(E;); but then 0 < ¢’ =
= x A a for some x€X; and hence a’e D; < E;, thus a(E)) < a(E)) + a' £ a;
and a(E;) + a’ € E;, which is a contradiction. Hence a; = a(E;) € E;. We have
{E;) = (D) for each t € A. Thus

a; = afE) < b{E) = b(D) =d; < d.

Hence it follows that a = Va; exists in D(4). Put z, = x + a. Clearly z; < z,
for each i € I. In the same way as in the proof of 2.10 we can now verify that z, = Vz,.
Hence DI(G) is conditionally orthogonally complete.

2.22. Theorem. Let G be an orthogonally complete lattice ordered group. Then
D,(G) is orthogonally complete.

The proof is analogous to that of 2.22.

3. PAIRWISE SPLITTING LATTICE ORDERED GROUPS

Let G be a lattice ordered group, 0 < x, y € G. We write x < y if nx £ y for
each positive integer n. We say that x splits by y if there are elements x,, x, € G such
that x = x| + x,, x; A x, =0, x; ec(y) and x, A y <€ X,.

Let us consider the following condition for G:

(p) For each pair 0 < x, y € G, the element x splits by y.

A lattice ordered group G fulfilling (p) is said to be pairwise splitting; lattice
ordered groups with this property were investigated by MARTINEZ [12]. It is easy
to verify that an archimedean lattice ordered group is pairwise splitting if and only
if it is epiarchimedean. Let 2 be the class of all pairwise splitting lattice ordered
groups. If G is pairwise splitting, then each convex Il-subgroup of G is pairwise
splitting.
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3.1. Lemma. Let G be a pairwise splitting abelian lattice ordered group. Sup-
pose that A = A(G) is conditionally orthogonally complete. Let 0 £ x€ G, 0 <
< yo € D,(G). Then x splits by y, in Dy(G).

Proof. There are elements ye G, b e D(A) suchthat 0 £ y, 0 < b, yo =y + b.
If b = 0, then x splits by y,. Suppose that b > 0. There exists b, € 4 with b < b,.
From the Axiom of Choice it follows that there exists a disjoint subset {b;} of 4
such that

(i) b; £ b for each b,,

(ii) if 0 < a, € 4, a; < b, then a, A b; > 0 for some b;.

The set {b,} is upper bounded in A, hence there exists Vb;=b, in A and by (i), b, <b.
Since A is a convex I-subgroup of G and because £ is a torsion class, A must be
pairwise splitting and hence A is epiarchimedean. Thus by 2.13, D(A) is epiarchi-
medean. Hence c(b,) is a direct factor of A and c¢,(¢(b,)) = ¢,(b,) is a direct factor
of D(A). From (i) and (ii) it follows that ¢,(b)’ = ¢,(b,)’. Hence we obtain (because
D(A) is epiarchimedean)
cy(by) = ¢4(b).

Put by = by(c,(b,)). From the construction of the convex I-subgroup ¢y(b,) it
follows that by = Vo (mb, A b,) and that there exists a positive integer n with
by < nb, A b,. Thus by = nb, A by, hence b;eG. We have b < b, and thus

b = b(c,(b)) = b(cy(bs)) = by(cy(by)) = by .
This implies that ¢,(b) = ¢,(b;). From this and from the commutativity of G we
get ¢y(yo) = ¢1(y + b) = cy(y + bs).
Since y + bj € G, the element x splits by y + b;. Thus there are elements x;, x, €
€G such that x = x; + X,, X; A x, =0, x;€¢(y + bs), (y + b3) A X5 < x,.
Therefore x; € ¢4(yo), Yo A X, < x,. Hence x splits by y, in Dy(G).

