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Czechoslovak Mathematical Journal, 28 (103) 1978, Praha 

GENERALIZED DEDEKIND COMPLETION OF A LATTICE 
ORDERED GROUP 

JÀN JAKUBIK, Kosice 

(Received May 5, 1976) 

The notions of the generalized Dedekind completion i)i(G) and of the archimedean 
kernel A[G) of a lattice ordered group G were introduced in [10]. In this paper some 
further properties of i)i(G) are established. 

In § 2 it is shown that to each direct decomposition of G there corresponds a direct 
decomposition of Di(G). Namely, if G is a direct product of its /-subgroups Ĝ  
(i 6 / ) , then i)i(G) is a direct product of its /-subgroups Di(G,) (f G / ) . This generalizes 
a result from [6] concerning archimedean lattice ordered groups. An analogous 
assertion is valid for direct sums of lattice ordered groups. If G is epiarchimedean 
and conditionally orthogonally complete, then i)i(G) is epiarchimedean. If G is 
strongly projectable, then so is Di(G). If G is projectable and Ä[G) is strongly pro-
jectable, then I)i(G) is projectable. If G is projectable, then D^(G) need not be pro­
jectable. If G is conditionally orthogonally complete, then so is I>i(G). 

Pairwise splitting lattice ordered groups have been studied by MARTINEZ [12]. 
Generalized Dedekind completions of pairwise splitting lattice ordered groups are 
dealt with in § 3. It is proved that if G is a pairwise splitting abelian lattice ordered 
group such that the archimedean kernel Ä{G) of G is conditionally orthogonally 
complete, then i)i(G) is pairwise splitting; the assumption of the conditional ortho­
gonal completeness of ^(G) cannot be omitted. 

In § 4 the relations between higher degrees of distributivity of a lattice ordered 
group G and those of Di(G) are investigated. Let j5 be a cardinal. For a lattice ordered 
group H we write d(H) = a if Я is y-distributive for each у < oc and if H fails to be 
a-distributive. Let d(G) = a. If either A(G) is completely distributive or A(G) is 
projectable, then J(Z)i(G)) = a. If ^(G) is not completely distributive and d{G^) = ß, 
where Gj is the Dedekind completion of ^(G), then d(Di{G)) = min {a, ß]. 

A lattice ordered group G is called ^-complete if D^{G) = G. In § 5 it is shown 
that each lattice ordered group possesses a largest g complete convex /-subgroup. 
This implies that the class of all ^-complete lattice ordered groups is a radical class 
[11]. 
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1. PRELIMINARIES 

The standard terminology for lattices and lattice ordered groups will be used 
(cf. BiRKHOFF [1], CONRAD [2] and FUCHS [5]). The group operation is written 
additively, the commutativity of this operation is not assumed. 

Let us recall some notions and some results from [10]. Let G be a lattice ordered 
group. An element 0 < a e G is called archimedean in G if for each 0 < x e G 
there exists a positive integer n such that nx non ^ a. We denote by A[G) the /-sub­
group of G generated by the set of all archimedean elements of G. Then ^(G) is 
a closed Mdeal of G and Ä[G) is archimedean (i.e., each element 0 < a e Ä[G) is 
archimedean in A^G)). If Я is a convex /-subgroup of G and if H is archimedean, 
then H £ y4(G). We shall often write A instead of ^(G), when no ambiguity can occur. 

For any archimedean lattice ordered group К we denote by D(X) the Dedekind 
closure of К (cf. e.g. [1], Chap. XIIT, § 13). 

For each lattice ordered group G there exists a lattice ordered group Di(G) 
fulfilhng the following conditions: 

(i) G is an /-subgroup of Di(G); 
(ii) D{A{G)) is an /-ideal of D,{G); 

(iii) if X e G and if X is a nonempty subset of x + A{G) such that X is upper 
bounded in x + A[G), then there is XQ E DI{G) with sup X = XQ; 

(iv) for each x о Di{G) there exist x e G and X ^ x + A[G) such that X is upper 
bounded in x + A(G) and XQ = supX holds in i)i(G). 

The lattice ordered group i)i(G) is determined uniquely up to isomorphisms. More 
precisely, if D' is a lattice ordered group fulfilling the conditions (i) —(iv) (with D' 
instead of D^^G)), then there exists an isomorphism cp of i)i(G) onto D' such that 
< (̂x) = X for each x e G and each x e D(A(G)). 

If X is a subset of G and if sup X = XQ exists in G, then XQ is the least upper bound 
of Z in Di(G) (and dually). D^(G) coincides with D(G) if and only if G is archimedean. 
The lattice ordered group i)i(G) is said to be the generaHzed Dedekind completion 
of G. We have A{D,{G)) = D{A{G)). The /-ideal D{A{G)) is closed in D,{G). If G is 
abehan, then ^i(G) is abelian as well. 

For each Xo e Di(G) there is x E G and a e D[A{G)) such that XQ = x + a. If 
0 ^ Xo e Di(G), then there are elements O g x ^ e G , O g a ^ e D(A(G)) with XQ = 
= Xi + a^. In fact, if D{A(G)) = {0}, XQ = x + a, x e G, a e D[A(G)), then a = 0 
and X ^ 0. Let D(^(G)) ф {O}; then D(A{G)) has no least element. Hence there is 
x' G X 4- D[A{G)) with x' e G,x' :^ XQ (cf. the condition (iv) above). Put Xi = x' v 0, 
a^ = - x i + XQ. Then x^ G x + D{A{G)), 0 ^ x^ g XQ, 0 й a^e D{A{G)), XQ = 
= Xi + a^. 

Let Z Ç G. The set 

X^ = {̂  e G : 1̂ 1 A |x| = 0 for all xeX} 

is called a polar of G. The set X^^ is said to be a polar generated by X; if card X = 1, 
then X^^ is called a principal polar. 
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2. DIRECT DECOMPOSITIONS 

Let us recall some notions concerning direct products and direct sums of lattice 
ordered groups (cf, e.g. [6]). 

Let / be a nonempty set and for each / el let Ĝ  be a lattice ordered group. We 
denote by G^ = Yltei ^i tbe direct product of the lattice ordered groups G .̂ Thus G л 
is the set of all mappings / : i -> \JG, such that f{i) e Gj- for each i el, the lattice 
operations and the group operations being defined coordinate wise. For l e / w e 
denote G' - {/e Ĝ  : / ( j ) = 0 for all je J, j Ф i}. 

