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Introduction. Let an It6 stochastic differential equation
dx = a(t, x) dt + B(t, x) dw

be given in a region Q, Q = (0, L) x D where D is a region in the n-dimensional
Euclidean space, the n-dimensional vector function a(t, x), the matrix function B(t, x)
of the type n x n and the region D fulfil conditions guaranteeing the existence and
unicity of solutions, w(f) is an n-dimensional Wiener process.

Denote by x(t, x,) the solution of the Ité equation fulfilling the initial condition
x(0, xo) = xo (x, being a deterministic value) and by P(B, a, x,, Q) the probability
that the solution x(1, x,) leaves the region D during the time interval <0, L), i.e.

P(B, a, xo, Q) = P{3{t : x(1, x0) ¢ D, 1€<0, L)}} .

The matrix function B(t, x) or A(t, x) (A(t, x) = B(t, x) B'(t, x) where BT is the
transposed matrix) is called strongly maximal with respect to a(t, x) and Q if

~ P(B, a, x,, Q) = P(B', a, x,, Q)

for all xo € D and for all matrix functions B'(t, x) fulfilling the conditions guaran-
teeing the existence and unicity and such that A(t, x) — A'(t, x) (A'(t,x) =
= B'(t, x) B(t, x)) is a positive semi-definite matrix at every point [t, x] € Q.

This definition was used in the papers [1], [2], [5] with the following conditions
guaranteeing existence and unicity:

i) a(t, x), B(t, x) are Hélder continuous in t;
ii) a(t, x), B(t, x) are Lipschitz continuous in x;
iii) A(1, x) = B(t, x) B'(t, x) is uniformly positive definite in Q;
iv) the region D is bounded and has the outside strong sphere property [4].

If the matrix functions B(t, x) and A(f, x) are diagonal at every point [, x] e Q,
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the matrix function B(t, x) (A(1, x)) is called maximal with respect to a(t, x) and Q if
P(B9 a, Xo, Q) g P(B,’ a, Xo, Q)

for all x, € D and for all diagonal matrix functions B'(1, x) fulfilling the conditions
guaranteeing the existence and unicity (e.g. i) to iii)) and such that A(z, x) — A'(t, x)
is a positive semi-definite matrix at every point [1, x] € Q.

The matrix function A(f, x) (B(1, x)) is strongly maximal (maximal) with respect
to a(t, x) and Q if and only if the bounded solution u(t, x) of the parabolic equation

ou 1 & o*u = Ju
ot 2 .,z= 1Aij(L %) 0X; OX * .~§1ai(L ) X ;
fulfilling u(0, x) = 0 for x € D and u(t,x) = 1 for t > 0, xe D (D is the boundary
of D) is a convex function of x (0*u/dx} = 0,i = 1,...,n)in Q.

This result was proved in [2]. The problem to find conditions guaranteeing the
strong maximality (the maximality) of A(f, x) is thus transformed to the problem
to find conditions guaranteeing convexity (82u/8x,-2 >0,i=1,...,n) of the given
solution of the parabolic equation.

The paper [5] is devoted to the one-dimensional case (n = 1) and presents explicit
conditions ensuring maximality of B(x) (Theorems 3 and 4 [5]).

The problem to find conditions guaranteeing maximality of A(t, x) in the multi-
dimensional case is treated in [1] (Theorem 4 [1]). It is assumed in Theorem 4 [1]
that the solution u(t, x) is convex on the side-boundary S of Q,i.e. on S = <0, L) x
x D. Therefore conditions are given guaranteeing the convexity of u on S pro-
vided the coefficients of the Itd equation as well as the region D depend on a small
parameter (Theorem 6 [1]).

The method which enables us to prove Theorems 3 and 4 in [5] is based on
Theorem 3 [2] which is valid for linear drift coefficients only. Theorem 1 of the present
paper is a modification of Theorem 3 [2] to the multi-dimensional case. Examples 1
to 3 [2] and Lemma 1 [1] show that Theorem 3 [2] cannot be generalized to the
multidimensional case without additional assumptions on A4 and D.

The meaning of Hypotheses (A) to (C) (see page 202—203) is evident. Hypothesis
(D) is closely related to Theorem 5 [1] and enables usto investigate more precisely the
behaviour of u(t, x) near the points [0, x], x e D where the intitial and boundary
values differ.

Hypothesis (E) is simplified to (0, 4) in Remark 2 and in Section 13 it is more
closely discussed for n = 2 (Examples 1 and 2).

In the Sections 7 to 12 of the paper the possibility of extending Theorem 1 to
nonlinear drift coefficients is investigated. Formally it is possible to use the method
from [5] which was mentioned above and which is described in more detail in the
introduction to Theorems 2 and 3. Since the general case would be too complicated
the investigation is limited to weakly nonlinear drift coefficients, i.e. to the drift
coefficients of the type —2A;x; + & a/(x) where ¢ is a small parameter.
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Some assumptions of Theorem 3 could be weakened, for example the assumption
that a, A are real analytic functions and the assumption that zero is not an eigenvalue
of (7, 5). However, these generalizations would lead to considerable technical dif-
ficulties.

The last section is devoted to spherically symmetric equations with linear drift
coefficients. Example 3 gives conditions under which the problem can be solved by
virtue of Theorem 1.

As in the previous papers we shall use the following notation. Let a function
f(xy, ....x,) be given in a neighbourhood of a point [x‘l’, ce x,?]. The function is
convex or strictly convex at the point [x3, ..., xy ] if the matrix 8%/dx; ox; (x3, ..., x7)
is positive semi-definite or positive-definite, respectively.

Let I be a nonzero real n-dimensional vector. The derivative of the function f in
the direction [ at the point x° = [x?, ..., x7] is denoted by df/dI(x°) and defined as
usual by

dfjdi(x°) = lim (F(x° + 1h) = f(x)fh

The column vector of the first derivatives of f : [9f/ox,, ..., 0f[0x,] will be denoted
by df/dx and the matrix of the second derivatives 8>f/ox; dx; will be denoted by
d*fldx>.

Analogously if f is a vector valued function then df/dx denotes the matrix
{ofifox;}i ;e

We shall study the partial differential equation of parabolic type

©.1) “_LS A x)

*u
at  2ij=1 Ox; 0 ;

i 0

+ Y aft x) A

i=1 0x;
in a cylindric region Q = (0, L) x D. Consider a bounded solution fulfilling the
initial condition
0,2) u(0,x) =0 for xeD
and the boundary condition
(0,3) u(t,x) =1 for t>0, xeb
(D is the bdundary of the region D).

Throughout the paper the following assumptions will be used.

Hypotheses. (A) The coefficients at, x) are Hélder continuous in Q (Q is the
closure of Q) and Aft, x) have bounded and continuous derivatives 0A;;|0%,,
0% A;]0%, 0x,;, 0A,;l0t, 8°A;;lox, 0x,0x,, and 0*A;[0t*. The matrix function A(t, x)
is uniformly positive definite in Q, i.e., there exists a constant K, such that

n n

Y Aift, x) Ad; = K, Y, A7 for all real numbers A;.
=1 i=1

ihj=
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(B) The region D is bounded and to every point P € D there exists a ball K with
its centre at P and a system of orthogonal coordinates %, ..., X, where %, has the
direction of the inward normal to D with respect to D at the point P such that the
boundary D can be expressed in the ball as a function %, =h(%,, ..., £,-,) for
[£5, ..., %,-1] € K" = K* with Hélder continuous second derivatives. The set K*
is defined by K* = {[&;,...,%,—1] :[%1, .., %,—1, 0] €K} and K* is an open
subset of K* containing the origin of the £, ..., £,_, — coordinate system.

(C) The region D is strictly convex, i.e., the matrices 0*h[0%; 0%,(0) are positive
definite for every P € D.

Denote by X,, ..., X, a local coordinate system corresponding to P, P e D. We do
not require the local coordinate system X, ..., X, to be orthogonal at the moment
but we suppose that the boundary of D in a neighbourhood of P can be expressed
by X,= h(%,, ..., X,—) where h(0, ..., 0)=0, 0h[0x,(0, ...,0)=0fork=1,...,n—1.

Denote by 4;;, a; the coefficients of (0,1) in the X, ..., X, — coordinate system, i.e.
i 1 ¢ 2n . _\Ou o
—_= - il X -+ aft,x)—, ult,x)=ult,x).
S LA s S a9 a9 = ()

Let the coordinate system X, ..., X, — be chosen so that 4(0, ..., 0) = I (I is the unit
matrix). Define the matrix I': I';; = 0°h[ox; 00, ..., 0) for i,j =1,...,n—1,

rin = Fni = % a‘/—lnn/a)—ci(o’ e O)a i< n, rnn = 2Zin(()5 ) Z Fll
(D) The determinant of I is uniformly positive, i.e., lnfdet F > 0.
P

The value of det I is independent of the choice of the coordinate system X,, ..., X
if only the above formulated conditions are fulfilled.