3.1.1. Corollary. Let G be as in 3.1. Let 0 < a€ D(A), 0 < y, € Dy(G). Then a
splits by y,.

Proof. Thereis b € A with a < b. According to Lemma 3.1, b splits by y,. Hence -
there are elements by, b, € D,(G) such that b = by + by, by A b, =0, by € ¢(y,)
and b, A y, < b,. Since D(A) is archimedean, b, A y, = C. Put a, = b, A a,
a, =b, A a. Then a =a, + a,, a, A a, =0, a, ec(yo), a, A yo = 0. Hence
a splits by y,.

3.2. Lemma. Let G be a pairwise splitting abelian lattice ordered group. Suppose
that A(G) is conditionally orthogonally complete. Let 0 < xe Dy(G), 0 < ze
€D,(G),0 £ aeD(A), z < x + a. Then z < x.

Proof. According to Corollary 3.1.1, the element a splits by z. Thus there are
elements a;, a, € D,(G) such that a = a, + a,, a; A ay =0,a,€¢,(z),a, A 2 <
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< a,. Then ay, a, € D(A) and since D(4) is archimedean, we have a, A z = 0.
Hence a, A nz = 0 for each positive integer n.

Since nz < x + a; + a,, there are elements 0 < z;, z,€ Dy(G) with nz =
=2z, 42,05z, Sx4+a;, 05z, 5a, If z, >0, then a, A nz =z, >0,
a contradiction. Thus z, = 0, nz < x + a, for each positive integer n. If a, = 0,

then the assertion of the lemma is valid; suppose that a; > 0.

There exists a maximal disjoint subset {a;} = A with a; < a,. The set {a;} is
upper bounded in A4, hence there exists Va; = a; in 4 and a; < a,. From the con-
struction of aj it follows that ¢,(a;)’ = ¢,(a,)’; from this and from the fact that
D(A) is epiarchimedean we obtain cl(a3) = ¢,(a,). Hence there is a positive integer n,
with nya; = a;.

Since a; € ¢,(z), there is a positive integer m with a, < mz. Then for each positive
integer n we have

(n+mz=<x+a,,

nzsx+a —mz=sx.

3.3. Theorem. Let G be a pairwise splitting abelian lattice ordered group. Sup-
pose that A(G) is conditionally orthogonally complete. Then D,(G) is pairwise
splitting.

Proof. Let 0 < xo, yo € Dy(G). There are elements 0 < x€ G, 0 < a, € D(4)
with x, = x + a,. Further, there is a € A such that a; < a. Then x + a € G and
hence, according to Lemma 3.1, x + a splits by y,. Hence there are elements
Xy, X, € G with X + @ = X; + X5, X; A X5 =0, x; €¢,()o), X, A Yo < X,. Denote
X1 =X A Xo, X3 = X; A X,. We have xi A x5 = 0 and

Xo = Xo A (X1 + X3) = X0 A (x; V x5) = (X0 A X;) V (X A Xp) =
=X} V X = X1 + X3, xllecl(J’o): Xy A Yo EX;, A Yo Xy

Since x + a € x, + D(A), we have x, = (x + a) A x, €%, A Xy + D(A). Hence
there is 0 < a, € D(A) such that x, = x5 + a,. We have x A yo < X3 + dy,
thus according to Lemma 3.2, x; A y, < x5. Therefore x, splits by y,.

Problem. Does the assertion of Thm. 3.3 remain valid without the assumption of
commutativity of G?

4. THE «-DISTRIBUTIVITY

Let o be a cardinal and let Lbe a lattice. Consider the following condition for L:

(o) If {x; ¢} et ses is @ subset of Lsuch that both Arer Vies X1 and Vest Acer X1 00
exist in Land if card T < «, card S < o, then

/\rsT VSES xr,s = queST AlET xf,?’(') *
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If Lfulfils the condition (o) and the condition dual to (ot), then it is said to be a-
distributive. L is called completely distributive if it is a-distributive for each car-
dinal a.

Let f be a cardinal. If Lis f,-distributive for each cardinal f; < f and if L fails
to be p-distributive, then we write d(L) = .