Let G be a lattice ordered group and let (p be an isomorphism of G onto G,. For 
each / E / we put G^ = (/?~^(G'). Each G^ is said to be a direct factor of G. We write 
also G = Yl^^i ^?- The /-subgroup of G generated by the set (Jiej ^? ^i^l be denoted 
by ^ , ? / G? and called the direct sum of Gf (/ el). If/ is finite, / = {!,..., n}, then 
Ylti <̂ ? == iS^e/ Gl and we denote it also by G? e ... 0 G .̂ 

Each direct factor of G is a closed Z-ideal in G. A convex /-subgroup Я of G is 
a direct factor of G if and only if it fulfils the following conditions: 

(a) For each 0 < g e G the set S = {O ^ h e H : h S g} possesses a greatest 
element. 

If Я is a direct factor in G and 0 ^ g e G, then the greatest element of the set S 
will be denoted by g{H) and it is said to be the component of g in Я . For any giE G 
we put gi{H) = gt{H) — gï{H). Let Я be a direct factor of G; then H^ is also a direct 
factor of G and the mapping фСдх) = (е'1(Я), д^(^Н^У) is an isomorphism of G onto 
Я X Я ^ Let G = fl^ej ^? and let i/̂  be a mapping of G into flrei <̂ ? such that 
Ф{д\) (0 " Oii^f) f̂ ï" ^ach gi E G and each f e / . Then ^ is an isomorphism of G 
onto flier Gt 

The following two assertions are easy to verify. 

2.1. Lemma. Let G be a lattice ordered group and let {G ĵ̂ gj be a system of direct 
factors of G such that 

(i) G J n Gj^ = {0} whenever j and к are distinct elements of J; 
(ii) g - Viej 9{Gj) for each 0 S g e G; 

(iii) if 0 S hj e Gj for each j e J, then Vjej ^j ^^/s^s /л G. 
Тйеп G = I^ygj Gj. Conversely, if G — Yl%j Gj, then (i), (il) and (iii) are valid. 

2.2. Lemma. Let G be a lattice ordered group and let {Gj}j^j be a system of direct 
factors of G such that the conditions (i), (ii) from Lemma 2.1 are valid and 

(iv) for each g e G, the set {j e J : g{Gj) ф 0} is finite. 
Then G = YJBJ GJ- Conversely, if G = YJ%J GJ, then (i), (ii) and (iv) are valid. 

The condition (a) yields 

2.3. Lemma. Let G be a lattice ordered group, let H be a direct factor of G and 
let К be a convex l-subgroup of G. Then H n К is a direct factor of K. 
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2.4. Lemma. Let G = Yl^ ^i ^^^'^^ ^^^ ^ ^^ '̂ closed convex I-subgroup of G. 
ThenK = Yllj{KnG,y 

This follows from Lemma 2.1 and Lemma 2.3. 
Analogously, from Lemma 2.2 and Lemma 2.3 we obtain 

2.5. Lemma. Let G = ^^^j Ĝ  and let К be a convex l-subgroup of G. TJien 
K = j:lj(KnG,). 

Let G be a lattice ordered group and ф ф X ^ ^\{G)^ We denote by Ci(X) the 
convex /-subgroup of D^^G) generated by the set X. If vï is an /-subgroup of i)i(G), 
then Ci(X) is the set of all y e Di(G) with the property that there are elements x^, X2 e 
eX with x^ ^ y ^ X2- If G is archimedean and 0 ф X ^ D(G), then we denote 
by CQ[X) the convex /-subgroup of D[G) generated by X. If we do not suppose that G 
is archimedean and if 0 ф X ^ ^(G), then CQ(X) = c^(X) (here the symbol CQ is 
taken with respect to D[A(G))). 

2.6. Proposition. Let G be an archimedean lattice ordered group and let H be 
a direct factor of G. Then CQ[H) is a direct factor of D(G), The lattice ordered 
group CQ[H) is the Dedekind closure of H. For each g e G, g{H) = ^(со(Я)). 

Proof. Let 0 S ä e D(G). There exists g e G with dug- Put g^ = д(Н) and 
g^ A d = d^. Then JJL G CQ(^H) and d^ ^ d. Let 0 g x e Со(Я), x ^ d. Hence x S g 
and there is g2^ H with x ^ ^2- Thus x S g ^ gi- Since Я is convex in G, we 
obtain g A g2e H and hence, Я being a direct factor of G, g A g2 S gi- Therefore 
X S gi A d = d^. This shows that CQ[H) is a direct factor of JD(G). 

From the construction of the Dedekind closure it follows immediately that for 
each convex /-subgroup H^ of G, CQ(HI) is the Dedekind closure of Я^. 

Let 0 ^ g e G. Put g^ = g{H)- Then ^^ e Со(Я) and ^^ ^ g. Assume that there 
exists h e CQ(^H) with g^ < h S g- There is goE H with h -^ g^. Hence g^ < h ^ 
S go ^ g й g and g^ A g еН. Since Я is a direct factor of G, we have a contradic­
tion. Thus g^ = д[сд[Н)). Since each element g2^ G can be written as ö'i = о̂ з ~~ ^4 
with 6Г3, 0̂ 4 e G"̂ , we get О^2(Я) = д2{со{Н)У 

2.7. Proposition. Let G be an archimedean lattice ordered group, G = П^е/^»-
Then D(G) = Yl%xCo{G,). 

Proof. According to 2.6, each CQ^GI) is a direct factor of D(G). We have to verify 
that the conditions (i) (ii) and (iii) from 2.1 are fulfilled with G,-, G, J replaced by 
Co(G,), D{G), L 

Let j \ kelj Ф k. From Gj n G^ = {0} we obtain Co{Gj) n Co{Gk) = {0}, hence 
(i) is valid. Let 0 g ^ e D{G). For jel denote gj = g{co{Gj)). There exists he G 
with g Sh. Put h J = /ï(co(G,.)). Hence hj ^ Ö'J for each jeL By 2.6, й̂ - = h{Gj) 
for each j e L Thus by 2.1, h = \/hj. Since g 'à g A hj ^ gj and since g A hj e 
e Co{Gj), we have g A hj = gj. 
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Therefore 
g =g Ah = g A (yhj) = \/{g л hj) = Vgj . 

Hence (ii) holds. 
Let 0 S Qj-e Co{Gj) for each j e I. Then for each / e / there is hj e Gj with gj S hj. 

According to 2.1 there exists \/hj = h in G. Hence the set {djjjei is upper bounded 
in D(G) and so Vö̂ y exists in D(G). Therefore (iii) is fulfilled. 

R e m a r k 1. According to 2.6 we can also write D{G) = Щг 1)(0^). 

R e m a r k 2. In [6] it was shown that if Ĝ  (iel) are integrally closed directed 
groups, then / ) (n^ i ) is isomorphic with ГК^С^»))-

The p r o o f of the following proposition is similar to that of Prop. 2.7. 