(E) The coefficients a(t, x) are linear in x and
2
tr B AdT ‘:i—lf (t, x) + ABAT ‘—33 (t,x) + ABAT A(t, x)] >0

for every point [t, x] € Q, every real matrix A of the type n x n, with orthogonal
columns, every real symmetric matrix B of the type n X n which has the same
zero columns as A (i.e., if the k-th column of A is the zero vector then also the k-th
column of B is the zero vector) and for every unit vector I fulfilling A"l = 0.

The next theorem is very similar to Theorem 4 [1]. The assumptions on the
diffusion coefficients in Theorem 4 [1] are very restrictive and they do not permit
any application similar to Theorem 3 of the present paper. Theorem 1 is more ap-
plicable than Theorem 4 [1] in spite of its more complicated structure.

Theorem 1. Let u(t, x) be the bounded solution of (0,1) fulfilling (0,2) and (0,3).
Suppose that u(t, x) is convex at the points [t,x], x € D, 0 < t < L. If the assumptions
(A), (B), (C), (D) and (E) are fulfilled, then u(t, x) is convex with respect to the
spatial variables xy, ..., x, in Q.
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Remark 1. Hypothesis (D) can be formulated in another way. Choose P e D.

In virtue of (B) there exists a system of orthogonal coordinates %, ..., %,. Let the
coordinate systems Xi,..., X,, £;,..., %, be related by x = P + T& where T is
a unitary matrix. Let 4,,(t, £), d(t, £) be the coefficients of (0,1) in the %y, ..., £,

coordinate system. Denote I" the (n x n) — matrix defined as follows: I';; are the
elements of the matrix ((LV)™')T H(LV)™* for i,j=1,...,n—1, [, =1, =

n -1
=13 04,,0,0)/0%(LV)s: " (4,,(0,0) "> for i<n and [, =24,00)— YT
s=1 i=1
where H is the matrix of the type (n — 1) x (n — 1) whose elements are: H;; =
= 0%h[0%,; 0%(0) while I is the matrix of the type (n — 1) x (n — 1) which is
constructed in Lemma 2 [1]. Hypothesis (D) is equivalent to the assumption

inf det ' > 0. The value of det I" is independent of the choice of I*’ (under the con-
P

dition that the assumptions of Lemma 2 [1] are fulfilled). Remark 1 together with
Lemma 2 [1] provide a method for evaluation of the determinant of I

Remark 2. Let d*A[dI*(t, x) be positive semi-definite in Q for all unit vectors .
Obviously there exist matrix functions M(t, x), N (1, x), P(t, x) defined in Q all
of the type n x n fulfilling

MT(t, x) M(1, x) = A1, x), N(t, x) N(t, x) n* = d>A[dI*(t, x),
P(t, x) = dA[dI(t, x) .
If
(0,4) MT(t, x) N(t, x) + Nj(t, x) M(t, x) + \/(2) P(t, x) and
MT(t, x) N1, x) + Nj(t, x) M(1, x) — /(2) P(t, x)

are positive semi-definite matrices for every [1,x] e Q and for every unit vector I,
then

q—1 aZ/T q—1 a/’l" q—1 - g—1
(0,5) Y +2 Yy —Hawhi; +2 Y Adjae;y BB, 20
i=1 0y, ij=1 0y, =1 p=1

for all real numbers a,, ,Bij(ﬂij = ﬂj,-) any index q, q > 1 and an arbitrary unitary
matrix T where x = Ty, A(t, y) = TT A(t,x) T.
Inequality (0,5) implies (4,4) and is equivalent with Hypothesis (E) on A.

It means that the assumptions of the remark together with the linearity of a; can
substitute Hypothesis (E) Even though the assumptions of the Remark are stronger
than Hypothesis (E), they are simpler and more explicit so that they can be used
in the next theorem.

The equivalence of the Hypothesis (E) on A with (0,5) is obtained easily by putting
A;; = To, Bi; = B;; where x = Tz is the transformation from Remark 2, and ap-

plying the well-known relations Y C;;F;; = tr F'C, tr CF = tr FC.
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Proof of Remark 2. Inequality (0,5) can be rewritten in the form.

i(le, Bz;) + ZZ(B z;, Bz;) + z(?ii' oz,zz,,z) =20
i=1 yq

choosing
;= f;;=0 for i,j=zgq.

where z; is the system of orthonormal vectors which is given by the columns of the
unit matrix. The elements of the matrix B are A;a;0; while the elements of the matrix
B’ are (04;;/0y,) a;. The elements of B are B;;. As in the proof of Lemma 3 [2]
we can substitute the vectors z; by the eigenvectors of the matrix f (the matrix f is
symmetric). Nonetheless, we preserve the.notation of z; without a change while the

eigenvalues of f will be denoted by 4;. Then the last inequality is equivalent to

22/12(34” )+ 22,1 (B'z; z;) + Z ( P —raiz; z,-) 20.
y

q

Inequality (0,5) will be obviously valid if

2 62/’1"
v + Y S5 2 0
' q

2223 400
Z 7 .,6yq n dy

where v;, 4, ¢ are arbitrary real numbers. The relation between A and A implies that
the last inequality is equivalent to

(0,6) 202y 4, Z T, T,vv; + 2Ap Z d4p, Z T, T,o; +
p,4q i,

2

+—Z : ZTP‘Tq,U, 20, I=[T,...T,,]
N pq dl i

where T;; are the elements of the unitary matrix T. Suppose T = T, T, where T, T,
are umtary matrices, T, transforming d?A4/dI* into a diagonal matrix, i.e.
T{d?A[/d> T, = S where S is a diagonal matrix. The last term in (0,6) can be
rewritten as

2 2 2
BT d2A)dI? ), 02 = 2 S(17STy) 0 02 = 23S, S(T,)20?7 2
n i n i n p i

:i‘;z w(X(Te)pi 007 = L 3 U(TIST)y v, LY (T AP T, v,

p i,J

=
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Using this estimate we see that (0,5) is valid if

dz4
202Y A, ww, + 2An Y
pa p.a l

da u?
Pyww, +— Y —Pww >0
dl pPq nzpz,qdz pq

where w, are arbitrary real numbers. Recalling the definitions of M, P,;, N; we con-
clude

(0,7) 2A*M™™ + 2ApP; + 2NN, = (2 /(2) M" + uN7) (A J(2) M + uN)) +

+ A J(2) (J(2) P, — M'N, — NTM)
and

(0,8) 2A°M™ + 2ApP; + NN, = (A J(2) MT — uNT) (A /(2) M — uN)) +
+ uJ(2)(@2) P, + MTN, + NTM).

If 0 < Ap we use the first assumption of (0,4) and the relation (0,8). If 0 > Au we
use the second assumption of (0,4) and the relation (0,7). In both cases we obtain
that the left hand sides of (0,7) or (0,8) are positive definite which proves Remark 2.
The proof of Theorem 1 is divided into several lemmas.

Lemma 1. Let D be a region in a p-dimensional Euclidean space. Assume that
a positive semi-definite symmetric matrix function M(xl, cen x,,) is defined on D.
Let the matrix M(xl, ce x,,) be of the type n x n and let the matrix function be
continuous in D. If there exists a point [x}, ..., x5 € D such that M(x}, ..., x7)
is positive definite than there exists a region D;, D, < D, [x?, . xg] € D, such
that M(x,, ..., X,) is positive definite in D,, it is not positive definite on D,nD
and det M(xl, cn xp) =0 on l')1 n D.

Proof. Evidently, the set of points at which the matrix M is positive definite is

open. Denote by D, the maximal region containing [x(l’, e x,‘,’] in which M is positive
definite. Certainly M is not positive definite on D, n D. It remains to prove the
statement about det M. Let [x},...,x’,]e D, n D, then there exists a nonzero
n-dimensional vector y’ such that

(1,1) (M(x%, ..., x}) ¥, ¥) =0

and

(1,2) (M(x4, ..., x,) y,¥) 2 0 for every vector y .

Since M(xj, ..., xp) is a symmetric matrix there exists such a real unitary matrix T

that M(x'l, s Xp) = TTST where S is a diagonal matrix. Denote z = Ty and
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= Ty'. Using (1,1) we obtain
(1,3) Zsii(z§)2 =
and using (1,2) we obtain ZSi,-(zi)2 > 0. The last inequality implies S;; = 0 and

then (1 3) implies S;; = 0 for some i. It means that the determinant of S and also
that of M(xl, p) must be zero. Lemma 1 is proved.

In the sequel we shall need the following remark which is presented without
proof.

Remark 3. Let M be a positive semi-definite symmetric matrix of a type n x n.
If M;; = 0 for some i, then M;; = M;; = 0 for j=1,...,n

In order to prove the convexity of u(t, x) we need some approximations of u(®, x).
In the next section an approximation of u(t, x) will be used which involves four terms.
The reason is that the second derivatives which are crucial for the convexity are
unbounded near the points [0, x], xe D. Due to a specific behaviour of u(t, x) near such
points the convexity of u(t, x) can be proved only in a part of their neighbourhoods.
These parts of neighbourhoods are denoted by Q,. The corresponding statement is
given in Lemma 2. The second part of the proof consists in the study of convexity
in the whole region Q. Since the original equation is transformed in the course of the
proof the last part of the proof consists in the reformulation of results.