Let G be a lattice ordered group. It is easy to verify that G is a-distributive if it
fulfils (o).

The following assertion is easy to verify.

4.1. Lemma. Let G be a lattice ordered group and let a be an infinite cardinal.
Suppose that G fails to be a-distributive. Then there is 0 < ve G such that for each
0 < v, € G withv, < v, the interval [0, v,] of G fails to be a-distributive.

We need the following result:

(A) (Cf. [7].) Let « be an infinite cardinal and let G be an archimedean lattice
ordered group. Suppose that card [0, v] < a for each strictly positive element v
of G. Assume that G is a-distributive. Then D(G) is a-distributive.

4.2. Proposition. Let G be a lattice ordered group. Suppose that G is completely
distributive. Then DI(G) is completely distributive.

Proof. This follows from Prop. 1.7 of the paper [15] and from the fact that each
element of D,(G) is the supreum of a certain family of elements of G (cf. the con-
dition (iv) in § 1).

4.3. Theorem. Let a be an infinite cardinal and let G be a lattice ordered group.
Suppose that card [0, v] < « for each strictly positive element of A(G). Assume
that G is o-distributive. Then D(G) is a-distributive.

Proof. Since G is a-distributive, A(G) = A must be o-distributive as well. Thus
(A) implies that D(A) is o-distributive.

Assume that D,(G) is not a-distributive. By Lemma 4.1 there is 0 < ve D,(G)
such that the interval [0, v,] of D,(G) fails to be a-distributive for each 0 < v; €
€ Dy(G) with v; < v. »

We distinguish two cases. First suppose that there exists 0 < ae€ A4 with a £ v.
Then the interval [0, a] of D,(G) is a sublattice of D(A) and hence it is a-distributive,
which is a contradiction. Now suppose that no 0 < a € 4 with a < v exists. Each
element 0 < v, € DI(G) with v, < v can be written as v; = x + a,, 0 < xeg,
0 < a, e D(A). Then we have a; < v, £ v, hence a; = 0 and thus v, = xeG.
Hence the interval [0, v] of D,(G) is a sublattice of G and so it is a-distributive,
which is a contradiction.

4.4. Theorem. Let G be a lattice ordered group that is not completely distributive,
d(G) = a. If A(G) is completely distributive, then d(D4(G)) = «. If A(G) is not
completely distributive, d(D(A(G))) = B, then d(D,(G)) = min (2 B).
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Proof. From [10], Prop. 2.20 it follows that D,(G) is not a-distributive, hence
d(D(G)) < a. If A(G) is not completely distributive, then D(A(G)) cannot be com-
pletely distributive: if d(D(A(G))) = B, then according to [10], Prop. 2.16, d(D,(G)) <
< p. Now it suffices to verify that if y is a cardinal and both G and D(A(G)) are
y-distributive, then D,(G) is y-distributive as well. To prove it we can use the same
method as in the proof of 4.2.

4.5. Theorem. Let G be a lattice ordered group that is not completely distributive,
d(G) = a. Suppose that A(G) is projectable. Then d(D(G)) = a.

Proof. If A(G) is completely distributive, then the assertion is valid according to
4.4. Suppose that d(A(G)) = f5. Hence 8 = o. Since A(G) is projectable, from [8]
we obtain d(D(A(G))) = B. Hence d(D,(G)) = « by 4.4.

5. g-COMPLETE LATTICE ORDERED GROUPS

An archimedean lattice ordered group G is complete if and only if D(G) = G.
A lattice ordered group H will be called g-complete (generalized complete) if D,(H) =
= H. It was remarked in [11] that D,(H) = H if and only if A(H) is complete.

The following assertion has been proved in [9]:

(A) Let G be a lattice ordered group. Then there exists a convex [-subgroup C(G)
of G such that

(a) C(G)is complete;

(b) if H is a convex I-subgroup of G and if H is complete, then H = C(G).