2.8. Proposition. Let G be an archimedean lattice ordered group and let G = 
= X L G i . TftenD(G) = XLco(G,.). 

2.9. Lemma. Let G be a lattice ordered group and let H be a direct factor of G. 
Then Ci(H) is a direct factor of D^(G). 

Proof. Let 0 ^ Xo e i)i(G). There are elements x ' e G^, a e D(Ä(G))'^ with 
XQ = x' + a. Denote Xi = х'(Я), X2 = х'(Я^). Then x' = x^ + X2, x^ л X2 = 0. 

According to [10], Thm. 2.18, Л is a closed convex J-subgroup of G and hence 
by Lemma 2.4 we have 

Л = (AnH)® {A n H^) , 

thus according to Prop. 2.7 

(1) D{A) = Co{A пН)@ Co{A n H'), 
where CQ(A n H) is the convex /-subgroup of D[A) generated by the set AnH, and 
analogously for CQ(A n H^). Clearly 

(2) Co{A пН)^ c,{H) , Co{A n H') £ с,{Н') . 

From (1) it follows that a = a^ + a2 with 0 g flj e CQ(A n Я), 0 ^ ^2 ^ ^оИ ^ ^% 
thus a^ A a2 — 0. By (2), a^ e c^^H), ^2 e ^^(Я^), hence x^ л ^2 = 0, X2 л a^ = 0. 
Thus X2 + a^ = a^ + X2 and so XQ = x^ + a^ + X2 + ^2- Because (x^ + a^) л 
л (x2 + ^2) = 0, we get 

(3) Xo = (xi + fli) V (x2 + ^2) . 

Clearly Xi + «1 e Ci{Hy X2 + ^2 e с^(Я^). Let 0 ^ x" e c^{H), x" й XQ, Then 
x" л (x2 + ^2) = 0, thus from (3) we obtain 

X = X л Xo = X л (Xi + a j . 
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Hence Xi + a^ is the greatest element of the set {0 S h^e Ci^(H) : h^ ^ XQ}. There­
fore in view of (a), Ci(H) is a direct factor of Di(G). 

2.10. Proposition. Let G be a lattice ordered group, G = Yl%j ^i- Then D^{G) = 

Proof. According to Lemma 2.9, each c^(G^ is a direct factor of D^{G). We have 
to verify that the conditions (i), (ii) and (iii) from Lemma 2.1 are satisfied for the 
system {ci(G,)}j.gj in D^[G). If 7, к el are distinct, then Gjr\ Ĝ , = {0} and hence 
Cj(G^)nci(Gfc) = {0}. Thus (i) holds. Let Q^geD^{G), Suppose that g = 
= \/jçjg{c^{Gj)) does not hold. Then there is x^ e D^{G) with 0 ^ x^ < Ö' such 
that g[c^{Gj)) g Xj is vahd for each j e J. Put XQ = —Xj + g. There is 0 < x e G 
with X ^ Xo- Since G = YYiei ̂ ь there is г e / such that x(G^ > 0. Hence x{c^{G^) > 
> 0 and thus 

9{c,{G,)) < g(c,{G,)) + x(ci(G,)) ^ x^ + x ^ ^ . 

Since g{c^(Gi)) + ^:(ci(Gj)) e Ci(G^), in view of (a) we must have g{ci{Gi)) + 
+ x(cj|(Gj)) ^ g{ci{Gi)), which is a contradiction. Therefore (ii) is vahd. 

Let 0 S gt^ ^i(^i) for each f G / . There are elements 0 g x^ G G, 0 ^ <я̂  e D{A) 
with ^j = Xf + off. Further, there are elements yi e G^ with g^ ^ j ^ . Hence Xj, д̂ - e Ĝ  
for each iel. From G = fj^e/^i and from (iii) it follows that there exists x = 
= Vie/ ^i iî  G. Let f G / be fixed. According to Lemma 2.4 and Prop. 2.7 we have 

(4) /)(Л) = Ш е / С о ( Л п С , ) , 

where the symbol CQ has the same meaning as in the proof of Lemma 2.9. Hence 

^i = Y/e/ «i(<^o(^ П G^.)). 

Since üi G Ci(Gf) we have alcQ{A n G )̂) e c^iG^. From this and from the relations 
a{Co{A П G,.)) G Ci(G .̂), Ci(Gi) n Ci(G,.) = {0} we obtain alco{A n Gj)) = 0 for 
each j el, j Ф f. This implies that ai = а^(со(^ n G )̂) G СО(Л n G )̂. Thus according 
to (4) and Lemma 2.1 there exists a e D(Ä) with a = Vfei ^t-

We have 

X + a = (Vie/ Xf) + a = V/ei i^i + a) = V^ V;e/(^i + ^j) • 

If i,j el, i Ф J, then Xj л aj = 0, thus 

x^ + aj = Xi V üj S {^i + ^i) V {xj + aj). 
Therefore 

X + fl = Viejr (^i + ^i) = Viel gt. 

Hence (iii) is valid and the proof is complete. 

2.11. Proposition. Let G be a lattice ordered group, G = Yjei ^ r Tksn D^{G) = 
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Proof. According to Lemma 2.9, each Cj^[Gi) is a direct factor of D^(G). Analo­
gously as in the proof of Prop. 2.10 we can verify that the conditions (i) and (ii) hold 
(we use Prop. 2.8 instead of Prop. 2.7). Let XQ E i)i(G). There are elements x e G, 
a G D(A) with XQ = X + a. Both the sets {iel : x{Gi) Ф 0} and [i el : a{co[A r\ 
n Gi)) ф 0} are finite. For each iel we have x(Gi) = x^c^^Gi)), a{c^(Gi)) ~ 
= а[со(А n G^)). Hence Xo(ci(G,)) = x(Gf) + а(со[А n G;)) and thus the set 
{iel: XQ[CI(GI)) Ф 0} is finite as well. 

A lattice ordered group G is said to be epiarchimedean, if each homomorphic 
image of G is archimedean. Epiarchimedean lattice ordered groups were investigated 
by CONRAD [4]. 

Let x e G. The least convex /-subgroup of G containing the element x will be 
denoted by c{x); it is said to be a principal convex Z-subgroup of G. Similarly, if 
XQ e i)i(G), then we put CI{XQ) = CI({XQ}). The following result has been proved 
in [3]: 

2.12. Theorem. A lattice ordered group G is epiarchimedean if and only if each 
principal convex l-subgroup of G is a direct factor of G. 

For Y Я JDI(G) we denote 

Y^ = {ge JDI(G) : \g\ л jj;| = 0 for each у e Y} . 

A set S Ф 0 of strictly positive elements of G will be said to be disjoint if s^ A Sj = 
= 0 for each pair of distinct elements Sj, S2 of S. The lattice ordered group G is 
called [conditionally) orthogonally complete if each (upper bounded) disjoint 
subset of G possesses the least upper bound in G. 