First we carry out transformations which simplify the necessary estimates. The
coefficients a(t, x), 4;(t, x) can be extended to the whole strip (0, L) x R" so that
assumption (A) is fulfilled. Let a point P € D be given. Due to Hypothesis (A) there
exists a linear transformation which maps u(t, x) to i(t, X) and equation (0,1) to
a parabolic equation with the coefficients 4;(t, X), at, X) such that A(0,0) = I
(the unit matrix). The second part of Lemma 2 [1] states that there exist a number
4 >0 and a function h%(%y,..., X,) such that h°(%,, ..., X,) = h(X,, ..., X,) for
i)?l < 8, h°(xy,...,%,) =0 for |x| > 26 and the function has all continuous
derivatives. The function  is the same as in the definition of I' — see Hypothesis (D).
Denote

(1,4) =y, i=1L..,n—=1, %, =y, +hy,...0.-1),
u(t, x) = o(t, y).

Equation (0,1) is transformed to

ov 1
1,5 — = ;
(1) L= LA

+2a H(A y)—

where a7, Af; are determined in (3,10) [1]. The image of the region D will be denoted
by D(P). Evidently the boundary of D(P) is described in the é-neighbourhood of P
by y, = 0. Further, § > 0 is chosen such that assumption (A) is vali¢ for (1,5).
Certain approximations of u(t, y) will be constructed in the next section.
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2

We shall submit the equation to still another transformation
(2,0) t=2t, y=&JA, uo(t,y) =vyr, &) where i3> 0.
Equation (0,1) is transformed to

0%

0¢; 0¢;

@.1) EREINHCAN

0t

ov
+ Ya¥(za, & JA) JA —
Yaleh § V) Vi

and the conditions ,(0, &) = 0 for ¢ e D(P, 2), vi(t, &) =1 for = > 0, &e D(P, 2)
where D(P, 1) is the image of D(P).
Let vy(7, &) be the solution of dv,/dt = 1Y 020,08} fulfilling 20(0, &) = 0 for

e D(P,0) and vy(tr,&) =1 for 1 >0, fe D(P, 0) where D(P,0) = {¢:¢, > 0).
We have

&n/Vt
(2.2) oot &) = 1 — \/(%) f R g
7T 0

Let 4y(t, &) be the solution of

a4 1 o%4 0?0y 04,
e It —"‘-’za""(o,o)é.-ﬂg(o,o)

= ! 9v
ot 2T o 2 okt Vs o¢,

fulfilling 4,(0, &) = 0 for &€ D(P, 0) and Ao(r, ) =0fort>0 e [)(p, 0). The
solution A(t, £) can be written in the form

n—1
(2,3) AO(T’ 5) = .Zlé:i Ai(r’ én) + An(“"’ én)
where
1 042 ¢ 2
A1, &) = —— —"(0,0) 2 =2 j =1 n—1
V(2m) oy, NG
and

L o 1 . 22c 1 ,En/VOV(A/(1 - 2)) N
A, &) = ~2a,(0,0) ~ 7 Jff j e " dudi +
0J0

0 1
+ %(0, 0) L e‘f"'/“\/rf [& JO(1 = 1)) e @zoma=-a
0 n 0 \/‘r

C«Z Cn/VT)V(A/(1 = 1))
+(1 —)V+—",1>J‘ e_"z’zdﬂ]di-

T 0



Further, let g4(t, &) be the solution of

do 1 1 %4,
(254) - 0 = “_Z 2 _Z
ot 27 0¢; 215 0¢; 5«5

[
+ Ya(0,0) e 4 120 e
; o8, | 2 o¢2

Z A (0 0) & +

(0 0)'c+

da?

o
= 0.0 af:] ”°>: :
Su Oy,

Iy
+ —
24 a
fulfilling ¢0(0; ¢) = 0 for & D(P, 0) and @07, &) = 0 for « > 0, ¢ (p 0). Put
R o) - 8D = () _ 408) _ fet)
A/ A Vi

The function R,(z, ¢) is the solution of

R, 1 R 0
(2.5) e T a B AR EA) S+ Tai(e ¢ V) Vi R‘
i
.2_\/]'21(/1 (T, EJ2) — 450, 0)) -+ Yai(e, éﬂ) a"‘)
Ly &4 (A‘-’-(r/l EVA) = 450,0) ~ /2y 2y
" 23 tag, ag, \ " TV @ O)é") ’

0 aAo 0
+ = Dlal(en £2) = af0,0) 52 5 (e ey -

0 (1)
— 45(0,0) — /2 ZaaA"" (0,0) &, —/1‘3/1""(0 0) 7 —
_ty 0)¢ vy 1[4 J o
z‘“avka}l(: ) & EJrZ an(ed, £\/2) — af(0,0) —
ov
— /2 Y
VILE005) 2

fulfilling R,(0, &) = 0 for & € D(P, 2) and

1 — , Aoz, )

We need estimates for the solution R;. To this aim we write Rz, =0 (<, ) +
+ Rj(z, &) where o,(t, £) is the solution of (2,5) in (0, L) x D(P, 0) fulﬁi]mg the
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zero initial and boundary conditions. The function R} is then the solution of (2,1)
in (0, L) x D(P, 2) fulfilling the zero initial condition and the boundary condition

(2,6) R’:(‘r, f) _ 1 —;:o/(;, é) _ AO(;’ 3] _ Qof;;bé)

for t>0, &eD(P,A).

- C’A(T’ ¢)

We shall need the solutions vy(t, &), 4¢(7, &) in an explicit form — see (2,2) and (2,3).
The explicit form of g, would be too complicated but it is not necessary since the
following estimates are sufficient

27 loo(r, &)| < i (1 +-7 ék>

T k*n
ey Pl e (BN ()
\ T T k#n
90(7’~ < ce- @20 [ lé_l_ (1
og,0z, | - ( Teg)U T 25):

These estimates can be derived by means of the formula

1 po
0o(7, &) = (2n)™"/? e~ (220 [J f
0J -~

Sl YO ol 5l - ),

= En/VENV(V/(1 =)
by F e (=), &+ J(ov(1 = ) dp, dp, -y . dpy dy —

B J ‘ f f : f i JO) &P gan, &y 4w (1 = ),

0 Cn/V (VO (1= v))

ey F oy (=), Gy = oy (L = ) dpy dp, oy L dpy dv] ,

where exp {—&7/21} ¢(t, £) is the nonhomogeneous term of (2,4). The coefficient c,
is independent of P. Estimates for o, can be derived analogously. We have

(2.9) ox(z, &) = o2 j 0 j :0

.. J f (1A, €25 vA, n/A) P o(v,n)dn, ... dn, dv,
0

— @

where I’ (t, x; &, y) is the Green function of (1,5) with respect to the region D(P, 0)
and e */** ¢(t, &) is the nonhomogeneous term of (2,5).
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Owing to Theorem 16.3 [3],

|F(t, x; &, J’)| = Cllt — £|-n/z exp {—c, lei . yilz/(z(t )
and thus (2,9) implies
IO').I = clTe_CZ(é"z/Zt)J.l J.w N
Y - 0

) on J‘“’ JO) e_(”ﬂ”i:"iz|¢(rv, &+ p V(1 =), -

CEn/VOV /(1 = V)
w1 =), G+ o/ ((1 = v)| d, .. dpy dy

The last inequality yields
(2,10) lal(f, é)' = Cltslze—(CZIZ)(gnllh) ( 3/2 Z Iékl )

We still have to estimate the function R}(t, &). Put R,(t, y) = R(z, &), using the
inverse transformation to (2,0). The function R,(t, y) is a solution of (1,5) fulfilling
zero initial condition. Using (2,6), estimates (2,10), (2,7) and formulae (2,3), (2,2)
we obtain |R,(1, y)| £ cA™**for t > 0, y € D(P) where c is a constant and R,(t, y) =
=0fort>0,y=[y,. Yu1,0], || < &. Suppose r > 0 is such a number
that the ball K, with radius r and with its centre at the origin of the y, ... y, — co-
ordinate system fulfils K, n D(P, 0) = D(P). Denote by R(t, y) the solution of (1,5)
fulfilling R(0, y) = 0 for y € K,, R(t, y) = 1 for t > 0, y € K,. Certainly |Ry(t, y)l

< cA7** R(t, y) for ye K, n D(P). The Green formula for R(f, y) has the form
(see for example (7,5) from [1])

t
R(1, y) =f Z(t, y; 0,n)dn + j dr f Z(t, ystm) ) AY; cos (v, 1) cos (v, 1) %
K. o Jk i
x R (t, 1) do,
ov

where Z is the fundamental solution of (1,5). Due to the estimate IZ(t, y; T, é)| <
< clit - 1]""’2 exp {-—czlx — §|2/|t — ‘tl} (see (13,1), Chap. IV [3]) and due to
lim \/(¢) (6R[0¢,) (t, P) = const (see Remark 8 [1]) we obtain

t—+0

[R(t, y)| < cexp {_ Z_(g)z} for ] < ;

IR)-( })l < — e‘(cz/2t}(r/2)z

\/i

Further,
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and
[ o~ (e2/2:0(/2)? it NA —(&2/214)(r/2)?