A class A of lattice ordered groups is said to be a radical class [11] if it fulfils
the following conditions:

(i) # is closed with respect to isomorphisms.
(i) If H, is a convex [-subgroup of a lattice ordered group H and if He ',
then H, e A".
(ii) If H; is a system of convex [-subgroups of a lattice ordered group H and if
each H; belongs to . then VH; e A".

In this paragraph it will be shown that the class of all g-complete lattice ordered
groups is a radical class.

5.1. Theorem. Let G be a lattice ordered group. There exists a convex I-subgroup
Bo(G) of G such that

(a) Bo(G) is g-complete,
(b) if B, is a convex [-subgroup of G and if B, is g-complete, then B; < By(G).

Proof. Let {B;} be the set of all convex [-subgroups of G fulfilling
B, A(G) < C(G).
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Put By(G) = VB,. Then By(G) n A(G) = C(G). Hence A(By(G)) = A(G) n By(G) <
S C(G). Since A(By(G)) is complete, Bo(G) is g-complete.

Let B, be a convex I-subgroup of G and suppose that B, is g-complete. Then
A(B,) = A(G) n B, is complete, hence A(G) N B, = C(G) and thus B, e {B}.
Therefore B, < B,y(G).

Remark. It is easy to verify that BO(G) is a characteristic I-subgroup of G. It can
be shown by examples that B(G) need not be a closed I-subgroup of G (cf. Example
6.5 below).

5.2. Theorem. The class K, of all g-complete lattice ordered groups is a radical
class. ‘

Proof. K, obviously fulfils (i). Let He K, and let H; be a convex I-subgroup
of H. Then A(H) is complete and since A(H,) = H, n A(H), A(H,) is complete as
well. Thus (ii) holds. Let G be a lattice ordered group and let {G;} bea system of
convex I-subgroups of G such that each G; belongs to K,. Let By(G) be as in 5.1.
Then each G, is a subset of By(G), hence VG; = By(G); in view of (ii) we have
VG; € K, and hence (iii) is valid.

5.3. Proposition. Let G be a lattice ordered group, G = H?E, G;. Then G is g-
complete if and only if all G; are g-complete.

Proof. Assume that all G; are g-complete. Then according to Prop. 2.17, G is
g-complete. Conversely, suppose that G is g-complete. Hence A(G) is complete.
We have A(G) = []%r (4(G) n G)) and A(G) n G; = A(G,) for each iel. Since
each direct factor of a complete lattice ordered group is complete, all G;’s are
g-complete.

An analogous proposition is valid for direct sums.

Let H be an abelian lattice ordered group. Consider the following condition for H:

(I) it is possible to define a multiplication of elements of H by reals so that H
turns out to be a vector lattice.

We denote by 77, the class of all archimedean lattice ordered groups fulfilling the
condition (I). Further, let ¥, be the class of all G € ¥", that are complete. Lattice
ordered groups belonging to 7", are called complete vector lattices [1] or K-spaces
[14]. Let us denote by ¥75 the class of all G € K,, fulfilling (I).

5.4. Proposition. Both " and v, are radical classes.

Proof. 77, obviously fulfils the conditions (i) and (ii). Let G be a lattice ordered
group and let {H,-} be a system of convex [-subgroups of G such that each H; belongs
to #";. Put H = VH,. Each H; is a convex I-subgroup of A(G), hence H is a convex
I-subgroup of A(G) as well. From Thm. 1.3, [4] it follows that each archimedean
lattice ordered group possesses a largest convex [-subgroup fulfilling the condition
(T). We denote by H,, the largest convex [-subgroup of A(G) fulfilling (I). Since all H;
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are convex [-subgroups of H,, we obtain that H is a convex [-subgroup of H,. Thus H
belongs to ¥7;. Therefore 77, is a radical class. Let € be the class of all complete
lattice ordered groups. % is a radical class [12] and ¥", = ¥"; n €. The intersection
of two radical classes being again a radical class, ¥, is a radical class as well.