2.13. Theorem. Let G be an epiarchimedean lattice ordered group. Suppose 
that G is conditionally orthogonally complete. Then D[G) is epiarchimedean as 
well. 

Proof. The lattice ordered group G is archimedean and hence D[G) exists. 
Moreover, D[G) = D^(G). Let 0 < gQE D[G). There exists giE G with gQ ^ g^. 
By using the Axiom of Choice we infer that there exists a disjoint subset S of G such 
that (i) s ^ gQ for each se S, and (ii) if 0 < /̂ 3 e G, /Z3 л s = 0 for each se S, 
then Й3 л ^0 = Ö. The least upper bound of S in G will be denoted by ^2- Clearly 
g2 ^ ^0- From the construction of ^2 it follows that 

(5) {92Y-{9oY. 
Since G is epiarchimedean, 0(0̂ 2) is a direct factor of G. Thus according to Prop. 2.6, 
Ci(c(g2)) is a direct factor of D(G). Clearly ^ (̂0(0^2)) = 1̂(6̂ 2)- Further, we have 

(6) Ф,У = {д,у. 
From (5) and (6) we obtain 

Ф2) == {92Г = {доГ . 
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Since QQ e {go}^^, we have Ci(go) ^ 1̂(6̂ 2)- ^^ ^^e other hand, ^2 = Oo yields 
1̂(0̂ 2) — ^i(ö'o)- Hence с^^д^) = ^^(^з)- Therefore Ci{go) is a direct factor of D{G). 

Thus according to Thm. 2.12, D(G) is epiarchimedean. 

Remark . It can be shown by examples that if G is epiarchimedean, then D(G) 
need not be epiarchimedean. (Cf. Example 6.4 below.) 

The following remark will be useful in the sequel: if X is a lattice ordered group 
and if Fl, Y2 are /-subgroups of Z with Y^ ^ Y2, then У̂  Ç У2. 

2.14. Lemma. Let G be a lattice ordered group, G = Y[%j ^ r Then Ci(G|) n G = 
= Gl for each i e L 

Proof. Let iel. We have to verify that c^{G^ r\ G ^ Gi, Let 0 < x e c^{Gi) n G. 
Then X = Vie/ ^{Gj). x{Gj) ^ Ö' t̂ eî ce x{Gj) e Ci{Gi) for each jel. If j Ф г, then 
x{Gj)eGj ^ Ci(G .̂); according to Prop. 2.11 we have Ci{Gi)n Ct{Gj) = {0}, thus 
x[Gj) = 0. Therefore x = x{Gi) e G,-. 

2.15. Lemma. Let G be a lattice ordered group, G = J^^^j G .̂ T/ien D(^(Gi)) = 
= Ci(G,) n 1)(Л). 

Proof. Clearly A{G^ :=: AnG^, According to 2.4 we have A = \]^ш{А n G )̂, 
hence Л = П ^ ^ ( ^ 0 - I» ^^^^ ^^ P^^P- •̂'̂  ^^ ^^^ain D(^) = П?е/ ^(^(^»))- Thus 
D(^(Gi)) с /)(л). Let О ^ X e /)(^(Gi)). There exists y e A{Gi) with x ^ y. Then 
>' G Gf, hence x e c^ißi) and therefore 

D{A{G,)) Ç c,(G;) n D{A). 

Let 0 < X e Ci(Gi) n /)(^4). There exists a subset {a^} £ Л and an element a e A 
such that 0 g a;̂  ^ a holds for each â ,̂ and \/aj^ = x is valid in D(A), From the con­
vexity of Ci(Gi) we obtain â^ e Ci(Gi) and hence, in view of Lemma 2.14, a^^eGi 
for each a^. Moreover, a^ = ciJ^G^ S <^{Gi), hence {a;,} is an upper bounded subset 
of y4(G )̂. Thus {aj,} is an upper bounded subset of D[A[G,)), Since D(A{G^)) is a direct 
factor of D(A), it is a closed /-subgroup of D[A) and hence x e D(^(G,)). Therefore 

c,{G,) n i)(^) £ D(^(G,)). 

2.16. Lemma. Let G be a lattice ordered group, G = Yftei ^t- Then Ci(Gf) = 
= Di^{Gi) for each ieL 

Proof. Let iel bo fixed. We have to verify that the conditions (i)--(iv) from the 
definition of I>i(G) (cf. § 1) are fulfilled with G and D^[G) replaced by G,- and Ci(G,.), 
respectively. The validity of (i) is obvious. From Lemma 2.15 it follows that (ii) 
holds. 

Let 0 < УоЕ Ci(Gi). There are elements O g j e G , O ^ a e D(A) with Уо = у + a. 
By the convexity of Ci[Gi), both у and a belong to Cl(G^). According to Lemma 2.14 
we have у e G,-. Further, from Lemma 2.15 we obtain a e D(^(G,)). 
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Now let Xoeci(Gi). There are elements уо, Zoe{c^(Gi)y with XQ =^ Уо - ZQ. 
Let y,a be as above. Analogously, there are elements z e Ĝ  and ^i ^ ^(^(G^)) 
with ZQ = z + a^. Further, there is a2 e A{Gi) such that a^ й Ö2- Put ^3 == 0̂2 - a^. 
Then we have a^ e D{A(Gi)), a^ ^ 0, ZQ = z^ •- a^, z^ = z + ^2 e G/. Hence 

Xo = Ĵ  + ^ + ^3 — Zi = 3; — Zi + «4 

with 0 ^ a4 6 Z)(y4(Gj)). Hence there exists an upper bounded subset {aJ of A^G^) 
with (74 = V<̂ fe (holding in i)(yl(Gi)), and hence also in D^(G)). Thus {y - Z2 + aj^} 
is an upper bounded subset of у — z^ + A{G^) and XQ = V(y — z^ + f̂e). There­
fore (iv) is valid. 

Let xe Gi and let [xf^] be an upper bounded subset of x + A^G^). Hence { x j is 
an upper bounded subset in x 4- Л. Thus the least upper bound XQ of { x j in D^{G) 
exists. Since Ci{Gi) is convex in i)i(G), the element XQ must belong to c^(^Gi). Hence 
the condition (iii) holds. 

Fromi Prop. 2.10 and Lemma 2.16 we obtain 

2.17. Theorem. Let G be a lattice ordered group, G = Y[%i G .̂ Then Di{G) = 

Analogously we can verify the following assertion: 

2.18. Proposition. Let G be a lattice ordered group, G = Yjei G .̂ Then i)i(G) = 

A lattice ordered group G is said to be projectable (strongly projectable) if each 
principal polar (each polar) of G is a direct factor of G. 

2Л9. Theorem. Let G be a strongly projectable lattice ordered group. Then 
DI(G) is strongly projectable. 