IR¥ (s, 0)] = wiyeray ¢ EENT <

)\/) -0

et T erien r
T e o fe] < 7
This inequality together with (2,10) yields ~
(2,11) |RA(T> Cy)l = "|T3/29_(m/2)(§"2/2) ( 32 Z |£kls) “5“ 2\/)'

The constants ¢,, ¢, are positive and independent of P. Let p be a number 0 < p < 1.
By Theorem 4, IV [4] we obtain estimates

oR /e e
(2’12) _a?;(r, ?) §K(p)c,r3”e (c2/2)(& /2)( .,3/2 Z|5k| ) 0<e, <1,
O’R; o < = (€2/2)(&n?/27)
(2.13) %0, (r. &) = K(p) ¢,7° 1+ S Z |§k|
i U6

which are valid for [z, &] fulfilling |§i| <phi=1,..,n—1, If,, + 17— p] < p?,
&, > 0,0 < 1 < p. The constant K(p) may depend on p.
These estimates of the approximations will be sufficient for the following considera-

tions on convexity of the solution u(t, x).
For brevity we shall denote the point [0, .., 0, )‘c,,} in the local coordinate system

X5 .. X, by x*.

The point [t, x*] is assigned a point [7,0,...,0,¢,] and a number 1 by this
prescription: Let the number 7 be the solution of

=2 _ )2
e 2=
t T

This equation has always two positive roots. The number 7 is the less of them, i.e.
the one fulfilling T < p. Put

(2’15) &E=0, i=1,..,n—1 and ¢ =p—r1.

The point [1, ¢,] lies on the straight line 7 + ¢, = p. Put

NS
If

(2,16)

A~

Conversely, if a point [7,0,...,0,¢,], T + &, = p and a number 1 > 0 are given
weputt=4t, y; =0,i=1,..,n— 1, y, = & /4 (see (2,0)) and by (1,4) we can
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express this point in the local coordinate system X,, ..., X, :t = At,X; =0,i = 1, ...
<oon—1, %, = ¢, /4 The point [1,0,...,0,&,] and the number A correspond
to [t, x*] by (2,14) to (2,16).
In the sequel we shall use the transformation (2,0) with A given by (2,14) to (2,16).
The solution ﬁ(t, )?) can be written in the form

i(t, %) = o(t, y) = vy(7, &) =
= vo(7, &) + /(A) do(1, &) + L 0o(7, &) + A /(A) Ry(1, &)

The transformations [t, X] — (¢, y) and (t, y) - (, &) are given by (1,4) or (2,0),
respectively and the second derivatives can be calculated

1 dv,
R o RN LU
900 %00
F179) 0 -V 2 a)]
aRA( 6)6 a-()ﬂ/(i);ﬁ‘?(:z—.(r,f) for i%n+j,
o . 1 a0,
1) ) = o (e V0 % 0) ¢
V) T ()
for i % n,
(2.19) Z%(ux*)%[a%f ; (T,5)+AaQ°(r z)]+
- \/(ﬂ)a )

where the point & = [&,, ..., &,] corresponds to the point x* by (2,0) while the
point [1,0, ..., 0, £,] and number 4 correspond to the point [, x*] by (2,14), (2,15)
and (2,16). Now we substitute expressions (2,2), (2,3) into the right-hand sides of
(2,17) to (2,19) and use the estimates (2,8), (2,12), (2,13). These estimates can be used
because of the choice of A. Thus we have

o*i 1 2\ e *h 0
20 o) ) s ) =
& o= &2 f o &2t
S+ T + (A7) ¢, 1+ +
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7
e, (14 -Sn ) e 4 AK(p) ¢yr¥l2e D@D
Jt

+ \/(l) K(p) CIT3/2e—(czIZ)(§nZ/2¢) , for i+n=+ i,

il 1 oAy 1 & e
— (1, x*) — -0, 0) [ —— — 22 (&n2/27)
s e @G o)

;
<e¢, (1 + _én___> e~ 220 4 J()K(p) 0,132~ @DE2)  por iy oy

=N
5_2_E(t x*) — 18 (2 -z _ 44,(0, 0) 82
ox2 "’ At \mt J(2n1)
¢ (&, é:) ~&n?/2¢ ( & ) ~8n2/2e
—_ 4 e + ¢y e +
V(1) (\/ (rp < L \/ ()

+ J(2) K(p) ¢ 732 (/D&20

<

(2,21)

<

=

where the constants ¢, ¢, are independent of both the point P and of the number p.
The constant K(p) appeared first in (2,12), (2,13).

The matrix 0%i0X; 0X,(t, x*) is positive definite if and only if the determinants
of 0%|0x; 0% (t, x*), i,j = 1, ..., k are positive for k = 1, ..., n. Multiply the rows
of these matrices by /(Ant/2) ¢/2* Denote by d;; the elements of the resulting
matrices and by D, the determinants of d;j, i, j = 1, ..., k. With respect to (2,20) to
(2,22) we obtain

ds; 0*h

(o)l < VD) e, JO) (1 T )) + e, (1 . g) n
+ 2 w/(i) K(p) cy12e /D@2 4 ) K(p) ¢ r2e e D@20
for i,j=1,..,n—1,
0 27
bt 1= s w025
+ AK(p) cyr2e! TP | for % n,

d",,—\/—t/l—)%—z ay(0, 0))<cl(f(”) —) ,\/(/11)(1 +

+ 2K(p) clrze("”/z)(:"zlz') .

e \/(f)>

The number ¢, can be greater than the constant ¢, in the previous formulae but
it is independent again of both P and p. Denote d;; = 0°h/0%; 0%,(0) for i, j = 1, ...
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n—1,d, =d,; = ¥4,,/0y,)(0,0) for i + n, d,, = 2aJ(0, 0). Due to Hypo-
thesis (C) all determinants D, k =1,...,n — 1 are positive and due to Hypothesis
(D) also the determinant D, is positive (we have to take account of that

(04,,/0%;) (0, 0) = (849,/3:) (0, 0) and 2a2(0, 0) = 2a,(0, 0) — tr I')

where D, is the determinant of the matrix 3”, i,j =1, ..., k. Thus there exists a
number J, > 0 so that the inequalites |d,, - ,J| <dy i*n=*j, d,>d,

imp]y that the determinants Dk are positive and in particular that D,_, >
> mm det {9%h]0%, 0%,(0)}7 7L, (the last expression will be denoted by Z). This

assertxon is trivial for D,, k = 1, ..., n — 1, but the determinant D, needs special
consideration. The assertion follows from the fact than D, can be written as

(2,23) D, =d,D,_, Z (=1)"* d,d,,D;;

jnij
i, j=1
where D;; is the subdeterminant corresponding to the element d;;. Further, we

choose (5 > 0 so that (04m,/0y,) (E2[7) < S0, c1(&fN/T + En[t?) < Sof2 for 0 <
<&, <6, t=p— &, and a number a > 0 so that

é apc &l —(1- 2 o
«<K(p)e,, ap* <2, OPCLY (1 4 Sn ) pmt-cyn@an . %
Pev. o< \/<K(P))( =N 6

and

v
(2,24) é’! \/(@Sl) e(l—cz/Z)(Z,.ZM-t) + 2a3(0, 0) - ¢ ( én + C_n> _ % 7>
T o JE) 7 3

> M("Zl ZZm (o, o)l '1 —_—

042,

4 '_0>A for 6712515 ‘L-:p_én

where M = max {|D,.j] :PeD,i,j=1,..,n—1}.
Define

(2.29) uﬂ=a55f““““m>MMeg=p—n
1

With respect to the choice of numbers &y, 3;, « we obtain |d;; — d;;| < (28,/3) for
i,j+nand A = }.,,(7:), i.e. the determinants D, k = 1,...,n — 1 are positive. Let
us consider the last one, D,. Suppose 0 < &, < J,. Since

1 |o45, &

[V AFEE
2

4 %o
6

dy; t

we have |d;, — di,| < 0.
Further, d,, = d,, — &, (the term (1;/4) (&,/t) being nonnegative) so that D,

is nonegative for &, satisfying the above inequality.
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Suppose &, = 6,,1.e. t = p — J,. In this case we have

.y ld,, — 2, + L Am e
ldu du| <250/3’ ldm in 5 ayl . =

d,=>d LG ¢ Q-{-é—:’t ——(—S—O.
e JA) T "\ 22 3

Due to (2,24) the right hand side of (2,23) is positive so that the determinant D, is
positive in this case, too. We summarize these results in a lemma.

Lemma 2. Let the conditions of Theorem 1 be fulfilled. Assume that p is a number
0<p<1. The solution @(t, X) is a strictly convex function as a function of Xy, ..., X,
at those point [t, X] where t = A(t)t, X;, =0 fori=1,...,n—1,%,=(p — 7).
. (A,(r))!/?, the parameter t being an arbitrary number 0 < © < p and A,(t) being

given by (2,25) with &, = p — 1.