5.5. Corollary. Let G be a lattice ordered group. Then G possesses a largest
convex l-subgroup V{(G) belonging to v, (i = 1, 2).

Problem. Is ¥"; a radical class?

6. EXAMPLES

6.1. If a lattice ordered group G is complete, then each polar of G is a direct factor
of G. A polar of a g-complete lattice ordered group H need not be a direct factor of H.

Let H be the set of all triples (x. y, z) of reals, the operation + in H being defined
componentwise. For (x4, yy, 2,), (X2, V2, 2,) € H we put (x4, yy, z,) £ (X3, V2, 22),
if either x, < x,, or x; = x, and y; < y,, z; < z,. Then H is a g-complete lattice
ordered group. The set P consisting of all (x, y, z) € H with x = z = 0 is a polar
of H and P fails to be a direct factor of H.

6.2. If a lattice ordered group G is projectable and if A(G) is projectable, then
D,(G) need not be projectable.

Let I = [0, 1] be the interval of reals and let F be the set of all real functions f
defined on I with the following property: there is a finite set M(f) < I such that
f(x1) = f(x,) whenever x,, x, € I \ M(f). The partial order and the operation + on
the set F are defined in the natural way. Let G be the set of all pairs (f, g) with
f,geF. For (fisgi)EG (i = ],2) we put (fhg1) + (fz,gz) = (f] + 2 91 + 92)
and we set (f3, 91) < (f2, g2) if for each x € I we have either f3(x) < f5(x), or f,(x) =
= fy(x) and g,(x) £ g,(x). Then G is a projectable lattice ordered group. A(G)
consists of all elements (0, g) with g € F; A(G) is projectable as well. Let I; be an
infinite subset of I, I, =+ I. For each t €I, let f, € F such that f,(t) = 1 and f,(x) = 0
for x €I, x % t. The least upper bound h of the set {(0,f,) : t € I,} in D,(G) exists.
Let fe F, f(x) = 1 for each x € I. Let P be the principal polar of D,(G) generated
by the element h. Then the set

{hyeP:0=h £(f,0)}
has no greatest element. Hence P fails to be a direct factor of G.
6.3. If a lattice ordered group G is pairwise splitting, then D,(G) need not be
pairwise splitting.

Let F be as in 6.2. Then F is pairwise splitting lattice ordered group. Put ¢, = l/n
(n =1,2,...). For each positive integer n let f,e F with f,(1,) = 1/n, f(x) =0
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for each x # 1,. Since G is archimedean, D,(F) = D(F). The least upper bound h
of the set {f,} (n = 1,2,...) in D,(F) exists. Let f € F, f(x) = 1 for each x € I. The
element f does not split by h in D,(F). Hence D,(F) is not pairwise splitting.

6.4. There exists an epiarchimedean lattice ordered group G such that D(G) fails
to be epiarchimedean.

Let F, h be as in 6.3. The lattice ordered group F is epiarchimedean and the prin-
cipal convex I-subgroup of D,(F) generated by the element h fails to be a direct
factor of D,(G). Hence D(F) is not epiarchimedean.

6.5. The largest g-complete l-ideal By(G) of a lattice ordered group G need not
be a closed I-subgroup of G.

Let F be as in 6.2. Let F, be the set of all f € F such that (i) f(x) is an integer for
each x €1, and (ii) if x eI\ M(f), then f(x) is even. F, is an archimedean lattice
ordered group. Hence By(F,) = C(F,). Thus By(F,) consists of all f€ F, such that
f(x) = 0 for each x eI\ M(f). Let fe F, with f(x) = 2 for each x eI. There is
a subset X = By(F,) such that sup X = f holds in F; hence By(F, ) fails to be closed
in F,.
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