Proof. Let Xo £ ^i(G). We have to verify that X^o is a direct factor of Di{G). 
Without loss of generality we can assume that XQ ^ (I>i(G))'^. Put X = {x G G : 0 ^ 
S X S XQ for some Xo e XQ}. In [10] (Proof of 3.4) it has been shown that XQ == ^^ 
is the set of all y e Di{G) with the property that there is a subset {y^} £ (X^y with 

\y\ - Vyi^ 
Since G is strongly projectable, we have 

G = X''@X' 

and hence, in view of Prop. 2.10, 

It suffices to verify that Xg = Ci(X*). 
Because X^ Я X" = X^, we have Ci(X') S Ci(Zg) = X^o, hence Ci(Jf *) s XÎ-
Let 0 ^ z e Zg. There is a subset {z,} £ (X^)+ such that z = Vzf holds in Pi(G)-
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We have {z j ç Ci(X^) and since с^^{Х^) is a direct factor of D^(G), it is a closed 
/-subgroup of Di(G). Thus z e c^{X^) and hence Zg Ç Cj(X'̂ ). 

2.20. Theorem. Let G be a projectable lattice ordered group. Suppose that A[G) 
is strongly projectable. Then I>i(G) is projectable. 

Proof. Let go e D^{G). We have to verify that {^o}^^ is a direct factor of D^{G). 
Since {goY^ = {|ô̂ o|}̂ ^̂  we may assume that go ^ 0. There are elements 0 ^ g e G, 
0 ^ ae D{Ä) with g^ = g + a. The /-subgroup {goY^ is a direct factor of D^{G) 
if and only if {go}^ is a direct factor of Di{G). 

Since G is projectable, we have 

С = {дГ®{9Г. 
This implies by 2.10 

D,{G) = c,{{gr')@c,{{gr). 

Denote Cid̂ f}̂ *̂ ) = F^, Ci{{gY) = F2. Then ^ is a weak unit in F^. Put 6/̂  = £ï(Fi) 
(/ = 1, 2), g^ = g + a i . Clearly 0̂ 1 e F j , «2 e D(^). 

There is a^e A with «2 g 03. Put X = [0, ^2] ^ ^ (the interval [0, ^2] being 
taken with respect to D[A)). Because A is strongly projectable, we obtain 

A =:X'' ®X' . 

Denote a^(X^^) = a^.. Since (74 e Л £ G, {^4}^^ is a direct factor of G and thus 
F3 = Ci({a4}̂ * )̂ is a direct factor of i)i(G). It is not difficult to verify that «2 is a weak 
unit in F3. From this we infer that F3 с F2. Hence there is a direct factor F4 of i)i(G) 
such that F2 = F3 Ф F4; thus 

Dx{G) = Fl e F3 e F 4 . 

Let 0 ^ / 2 6 {go}^. Hence go ^ h = 0 and thus g A h = 0, a2 л h =^ 0. Since g 
and a2 are weak units in Fi and F3, respectively, we have h[F^) = 0 = h^F^). Thus 
h = h{F^) E F4 Therefore {^0}'' ^ ^4-

Conversely, let 0 ^ /г e F4. Then f л /i = 0 for each 0 ^ r G Fj © F3. By putting 
r = 0̂ 1 + «2 = 6̂0 we obtain go A h = 0 and hence h e {ö̂ o}̂ - Thus F4 Ç (ô^o)̂ -
Therefore {^0}^ = F4 is a direct factor of i)i(G). 

If both G and ^(G) are projectable lattice ordered groups, then i)i(G) need not 
be projectable (cf. Example 6.2 below). 

The following result has been obtained by ROTKOVIC [13]. 

(*) Let G be a conditionally orthogonally complete archimedean lattice ordered 
group. Then G is projectable. 

2.21. Theorem. Let G be a conditionally orthogonally complete lattice ordered 
group. Then ^i(G) is conditionally orthogonally complete. 
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Proof. Let Z = {zi}iei be a bounded disjoint subset of D^[G). Let z^ e D^^G) 
be an upper bound of Z. There exists z e G with z^ ^ z. For each iel there are 
elements x^ e G, â  e 1)(Л) such that 0 ^ x ,̂ 0 ^ a^, z^ = x^ + a .̂ If ij EI, i + ; , 
then Xj л Xy == 0 = ui A a J. Hence there exists x = V-^i ^^ G. 

Let f e / be fixed. If aj = 0, we put Z^ = {0}. If â  > 0, then we choose a maximal 
disjoint subset Xi of the set [0, a[\ n A. The set Xi is upper bounded in G, hence 
there exists ĉ  = supX^ in G. Since Л is a closed /-subgroup of G, we have c^ e A. 
If i,j are distinct elements of/, then c^ л Cj = 0. Because Л is a convex /-subgroup 
of G, it is conditionally orthogonally complete and hence, according to (*), it is 
projectable. Let D^ be the principal polar in A generated by the element ĉ ; thus Di 
is a direct factor of A. We denote by E^ the convex /-subgroup of D(A) generated 
by the set D^. By 2.10, E^ is a direct factor of D[A). 

For each iel there is Ь^еЛ with a^^ biS z. Denote di = bi[Di). Then 0 ^ 
^ di S z for each f e / and rfj л dy = 0 whenever z, j are distinct elements of / . 
Hence there is d = \/di in G; since Л is closed in G, we have d e A. 

If <3I(E,) < ui, then there is 0 < a 6 yl with a -^ ai — a^E^; but then 0 < a' = 
= X л a for some x eXi and hence a' e D^ я E^, thus а^(Е^) < ^ (̂JSi) + a' ^ a^ 
and aj(Ei) -f a' eEi, which is a contradiction. Hence ai = alE^eEi. We have 
^(Ef) = f(Z)i) for each t e A. Thus 

^i = a{E) S Ь,(Е,) = b,(D,) = d,ud. 

Hence it follows that a = \/ai exists in D{A). Put ZQ = x + a. Clearly Zi S ZQ 
for each i e / . In the same way as in the proof of 2.10 we can now verify that ZQ = V^»-
Hence Di{G) is conditionally orthogonally complete. 

2.22. Theorem. Let G be an orthogonally complete lattice ordered group. Then 
D^(^G) is orthogonally complete. 

The p r o o f is analogous to that of 2.22. 