Lemma 2 implies that the function u(t, x) is strictly convex (the relations between x
and X are linear) on a certain set which can be described as the boundary of a sub-
region of Q. The precise description and basic properties of the region and of u(t, x)
are given in the next section.

3

Denote Ny(P) = {[t,y]:t =14 y;=0fori=1,...n—1,y,=(p— 1)),

0 £ 4 = 4,1), 0 £ 1 £ p}. By means of the transformation (1,4) and the transfor-

mation mentioned in Hypothesis (D) or Remark 1 the points [, y] € N,(P) can be

transformed to the original coordinate system x, ..., X,. The resulting set will be

denoted by N, (P). Of course, both the sets N,(P) and N (P) represent the same set

of points (epressed in two different coordinate systems). Put M, = UN (P) and
= (0.L) x D — M,,

Lemma 3. The set M, is closed. The boundary of Q, is smooth for sufficiently
small p, i.e. the set Q,n {[tr,x]:xeD, 0 <t < p} is locally of the type (E)
(see [4]). We have Q = U Q,. If u(t, x) is the bounded solution of (0,1) fulfilling

p>0

(0,2) and (0,3) then
lim sup 0%u[ox;0x[t,x) =0 forevery p>0, i,j=1,..,n.
t—~0 [t,x]eQp

The set described in Lemma 2 on which u(t, x) is strictly convex is just the side-
boundary of Q, n {[7, x] : x € D, 1 €40, p>}. (It can be easily shown that the points
[t.0,...,0,y,] where t = i1, y, = &, /(4), T + & = p, A > A,(r) do not belong
to N (P)) At every point P e D there exists a local coordinate system X, ..., X,

n
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(Hypothesis (D)). The direction of the coordinate X, is determined uniquely with
respect to the original coordinate system X, ..., x,. The direction of X, depends
smoothly on P. The set N, (P) lies in the plane which is determined by X, and is
parallel to the t-axis. The Hypothesis (B) ensures that for sufficiently small p the sets
N;(P) are disjoint for different P. We have always emphasized that the constants
¢y, ¢, K(p) do not depend on P. It can be easily proved that the set M, is closed and
that the boundary of Q, is smooth in the sense required. (2,25) implies () < 1 so
that [1, x]e N, (P) yields t £ A (t)t <t <pand 0=y, < (p— 1) (A (x)* £ p
where y corresponds to x by the transformation used in (D) and (1,4). Thus we have
NM,<=<0,L)yx Dand UQ,= Q.

p>0 p>0

Now we shall prove the other part of Lemma 3. Let 0 < p < 1 be chosen. Let
[, x°] be a point from Q,. The construction of Q, guarantees the existence of a point
P, Pe D and the corresponding coordinate system X,, ..., X, such that the point x
fulfils X] = X3 = ... = X0_, = 0 where X are the coordinates of x° in X, ..., X,.

Analogously as above let x* denote the point [0, ..., 0, Xo]. Let the point
[7,0,...,0,¢,] and the number A be determined for [¢°, x*] by (2,14), (2,15) and
(2,16). Assume

(i) R+t0<p.

If the point [°, x°] is written in the form ® = ir, X} =% = ... = X,_; = 0,
%, = (p — 1)/4 and if we take into account [1°, x*] ¢ N (P) we obtain 1 = ,().
The inequality X° + t° < p implies 4 < 1.

Let us consider the inequalities (2,20) to (2,22). Replace all A in the numerators
by 1 and all 1 in the denominators by A,(t). In this way we obtain

< L(p) o~ (©/2((p=0?1)
T

(.1)

2_
_ag‘ (10’ X*)
0%, 0%,

where L(p), ¢, are constants independent of P.

By virtue of t = 1,(t) T and 0 < 4,(1) < 1 for © > 0 we obtain 7 — 0 for t — 0.
Inequality (3,1) then implies

lim sup {|0%i]ox; 0%,(1°, x*)|: [1° x°] € Q,, 1° + X, < p} = 0.

19-0 -

(i) If 1° + X > p, then
lim sup {|0%i1/o%; 0%,(1°, x*)|; [1° x°] € Q,, 1* + X, > p} =0
19-0

follows from the continuity of the second derivatives and from (0,2). Lemma 3 is
proved.
In the next section we shall need an auxiliary statement about convex functions.
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Remark 4. Let f(xy, X2, x3) be defined in a neighbourhood of the origin and let f
have continuous derivatives of the third order. Let f be convex in the neighbourhood.

If
0*f[0x3(0, 0, 0) = 8%f]6x3(0, 0, 0) = 0,

then
&f[ox, 9x, 0x5(0,0,0) = 0.

Proof. Certainly
X3 1

?f0x3(0, 0, x3) = f &*floxi 0x5(0, 0, ) dn = x4 J 3*fox} 0x5(0, 0, x5t) dt .
0 0

The Lebesgue theorem implies

x3-0 Jo

1
lim J 0*f|ox3 0x5(0, 0, x5t) dt = 8°/[dx] 9x5(0,0,0). i.e.
33f]ox3 0x5(0, 0, 0) = lim x5 * 8%f]0x3(0, 0, x3) .
x3—0

By virtue of convexity of f we easily deduce

(3,2) 8*flox] 0x5(0,0,0) = 0
and similarly
(33) 0%f[0x3 0x5(0,0,0) = 0.

Since (9*f]dx, 0x,(0,0,0))* < 8%f]6x3(0, 0, 0) 9%f/0x5(0,0,0) = 0 we can write
*flox, 0x,(0, 0, x3) = x5 [o 03f[ox, dx, 6x5(0, 0, x51) dt. The matrix A: A;; =
= 0*f]ox; 0x,(0, 0, x3), i = j = 1,2 can be written as

1 1
x3J 03flox] 0x5(0, 0, x51) dt x3J 0*fox, 0x, 9x5(0, 0, x,t) dt
0

0

1 1
x3J\ 0*f|ox; 0x, 0x5(0, 0, x,t) dt x_,,f &*fox3 0x5(0, 0, x5t) dt

0 0

As the determinant of this matrix has to be nonegative we have

1 2
<J. 03f|ox, 0x, 0x5(0, 0, x51) dt) < j 33f[ox] 0x4(0, 0, x5t) dt x

0 0

1
X j 3*flox3 0x5(0, 0, x,t) dt
0

and for x; — 0 we obtain
(0%f]ox, 0x, 0x4(0, 0, 0))* < &3f]ox3 0x4(0, 0, 0) 83f0x3 0x4(0, 0, 0) .

The statement of Remark 4 follows immediately from (3,2) and (3,3). =
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4

In this section we shall study the convexity of u(z, x) in the interior of Q under the
condition that u(t, x) is convex on the side boundary of Q. For the purposes of the
section we shall need the following notation.

Let H be a subregion of Q. Denote by H(t,) the intersection of H with the set
{[t,x]:t > to, xe D} and by H(t,, t,), to < t; < Lthe intersection of H with the
set {[t,x] : t, < t < t,, x € D}. The parabolic boundary of H(t,, t,) will be denoted
by 0H(to, t,), i.e.

OH(ty, t;) = H(to) — {t,} x D, @0H(to) = H(t,) — {L} x D.

Lemma 4. Let Hypothesis (A), (E) be fulfilled and let u(t, x) be the bounded
solution of (0,1) fulfilling (0,2) and (0,3). If the derivatives up to the second order
are continuous in H(to) and if u(t, x) is convex on 0H(t,), then there exists a positive
number & such that u(t, x) is a convex function of x in H(to, to + ).

We prove Lemma 4 by contradiction. Since the violation of convexity at one point
would not imply any contradiction we add a small convex term to the right hand
side of the given parabolic equation.

Denote by u‘"(t, x) the solution of the equation

ou 1
— == ) A;(t,x
ot 2:21 1)

u

62
0x; 0x;

+ Yaft, x)g—u— + Yx}
i ox; i

fulfilling u®(te, x) = Y.x7 in the half-space t > t,, x € R". The coefficients of the
i

equation were extended to the whole half-space at the beginning of the proof of
Theorem 1. Put u,(t, x) = u(t, x) + & u™(t, x) where ¢ > 0 and u(t, x) is the bounded
solution of (0,1) fulfilling (0,2) and (0,3). The function u,(t, x) is evidently a solution of

@1) L WO s

u ou 2
= - + At x) — + &) x;
ot 214 0x; 0 ; ;a( )6xi >

fulfilling the initial condition
(4,2) uy(to, x) = u(ty, x) + &Y x7 .

As u™(ty, x) is strictly convex and the second partial derivatives of u*) are continu-
ous, there exists a positive number & such that u!)(t, x) is convex on {to, to + 6 X
x D. We shall prove that this é has the properties from Lemma 4.

Since u(t, x) is convex on dH(t,) and u™)(t, x) is strictly convex on {[#, x] : t, <
<t £ty + 6, x € D} the function u,(t, x) is strictly convex on dH(t,, to + ).

Assume that u,(t, x) is not strictly convex in H(to, to + 9), i.e. there exists a point
[#° x°] € H(to, to + &) (to < 1° < to + ) such that u(z, x) is strictly convex in
H(t,, t°) but not at the point [1°, x°]. Denote by U (t, x) the matrix of the type n x n

219



whose elements are 9%u,[0x; 0x(t, x). Denote by D(t, x) the determinant of this
matrix. The properties specified above yield that D(t, x) > 0in H(t,, 1°), D,(t°, x) =
= 0 for [1° x] € H and by Lemma 1, D,(t°, x°) = 0. Denote by k the rank of the
matrix U/(t°, x°). Evidently 0 < k < n. Certainly there exists a unitary matrix T
such that TTU(¢°, x°) T is a diagonal matrix and the transformation x = Tz,
ug(t, x) = a(t, z) maps (4,1) into

~ oil 2
At aft,z) — +¢€)zi.
at 2,2,: A Z) oz, Z ( )6:_',- izz

J

Since the number ¢ is fixed it will be omitted in the sequel. The regions D, @, H(to, 1)
are mapped onto D, (,, H(t,, ), respectively and the point [1°, x°] to [f°, z°].
We have
(4.3) 0%i)oz;(1° z°) > 0 for i=1,...,k and

0%foz3(1°,2°) =0 for i=k+1,...n
Denote by U, ,(t, z) the matrix of the type (k + 1) x (k + 1) (where k is the rank

of U,) with the elements 0%i/0z; 6z(t, z), i,j = 1, ..., k + 1. Let Dy++(t, 2) denote
~ the determinant of this matrix. The function D, 4 (¢, z) fulfils the parabolic equation

oD 1 & k+l ga
== Z A1, _)——--+Z {1 z) +2Z
t 2ij=1
n k+1 a/'i' aSﬁ n k+1 k+1 a‘v. 62‘-4
+ 4 Ay + 2 — Ay +
i,Jz—:—-l =1 0z, 0z;0z; 0z, ! i ;+21 1s=1 0z, 0z; 0z, !

~ij) + Z ﬂ C(di) -
i=1 0z;

1
2 i,j=1 0z; 0z;

1 n k+1 k+1 - a3a a3ﬁ k+1
-- 2 X XAy Aprqr + 263 Ay
2 i,j=1 r=1pg=1 ~ 0z,0z,0z,02; 0z, 0z =1

rel piq rete a
k+1

where {(f) = Z Ay, [0z, 0z,. Ay, being the algebraic complement of U,,,(t, z)
with respect to the element 0%i1/0z, 0z,
Appgr = (—1P*4**IB o for p<gq, r<1l or p>gq, r>1,
Apr““ = (_1)p+q+r+l+1Bpr,ql for p<q, r> 1 or p>q, r< l

and B,, g1 s the subdeterminant of U, ; resulting from it by omitting the rows p, ¢
and the columns r, I. Obviously at the point [¢°, z°] we have Dyss(1°, 2% =0,
k

Aps1x+1(1° 2°) = ] 0*@/0z3(:°, 2°) while all other A,(t°, z°) equal zero.
s=1
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A AN ka o

st k+1 = Akri k10 = | T35 >

pp3 1 k+1,k+15pp 222 = 022
P

~ k A~

4 4 024 ll—l 0%l
pktk+1,p = Ak+1,ppr+1 = T\ T2 2

’ azp s=1 0Zg

for p < k + 1 and all other terms of this form equal zero. As was stated above,
Dysr(t° 2°) = 0, Dyy1(t, z) > 0 for ¢ < 1 so that Dy(t° z) = 0. These relations
imply on the one hand 0D[0z(i° z°) = 0 and onthe other that the matrix
92D)oz, 0z (t°, z°) is positive semi-definite. Since 8*@[0z4+1(1° z) = 0 and from
(4,3) aZa/az,%H(z ,2°) = 0 we obtain 8%ii/0z, 0z (1%, °) = 0. Since T'U(1°,x°) T
- is a diagonal matrix, (4,3) yields 0%i1/0z, 0z;+,(1° z°) =0 for s =k + 2. The
linearity of a; implies Q(d,-) = 0. Moreover, by virtue of Remark 4 the equation for
Dy, can be reduced at [°, z°] to

oD 1 & 2D 1 & 4, ot L ot
D)= Y Ay e 3 ] T
ot 2i,5= 0z;0z; 2 i=10zj4q 0zj s=1 0z

k 6/’I’U 63ﬁ k 62ﬁ N

2
1.7=1 0Zy1 02, 0z; 0z; 4 s=1 0z

k - k a3~ a3~ 6211 -1 k az~ k
+ 3 A,y 20 — () L 2] &

2
ij=1 p=10z;0z,0z;,, 0z; 0z, 0z, \0z,

“tol:z

Due to (4,3) the numbers 8%i1/0z(t°, z°) are positive for i = 1, ..., k. Denote a; =
= /(¢%i)éz}) and B;; = (1a;) (8%i]0z; 0z; 024+ 1). If (E) or (0,5) is fulfilled then
(see Remark 2)

aiajﬁij +

(4.4)

k
fai + Y
ij=

aZk+1

+ JZ:IAUa a.l z ﬂlPBJP =
so that 9Dy, ,[01(°, z°) > O which contradicts the assumption that Diyq(t,2) >0
in H(ty, {) and Dy,,(t° z°) = 0. We have proved the convexity of u(t, x) in
H(to, to + 6). Since the number & was an arbitrary positive number and the choice
of 6 was independent of &, Lemma 4 is proved.

The proof of Theorem 1 is now easy. We choose a number p > 0 by Lemma 3.
We shall apply Lemma 4 with H = Q,. The solution u(t, x) is certainly convex
on 0H(0) by Lemma 2 and the statement after Lemma 3. Lemma 3 asserts that the
second derivatives of u(t, x) are continuous on H(0). This means that we can apply
Lemma 4 and we know that u(t, x) is convex in some H(0, §). First we shall prove
that u(t, x) is convex in the whole H(0). If this statement were not true then there
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would exist a number £, = J such that u(t, x) is strictly convex in H(0, t,) but not
in any H(0, t, + n), n > 0. Since u(to, x) is convex in x and u(t, x) is a solution of
(0,1) fulfilling a consistent boundary problem the second derivatives of u are
continuous and hence Lemma 4 can be applied to H(to). Using this lemma we obtain
that u(t, x) is convex in some H(t, to + 6), 6 > 0 and this is a contradiction with
the definition of #o. We have proved that u(z, x) is convex in Q,. Due to Lemma 3 we
have Q = UQ, so that u(t, x) is convex in the whole Q. Theorem 1 is proved.
p

5

Theorem 1 is a modification of Theorem 2 [5] to a multidimensional case. In [5]
a method was suggested which enables applications of Theorem 2 [5] to the case of
nonlinear drift coefficients. We can proceed similarly in the case of multidimensional
problem. We outline briefly the main points of the method. We choose arbitrarily
a point [#, X] from the region Q. We transform equation (0,1) onto (5,4) by a trans-
formation x = Y(&), u(t, x) = v(t, &) so that the corresponding drift coefficients
are linear in £. Theorem 2 provides the corresponding relations for the components
of 1//(«5). Obviously, we need the transformation ¥ to be one-to-one and to have
a nonzero Jacobian. Let (p(x) be the inverse transformation. According to Theorem 2
the components of ¢(x) fulfil equation (5,5) which is simpler than (5,3). If the trans-
formed equation (5,4) fulfils the conditions of Theorem 1 then solution v(t, &) is
convex as a function of £. The relation between the second derivatives of u(t, x) and
o(t, &) is given by (5,6) in Lemma 5. Since v(t, &) is convex it is sufficient to guarantee
that the last term in (5,6) is nonnegative. We need this condition to be fulfilled only
at the point [7, X]. It means that the transformation ¢(x) may depend on the sign
of du[dx,(i, X), i.e., on the point [7, x|, and on the direction I.

The method can be described shortly: the functions ¢(x) are solutions of (5,5)
so that the transformation & = q)(x) is one-to-one with nonzero Jacobian on the
whole D and so that the expression

ou al//k dz(pi
% ox. % 22, P

at the point [7, X] is nonnegative.

In article [5] this method was used to derive Theorems 3, 4 [5]. The method is
however much more complicated in a multidimensional case. Nevertheless, it can
be used under some circumstances. We shall use this approach in the case when the
drift coefficients differ little from linear functions, i.e. when the drift coefficients
are —A;x; + & a,(x) where ¢ is a small parameter. We shall preserve the assumptions
of Theorem 5 [1] which guarantee the convexity of u(t, x) on the boundary set
(0, to) x D for sufficiently small t,. We shall be able to formulate conditions (Theo-
rem 3) under which the solution u(t, x) is convex in the whole (0, t,) x D for small &
and t,. It means that Theorem 3 gives conditions under which the matrix function
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A, x) is strongly maximal with respect to —A;x; + sai(x) and with respect to
(0, to) x D for small & and t,.