3. PAIRWISE SPLITTING LATTICE ORDERED GROUPS 

Let G be a lattice ordered group, 0 ^ x, y e G. We write x ^ y if nx ^ y for 
each positive integer n. We say that x splits by y if there are elements x^, X2 e G such 
that X = Xi + X2, Xj л X2 = 0, Xj e c(y) and X2 л j ; <̂  Xj-

Let us consider the following condition for G: 
(p) For each pair 0 ^ x, у e G, the element x splits by y. 
A lattice ordered group G fulfilling (p) is said to be pairwise splitting; lattice 

ordered groups with this property were investigated by MARTINEZ [12]. It is easy 
to verify that an archimedean lattice ordered group is pairwise splitting if and only 
if it is epiarchimedean. Let ^ be the class of all pairwise sphtting lattice ordered 
groups. If G is pairwise splitting, then each convex /-subgroup pf G is pairwise 
splitting. 
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3.1. Lemma. Let G be a pairwise splitting abelian lattice ordered group. Sup­
pose that A — A(G) is conditionally orthogonally complete. Let 0 ^ x E G, 0 ^ 
^ Уо e /)i(G). Then x splits by уд in I>i(G). 

Proof. There are elements у e G, be D(^A) such that 0 ^ y, 0 ^ b, Уо = у + b. 
If Ь — 0, then X splits by VQ. Suppose that Ь > 0. There exists b^e A with b -^ b^. 
From the Axiom of Choice it follows that there exists a disjoint subset {b j of A 
such that 

(i) bi S b for each b^, 
(ii) if 0 < «J e A, a^ S Ь, then a^ A bi > 0 for some b,-. 

The set {b,} is upper bounded in A, hence there exists V^i = ^2 i" ^ ^"^ ^У (0> ^2 — ^• 
Since v4 is a convex /-subgroup of G and because ^ is a torsion class, Л must be 

pairwise splitting and hence A is epiarchimedean. Thus by 2.13, D(A) is epiarchi-
medean. Hence ^(62) is a direct factor of A and Ci(c(b2)) = ^1(^2) is a direct factor 
of D(A). From (i) and (ii) it follows that с^{Ьу = Ci^[b2y. Hence we obtain (because 
D[A) is epiarchimedean) 

Ф2) = Ф). 
Put Ьз = bi(ci(fo2))- From the construction of the convex /-subgroup Ci(b2) it 

follows that 63 = Vm^o (^^2 '̂  ^1) î̂ <i that there exists a positive integer n with 
Ьз g nbj л bj. Thus 63 = nb2 л Ь^, hence b^eG. We have b -^ b^ and thus 

b = Ь(с,(Ь)) = Ь{с^{Ь,)) й Ь,{ф2)) = Ь 

This implies that Ci{b) = <:'1(Ьз). From this and from the commutativity of G we 
get с^{уо) = ci(j; + b) = Ci(y + Ьз). 

Since 3̂  + Ьз e G, the element x splits by у + Ьз. Thus there are elements Xi, X2 e 
e G such that x — x^ + X2, Xj л X2 = 0, x^e c(y + Ьз), (у + Ьз) л ^2 <̂  Х2. 
Therefore x^ e с^^уо), Уо ^ ^i ^ ^i- Hence x splits by y^ in D^(G). 

3.1.1. Corollary. Let G be as in 3.1. Let 0 й a e D{A), 0 й Уо^ ^i(<^)- Then a 
splits by ус). 

Proof. There is Ь e Л with a ^ b. According to Lemma 3.1, Ь splits by jo- Hence 
there are elements bi, b2 e D^(G) such that b = b^ + b2, b^ л b2 = 0, b^ e с[уо) 
and b2 л Jo ^ ^2- Since i)(^) is archimedean, b2 л jo = 0. Put a^ = b^ л a, 
a2 = b2 A a. Then a = a^ + a2, a^ л a2 = 0, a^ e с(уо), ^2 ^ Уо "^ 0. Hence 
a splits by Уд. 

3.2. Lemma. Le^ G be a pairwise splitting abelian lattice ordered group. Suppose 
that A(^G) is conditionally orthogonally complete. Let O ^ X 6 D i ( G ) , O ^ z e 
e Z)i(G), 0 ^ a G 1)(Л), z < x + a. Then z < x. 

Proof. According to Corollary 3.1.1, the element a splits by z. Thus there are 
elements «j , «2 e T>^{G) such that a — a^ + a2, a^ A a2 = 0, a^ e c^(z), a2 A z <^ 
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<̂  a2- Then a|, Ö2 ̂  ^{^ ^'^^ since Di^À) is archimedean, we have of2 л z = 0. 
Hence a2 ^ nz ~ ^ for each positive integer n. 

Since nz ^ X + flj + «2, there are elements 0 ^ Zj, Z2 e i)](G) with nz — 
= Zi + Z2, 0 ^ Zj ^ X + ^ 1 , 0 ^ Z2 ^ 02- If ^2 > Ö, then ^2 л nz ^ Z2 > 0, 
a contradiction. Thus Z2 = 0, nz g x + «1 for each positive integer n. If a^ = 0 , 
then the assertion of the lemma is valid; suppose that Ö1 > 0. 

There exists a maximal disjoint subset { a j c: A with of,- ^ a^. The set { a j is 
upper bounded in A, hence there exists V^i = «3 in Л and «3 ^ д^. From the con­
struction of ^3 it follows that Ci{a^^^ = <^i(<^i/; from this and from the fact that 
D[À) is epiarchimedean we obtain c^ia^ = c^{a^. Hence there is a positive integer n^ 
with п^аз ^ 01-

Since ûfî G Ci(z), there is a positive integer m with a^ ^ mz. Then for each positive 
integer n we have 

(n + m) z ^ X -f of 1 , 

nz ^ X + ö | — mz ^ X . 

3.3. Theorem. Let G be a pairwise splitting abelian lattice ordered group. Sup­
pose that A(jj^ is conditionally orthogonally complete. Then Di(G) is pairwise 
splitting. 

Proof. Let 0 ^ Xos .Уо ̂  ^ i (^ ) - There are elements 0 ^ x G G, 0 ^ a^ e 0(Л) 
with Xo = X + a j . Further, there is a e A such that a^ ^ a. Then x + a e G and 
hence, according to Lemma 3.1, x + a splits by уо- Hence there are elements 
Xi, X2 G G with X + fl = Xi + X2, Xi л X2 = 0, Xi G с^(уо), X2 A Уо < ^2- Denote 
x'l = Xi л Xo, xi = X2 л Xo. We have x[ л X2 == 0 and 

Xo = Xo л (Xi + X2) = Xo л (Xi V X2) = (Xo л Xj) V (Xo A X2) = 

= x'l V X2 = X[ + Х2 , x i G С^{уо) , X2 Л Уо й ^2 ^ Уо < ^2 -

Since X + аехо + -^(Л), we have Х2 = (x + а) л Х2 G XQ Л X2 + D(Ä). Hence 

there is 0 ^ ^2 G D(À) such that X2 = X2 + «2- We have x^ л Уо ^ ^2 + ^h^ 
thus according to Lemma 3.2, X2 л jo '^ ^2- Therefore XQ splits by Jo-

Problem. Does the assertion of Thm. 3.3 remain vahd without the assumption of 

commutativity of G? 