First a theorem is formulated where the relations for the transformation (p(x)
are given guaranteeing that (0,]) is transformed onto an equation with linear drift
coefficients.

Theorem 2. Let a parabolic differential equation

(5.1) 1 + Yt x) =
P 0x;

0*u
=-) A;it,x
Z J( )6x,6xl

ot AN

be given in Q = (0,L) x D. A transformation x = (&), u(t, x) = v(1, &) trans-
Jorms (5,1) onto

ov 1 ~
5 Z ==Y A.. g1, &) —
(5.2) a2 it ) afi 66,. * sz[a°(" )
I ~ PP (dY\TH] v
I A -
2 p;k wt ) 55, oz, o¢, (dé)sk ] oF,

where dy[d¢ is the matrix (dY|dE); ; = ay,[0¢;, i,j = 1,..., n: if a(1, x), a(t, &) are
considered as column vectors then a(t, &) = (dl///dé) 1 (t W(&)) and A(t, &) =
= (dy[d&) ™ A(t, Y(&)) ((dy[dE)™")T. The matrix A(t, &) is positive definite if the

transformation Y has a nonzero Jacobian. Conditions

I« ~ Y, (dy\ 7t
5:3 ﬁsta€:4 Art’f’———-_ +a31+ ﬂalé
63 A=) T A0 2 () nl - T
ensure that equation (5,2) is of the type
ov

GH 5T 5; A€ ag 65 2l + 2Bl 47

Assume that the inverse transformation ¢ = q)(x) to x = l//(é) exists. Then the con-
dition (5,3) can be rewritten as

(55) ZA.](t P +z (%) 52 = ) + LAl )

l

and in this case

7.0 = S0 a0 070 (070D

a1, ¢) = Ya(t,07'(9) “"(w*(efw S LAl 97 () “"* ( ().
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To prove Theorem 2 we substitute the transformation into (5,1). Since the proof
consists in some tedious calculations it is omitted. We shall omit the proof of both
the following lemmas for the same reason. The next lemma deals with the relation
between the second derivatives of u and v.

Lemma 5. Let u(t, x), u(t, &) fulfil the assumption of Theorem 2. If L is an arbitrary
nonzero vector then

dzu .
6 , Pi
(5:6) dr ( de (t ¢+ Z ¢, ( 5) dr de
oy, d*e;
Z ox, ;55 dI?

where the vector k is (dp[dx) I and the points x, & are related by & = ¢(x).

6

We shall need still some information about the change of the boundary of the
region D and, in particular, about the convexity of the region transformed.

Lemma 6. Let the region D fulfil Hypothesis (B) and let a transformation é:(p(x)
on D be given so that ¢(x) has continuous second derivatives up to the boundary,
@ is one-to-one and its Jacobian is nonzero. Suppose that the boundary D can be
described by [x,, x,, ..., X,—, h(xy, ..., x,—,)] in a neighbourhood of an arbitrary
point P on the boundary, the function h being continuous and with continuous
second derivatives. Then P = ¢(P) e ¢(D), the region ¢(D) fulfils Hypothesis (B)
and if the matrix A defined below is regular then there exists a neighbourhood of P
so that the boundary of ¢(D) can be expressed by &, = E(&,, ..., &,—,) and the
first and second derivatives of &, are given by

dén -1
6 —_— =
6) o (a7
(62) %é% — (a7t [w Y (AT a), 4 B0 —
_‘n-zlé(s)((AT)—l a), + hhT (‘f_‘ﬂ" _"21 %o, ((AT) 1 )) +
s=1 ax: 0x 2
AP CURPN P .
0x,, s=1 a *
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where A, ®9, @, H are matrices of the type (n — 1) x (n — 1) with the elements

a(pi U(Pz Jh (s) az(px
A =—(P)+— P——P P = ——— (P
2@ e, o axiax,”’
- 02, oh o2
@E‘l:ﬂl_P_ P) + Ps P
. a)c‘,%()(,bg‘() Lo 2.
(P) yeeun—1

VT ox ax;
while h, a are (n — 1)-dimensional column vectors with the elements

oh a0, 0, oh
=—(P), a;=—7(P)+ —(P)— (P
0x (P) @x,-( ) ax,,( )ﬁxi(

Remark 5. Lemma 6 implies that the region ¢(D) is convex at the point P e ¢(D)
provided

00 T OO )+ B0 T BN )+

n—1

To ) ¢ (52 S ))

8x,, s=1

n— 182

2
+ hAT (Qﬂ -

ox? 10X ,?

is positive definite. We do not assume that x, x5, ..., x, is a local coordinate system
in Lemma 6 so that the numbers h; = 0h/dx,(P) may be nonzero.

The application of the above described method requires some more definitions and
notation.

Definition. Let D be a given region. Denote by D; the d-neighbourhood of D,
ie. Dy ={x:|x — y| <6, ye D}. Let a real function f(x) be defined on D. The
function f(x) is called real analytic in D if it can be extended to a Dj so that the
extension can be developed into a power series in a neighbourhood of every point
of D. Define, as usual, the Banach space C, (D) as the class of all functions defined
on D with Holder continuous second derivatives,

U118 = sup |9l (D) = sup f(’j}_‘f‘y), U112 = 1412 + o),

o

j ||0x; 0x;

7180 = 113 + % ]\

a

The upper index D will be omitted if there is no danger of ambiguity. The space
C9,4D) is the set of all functions f(x)e C,.,(D) satisfying f(x) = 0 for xe D.
The norm in the space C9 (D) is the same as in the space C, +o(D).
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Let an elliptic operator Lbe given in D. We say that zero is not an eigenvalue of L
if Lf = 0, fe C9,,(D) implies f(x) = 0.

7

In the present section we have to subject the coefficients 4;;, a; to much stronger

assumptions than Hypothesis (A).

ij>

Hypothesis (F). Assume that the coefficients A;{(x), ax) are real functions in-
dependent of t which are real analytic in D. The matrix function A(x) is uniformly
positive definite in D.

Similarly, Hypothesis (E) will be substituted by Hypothesis (G).

Hypothesis (G). The matrix functions
MT(x) Ni(x) + Ni(x) M(x) + J/(2) P(x),
M) Ni(x) + NI(x) M() = ) Pix) (see (0.4)
are uniform positive definite matrices with respect to x € D and to every unit

vector 1.

In virtue of Remark 2 these conditions are stronger than the condition on A(x)
formulated in Hypothesis (E).

We shall consider a parabolic differential equation where the drift coefficients
slightly differ from linear functions:

o) P s a;’jng + S hoxi + 5 0 ) a%“
with the initial condition

(7,2) u(0,x) =0 for xeD

and with the boundary condition

(7.3) u(t,x) =1 for t>0, xeD.

If ¢ = 0, equation (7,1) assumes the form

1 o*u ou
7,4 — == ii(x — Y Ax;—.
(7:4) t 255 0x; 0x; Zz: 0x;

J

Theorem 3. Let Hypotheses (B), (C), (D) for (7,4) and (F), (G) be fulfilled. If 0
is not an eigenvalue of the elliptic operators
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—lZA (x)izﬂﬁ——Z)x——a«+i k=1 n
2i,j ij\” BXi axj - i laxi k > PEERT)

(7,5) L,
then there exist t, > 0 and ¢, > 0 such that the bounded solution of (7,1)fulﬁlling
(7.2), (7.3) is convex as a function of x for 0 < t < t,, x € D, 18[ < &

First of all, we shall say something about the location of points [4;, ..., 4,] at
which the operators L, have not zero eigenvalue. Namely, we shall show that these
points are not spread too densely. Obviously, given numbers A;, A5, ..., A1, Agt 15 -+
..., 4, then there exist only countably many values A; without an accumulation point
such that L, have zero eigenvalue. Even in the case A = 4, = 1, = ... = 1, we can
prove

Lemma 7. Let the functions A;(x), (0a;/0x,)(x), (9c[ox;)(x) be Hélder conti-
nuous in D. If the matrix function A(x) is uniformly positive definite in D, then
there exists at most countably many values A without an accumulation point such
that the operator

1 0>

7,6 L, ==Y Ayx)—
(7.6) S & A o

— AYa(x) A—OA + Aex)
i ox;

j
has zero eigenvalue.
Proof of Lemma 7. Denote Lof = §) A;/(x)0*f|ox;0x; and Ly f = Ya(x).
i i
. Of[0x; — ¢(x) f. If zero is an eigenvalue of L,, for a certain 4 then there exists
a nontrivial f € C3,,(D) such that L,f = AL f. Since the operator L, considered
on C3,,(D) has an inverse operator L; ' we can rewrite the last equation as ATf = f

where T = Ly 'Ly, T: C;,,(D) - C3,,(D). This means that the number A is an eigen-
value of T. Due to (5,39) [6] we have f||2+a < C(I]Lof”, + I[fl[o) and with respect

to (2,4) [6], )

f”zﬂ < ¢ ||L0fn,, for f € C3, (D). These inequalities imply “ Tf”“a <
< G,/ f |1+« for f € C14o(D). We proved that Tis a continuous linear operator from
C,.,(D) into C3,,(D). If Tis considered as a transformation C;,,(D) = C;, (D),
then it is a compact operator and it can have mostly countably many eigenvalues
without an accumulation point. The lemma is proved.