4. THE a-DISTRlBUTIVlTY 

Let a be a cardinal and let Lbe a lattice. Consider the following condition for L: 
( a ) I f {Xt^s}teT,seS IS a s u b s e t o f LsUCh t h a t b o t h AterVseS Xt,s a n d V^eS^ AteT ^tMt) 

exist in Land if card T ^ a, card S ^ a, then 

AteT V56S ^f,s — VooeST AteT ^tMO ' 
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If L fulfils the condition (a) and the condition dual to (a), then it is said to be a-
distributive. L is called completely distributive if it is a-distributive for each car­
dinal a. 

Let Д be a cardinal. If Lis ^^-distributive for each cardinal ß^ < ß and if Lfails 
to be j5-distributive, then we write d[L) ~ ß. 

Let G be a lattice ordered group. It is easy to verify that G is a-distributive if it 
fulfils (a). 

The following assertion is easy to verify. 

4Л. Lemma. Let G be a lattice ordered group and let a he an infinite cardinal. 
Suppose that G fails to be a-distributive. Then there is 0 < v e G such that for each 
0 < v^ E G with Vi ^ V, the interval [0, î ]̂ of G fails to be (x-distributive. 

We need the following result: 
(A) (Cf. [7].) Let a be an infinite cardinal and let G be an archimedean lattice 

ordered group. Suppose that card [0, Ü] g a for each strictly positive element v 

of G. Assume that G is a-distributive. Then D[G) is a-distributive. 

4.2. Proposition. Let G be a lattice ordered group. Suppose that G is completely 
distributive. Then Di{G) is completely distributive. 

Proof. This follows from Prop. 1.7 of the paper [15] and from the fact that each 
element of D^[G) is the supreum of a certain family of elements of G (cf. the con­
dition (iv) in § 1). 

4.3. Theorem. Let a be an infinite cardinal and let G be a lattice ordered group. 
Suppose that card [0, г;] g a for each strictly positive element of A{G). Assume 
that G is ^'distributive. Then /)i(G) is a-distributive. 

Proof. Since G is a-distributive, A(G) = A must be a-distributive as well. Thus 
(A) impHes that D[A) is a-distributive. 

Assume that i)i(G) is not a-distributive. By Lemma 4.1 there is 0 < i; e D^[G) 
such that the interval [0, v^~\ of D^^G) fails to be a-distributive for each 0 < V^E 
E Di(G) with v^ ^ V. 

We distinguish two cases. First suppose that there exists 0 < a E A with a ^ v. 
Then the interval [0, a] of i)i(G) is a sublattice of D(A) and hence it is a-distributive, 
which is a contradiction. Now suppose that no 0 < a E A with a ^ v exists. Each 
element 0 < V^E i)i(G) with v^ ^ v can be written as v^ = x + ai, 0 ^ x e G, 
0 g «J e D[A). Then we have a^ S v^ ^ v, hence a^ = 0 and thus v^ = XEG. 
Hence the interval [0, v^ of i)i(G) is a sublattice of G and so it is a-distributive, 
which is a contradiction. 

4.4. Theorem. Let G be a lattice ordered group that is not completely distributive, 
J(G) = a. / / A(G) is completely distributive, then rf(i)](G)) = (x. If A(G) is not 
ompletely distributive, d[D[A[G))) = ß, then d(D^(G)) = min (a, ß). 
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Proof. From [10], Prop. 2.20 it follows that Dj(G) is not a-distributive, hence 
rf(Di(G)) ^ a. If A(G) is not completely distributive, then D(A{G)) cannot be com­
pletely distributive; if d(D{A{G))) = ß, then according to [10], Prop. 2.16, d{D^{G)) ^ 
S. ß- Now it suffices to verify that if y is a cardinal and both G and D(A(G)) are 
7-distributive, then D^(^G) is y-distributive as well. To prove it we can use the same 
method as in the proof of 4.2. 

4.5. Theorem. Let G be a lattice ordered group that is not completely distributive, 
d[G) = a. Suppose that A[G) is projectable. Then d^D^^G)) = a. 

Proof. If A(G) is completely distributive, then the assertion is vaHd according to 
4.4. Suppose that d[A[G)) = ß. Hence ß ^ a. Since A(G) is projectable, from [8] 
we obtain d{D{A{G))) = ß. Hence d{D,{G)) = a by 4.4. 

5. ,^-COMPLETE LATTICE ORDERED GROUPS 

An archimedean lattice ordered group G is complete if and only if D(G) = G. 
A lattice ordered group H will be called g-complete (generalized complete) if Di(H) = 
= Я. It was remarked in [11] that D^^H) = H if and only if A[H) is complete. 

The following assertion has been proved in [9]: 

(A) Let G be a lattice ordered group. Then there exists a convex /-subgroup C[G) 
of G such that 

(a) C[G) is complete; 
(b) if Я is a convex /-subgroup of G and if H is complete, then Я ^ C{G). 
A class Ж of lattice ordered groups is said to be a radical class [11] if it fulfils 

the following conditions: 
(i) .>r is closed with respect to isomorphisms. 

(ii) If Hi is a convex /-subgroup of a lattice ordered group Я and if H e Jf, 
then Hi G J T . 

(iii) If Hi is a system of convex /-subgroups of a lattice ordered group Я and if 
each Hi belongs to JT. then \/Hi e Ж. 

In this paragraph it will be shown that the class of all ^-complete lattice ordered 
groups is a radical class. 

5.1. Theorem. Let G be a lattice ordered group. There exists a convex l-subgroup 
^o(G) of G such that 

(a) BQ(^G) is g-complete, 

(b) if ВI is a convex l-subgroup of G and if B^ is g-complete, then By Ç ^o(G). 

Proof. Let {ßj} be the set of all convex /-subgroups of G fulfilling 

B, n A{G) Ç C{G). 
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Put Bo{G) = V ^ r Then Bo{G) n A(G) С C(G). Hence A{Bo{G)) = A{G) n Bo{G) с 
Я C{G). Since Л(Ло(0)) is complete, BQ{G) is ^-complete. 

Let B^ be a convex /-subgroup of G and suppose that B^ is ^-complete. Then 
A{Bi) = A{G) nBi is complete, hence A{G) n B^ ^ C{G) and thus ß i e { j 8 j . 
Therefore Б, ç JBO(G). 

Remark . It is easy to verify that BQ(^G) is a characteristic /-subgroup of G. It can 
be shown by examples that BQ[G) need not be a closed /-subgroup of G (cf. Example 
6.5 below). 

5.2. Theorem. The class Kg of all g-complete lattice ordered groups is a radical 
class. 

Proof. Kg obviously fulfils (i). Let He Kg and let H^ be a convex /-subgroup 
of Я. Then A(H) is complete and since A(H^) = H^ n Л(Я), A(H^) is complete as 
well. Thus (ii) holds. Let G be a lattice ordered group and let {Gj be a system of 
convex /-subgroups of G such that each Ĝ  belongs to Kg. Let BQ(^G) be as in 5.L 
Then each Ĝ  is a subset of BQ(^G), hence \/Gj- ç BQ(G); in view of (ii) we have 
VGj E Kg and hence (iii) is valid. 

5.3. Proposition. Let G be a lattice ordered group, G = Yl%i ^i- Then G is g-
complete if and only if all Gi are g-complete. 

Proof. Assume that all Ĝ  are ^-complete. Then according to Prop. 2.17, G is 
^-complete. Conversely, suppose that G is g'-complete. Hence A(G) is complete. 
We have A{G) = Hlj{A{G) n G,) and A{G) n Gi = A{Gi) for each ieL Since 
each direct factor of a complete lattice ordered group is complete, all G/s are 
^-complete. 

An analogous proposition is vahd for direct sums. 
Let Я be an abelian lattice ordered group. Consider the following condition for Я : 
(I) it is possible to define a multiplication of elements of Я by reals so that Я 

turns out to be a vector lattice. 
We denote by f"^ the class of all archimedean lattice ordered groups fulfilling the 

condition (I). Further, let i^2 ^^ the class of all G G f^j that are complete. Lattice 
ordered groups belonging to i^2 ^^^ called complete vector lattices [1] or K-spaces 
[14]. Let us denote by i^\ the class of all G еКд fulfilling (I). 

Proof, f^i obviously fulfils the conditions (i) and (ii). Let G be a lattice ordered 
group and let {Я,} be a system of convex /-subgroups of G such that each Я; belongs 
to 'f\. Put Я = V ^ r Each Hi is a convex /-subgroup of A[G), hence Я is a convex 
/-subgroup of A[G) as well. From Thm. 1.3, [4] it follows that each archimedean 
lattice ordered group possesses a largest convex /-subgroup fulfilhng the condition 
(I). We denote by HQ the largest convex /-subgroup of A(G) fulfilling (I). Since all Hi 
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are convex /-subgroups of Яо, we obtain that Я is a convex /-subgroup of HQ. Thus H 
belongs to i^i. Therefore i^^ is a radical class. Let ^ be the class of all complete 
lattice ordered groups. '^ is a radical class [12] and 1̂ 2 = '^1 ^ ^- The intersection 
of two radical classes being again a radical class, i^2 is a radical class as well. 

5.5. Corollary. Let G be a lattice ordered group. Then G possesses a largest 
convex l-subgroup Fi(G) belonging to 'V^ {i = 1, 2). 

Problem. /5 "/̂ ^ a radical classl 

6. EXAMPLES 

6.1. If a lattice ordered group G is complete, then each polar of G is a direct factor 
of G. A polar of a ôf-complete lattice ordered group Я need not be a direct factor of Я. 

Let H be the set of all triples (x, y, z) of reals, the operation + in Я being defined 
componentwise. For (xj, y^ Zj), (^2, У2, ̂ 2) e Я we put (x^, y^, Zj) ^ (x2, У2, ^2)^ 
if either X| < X2, or x^ = X2 and у у g У2, z^ S ^2- Then Я is a ^-complete lattice 
ordered group. The set P consisting of all (x, y, z)e H with x = z = 0 is a polar 
of Я and P fails to be a direct factor of Я. 

6.2. If a lattice ordered group G is projectable and if A[G) is projectable, then 
D^(^G) need not be projectable. 

Let / = [0, 1] be the interval of reals and let F be the set of all real functions / 
defined on / with the following property: there is a finite set M( / ) Ç / such that 
/ (x j ) = /(X2) whenever Xj, X2 e / \ M(/ ) . The partial order and the operation + on 
the set F are defined in the natural way. Let G be the set of all pairs (/, g) with 
f,ge F. For (/„ g,) e G {i =^ 1, 2) we put ( / „ g,) + (/2, ^2) = (/1 + /2 , Oi + ^2) 
and we set ( /1 , ^1) ^ (/2, g2) if for each x G / we have either/^(x) < /2(^)5 ог/Дх) = 
~ fii^) ^^^ 9i{^) й g2{^)- Then G is a projectable lattice ordered group. A[G) 
consists of all elements (0, g) with g e F; A[G) is projectable as well. Let / | be an 
infinite subset of/, I^ Ф / . For each t el^ hi ft e F such that/;(r) = 1 and/f(x) = 0 
for X e / , X Ф ^ The least upper bound h of the set {(0,/,) : tel^} in D^{G) exists. 
Let / G F , / ( X ) = 1 for each x e J. Let P be the principal polar of D^[G) generated 
by the element h. Then the set 

{h,eP:Ouh, u{LO)} 

has no greatest element. Hence P fails to be a direct factor of G. 

6.3. If a lattice ordered group G is pairwise splitting, then D^(G) need not be 
pairwise splitting. 

Let F be as in 6.2. Then F is pairwise splitting lattice ordered group. Put t„ = 1/n 
(n = 1,2, . . . ) . For each positive integer n let /„ e F with /„(/„) = 1/«, /„(x) = 0 
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for each x Ф t„. Since G is archimedean, D^(F) = D{F). The least upper bound h 
of the set {/„} (n = 1, 2, ...) in Di(F) exists. Let / e F, / (x) = 1 for each x e / . The 
element/does not split by h in Di(F). Hence Di{F) is not pairwise splitting. 

6.4. There exists an epiarchimedean lattice ordered group G such that D[G) fails 
to be epiarchimedean. 

Let F, h be as in 6.3. The lattice ordered group F is epiarchimedean and the prin­
cipal convex /-subgroup of Di(F) generated by the element h fails to be a direct 
factor of i)i(G). Hence ^ I ( F ) is not epiarchimedean. 

6.5. The largest ö'-complete /-ideal BQ[G) of a lattice ordered group G need not 
be a closed /-subgroup of G. 

Let F be as in 6.2. Let F^ be the set of a l l / e F such that (i) / (x) is an integer for 
each X G / , and (ii) if x e / \ M ( / ) , then / (x) is even. F^ is an archimedean lattice 
ordered group. Hence BQ(F^) = C[Fi^). Thus BQ^F^) consists of a l l / e F^ such that 
/(x) = 0 for each X G / \ M ( / ) . Let feF^ with / (x) = 2 for each X G / . There is 
a subset X ^ ßo(^i) such that sup X = /ho lds in F^; hence BQ(^F^) fails to be closed 

in F j . 
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