Remark 6. Assume that 0 is not an eigenvalue of the operators L, defined in
(7,5). Then there exists a number &, > 0 such that 0 is not an eigenvalue of L,
in Dgs for 0 £ 6 < J.

Proof. Suppose that there exist nontrivial f, € C344(D,),) fulfilling L,f, = 0
(k fixed). These functions can be normalized by sup {lf,,| :x € Dy;,} = 1. The proof
of Theorem 5 [6] suggests that C is independent of n. We have
(7.7) I/

Dy,
2= C.
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This inequality yields that there exists a converging subsequence f, = f,. The func-
tion f, is a solution of Ly fo = 0and due to (7,7) f, € C3., (D) and sup {[fol :xeD} =
= 1. This contradicts the assumption that 0 is not an eigenvalue of L, in D.

The proof of Theorem 3 will be splitted into several lemmas. Hypothesis (F) is
essentially used only in the next lemma.

8

Lemma 8. Let A,;)(x) a(x), ¢(x), f(x) be real analytic in a region Ds and let A(x)
be uniformly positive definite. If there exists at least one solution of

(8.1) Z Au(X)

(x — + o(x) @ = f(x)

belonging to C,,,(D;) then there exists a positive number M such that to every
point Xy € D and to every n-dimensional unit vector I, solutions ¢(x), x(x) of (8,1)
can be found fulfilling d’¢[dI*(x,) = 1, “(p”?‘ﬁ,’iﬁ M and d*g[dPP(x,) = —1,
H/H?‘i’; =< M, respectively.

Proof. Put I = [1,0,..., 0]. First we shall prove the following statement: Given
a point x, € Dy, there exists a solution ¢(x) of

(32) LS00 4 T al) L+ ex)o =0

247 0x 3 i X;

defined on the whole Dy and fulﬁlling 3%¢ploxi(x,) * 0.

Let x, € D; be given. Due to Kovalevska’s theorem there exists a solution
@o(X15 .- X,) of (8,2) defined in a small ball |x — xo| < r and fulfilling @q(x,, ...
oo X, (X0)a) = X112, (8@o/dx,) (X1s ---» Xu—1, (Xo)s) = 0. The adjoint equation to
(8,2) has also real analytic coefficients. According to the analyticity theorem [6]
every solution of the adjoint equation is real analytic. It means that the adjoint
equation has the property of weak extensibility. Owing to theorems of Malgrange
and Laxe [6] we know that (8,2) has Runge’s property, i.e. to every ¢ > 0 there
exists a solution @4x) defined on D; fulfilling lcpo(x) — qoé(x)l < & for ”x - xOH <
< r[2. By virtue of (5,31) [6] we obtain llm 2 0xi(xo) = 02o[0x3(xo) = 1. The
statement is proved.

Denote M(x,, lo) = inf {|¢[ 372} where the greatest lower bound is taken over all
solutions of (8,2) which are defined on D and fulfil d?¢[dl3(x,) = 1. Due to the above
statement this set is nonvoid. The function M(x l) is finite for every x € D)5, I, ||] l[ =
= 1. We shall prove that M(x, I) is upper-semicontinuous. Let x,, [o be given.
Given a positive number ¢ we can find a solution ¢, (8,2) fulfilling d2¢,/dI3(x,) = 1
and |@]|3%2 < M(x,, o) + ¢. Since the second derivative is continuous, there exists
a number & > 0 such that |d2p,[dI3(x,) — d?@./dli(x)] < & for [x; — xo| <8,
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[lo — 1| < 6. The function wg(x) = @(x)[[d%ps/dI}(x,)] is a solution of (8,2)
fulfilling d*w,/dlf(x,) = 1 and |[wgx)|3%2 < (M(xo, lo) + &)J(1 — &). Hence
M(xy, 1) < (M(x0, 1,) + &)/(1 — &). The upper semi-continuity implies bounded-
ness so that M(x, [) < M, for some M,, xe D, |l = 1.

Denote by @(x) a solution of (8,1) belonging to C,..(D;). Let n be a positive
number and x, € D. Denote by ¢,(x) a solution of (8,2) fulfilling d?¢,/dI*(x,) = 1,
loal2%2 < Mo + 1 and wy(x) = &(x) + (1 — d>[dI*(xq)) @4(x)-

The function w,(x) is certainly a solution of (8,1) fulfilling

d?w,[dI*(x,) = 1 and |w,|3%2 < |@]5%2 + (1 + o ax_ 1|d2(p/dlz(x)|)

(M, + 7).

The function y can be expressed in the form y(x) = @(x) — (1 + d>@/dI*(x,)) @,(x)-
As d*@[d*(x) is bounded on the compact set Dj/, the lemma is proved with the
constant M:

)

d’p
ar )

M > |p|2 + (1 + max
x,l

9

The outlined method suggests that we need to transform equation (7,1) onto
a parabolic equation with linear drift coefficients. The existence of such transforma-
tion is ensured by

Lemma 9. Let all the assumptions of Theorem 3 be fulfilled. There exist positive
numbers &y, 8, such that for every 0 < & < gy, 0 < 6 < 0, the elliptic equations

| 2 i
(©.1) Uy A) 22 4 (= + e a ()22 + Ao =0,
25 0x;0x; 7 0x;

k=1,...,n

have solutions ¢{*(x) belonging to C,..(D;) and fulfilling

(0)22) (d¢:°[dI?) (xo)].=

be written in the form

©2) o¥(x) = % + 3. £ 0 9(x)
s=1

(k)(x) can

where ®9(x) are solutions of

a (k,s—1)

(9.3) gA,,( )—— - ;Ax + I = —Z (x) (x),

for s=>1

v
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fulfilling ¢®9(x) = 0 for xe D;, s > 1, ¢®%(x) = x,. Finally, there exist con-
stants C, M independent of x,, | so that

(k,s)

Ds
Dy, < CM".

o

Remark 7. It can be proved in the same way that there also exist solutions (pg""(x)
fulfilling
Fi dz(p("k)
% dP

(zeco = —1.

Also for —gy, < & < O there exist solutions fulfilling (9/d¢) (4% **[dI?) (xo)/.=0 =
= =1 and the other conditions of Lemma 9.

Proof of Lemma 9. With respect to (9,3) the function ¢*"(x) fulfils

- azqo
0x; 0x

(9.4) I*Z A;(x) - Ziixia—(p + 4o = —ayx).
25 J H 0x;
We choose a number J, as in Remark 6. Due to this Remark zero is not an eigenvalue
of the operator L, defined in (7,5) in D,. Theorem 1 Chap. 4 [ 6] yields that zero is not an
eigenvalue of L, in our sense if and only if it is not an eigenvalue in the sense of [6]:
there does not exist a nontrivial solution of the generalized Dirichlet problem
Lyp = 0in D, (see § 4.6 [6]). This fact enables us to use Theorems 4 and 6 Chap. 4
[6]. Hence there exists a generalized solution of (9,4) in Djs. Due to Theorem 1 [6]
the solution has continuous second derivatives and due to the analyticity Theorem it
is real analytic. Thus we can apply Lemma 8 which implies that there exists a solution
% V(x) fulfilling (d>®[dI?) (x,) = 1 and H(p‘"'”“’z’ia < M. Applying Theorems
4, 6, Theorem 1 and the analyticity theorem from [6] once more we arrive at the
conclusion that equations (9,3) have real analytic solutions for every s > 1.
To prove Lemma 9 it is sufficient to derive some estimates for ||| 2%,. Consider
an equation

(9,5) L =f where ¢ =0 on D,; feCyD,)

and L, is defined in (7,5). Put T = —A(L, — A4)~" ¢ (k is fixed). The operator T
maps C,(D;) into C3,,(D;) and

08 [7ol22. 5 clol?

Equation (9,5) can be rewritten as
1

(9,7) ¢ = Ty — )_ If, ¢e Cg'hz(Dé) , fe Cu(Dd)'
‘k

As ¢ = T is equivalent to L, = 0 and zero is not an eigenvalue of L,, we obtain
that zero is not an eigenvalue of the operator I — T where [ is the identical operator
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and I — Tis considered an operator from C3,,(D;) into C3,,(D;). Remark 8, which
will be formulated and proved later, implies that I — T has a continuous inverse
operator (I — T)™! (as a transformation from C3,,(D;) to C3.4(D;). Thus using
(9,7) we conclude

[e]23. =l kl It = 1) 1|25, < Ci||T7 |25

and with respect to (9,6),
(.8) lol2:. = Gl ]
In our case f = — Y ayx)(d¢®**~V[ox;) (x) and since |a;|, < K,[o* |34, £ M
(see Lemma 8) we obtain
09 lo* 123
The last inequality implies that for 0 < gy < (CZK)”1 the series is convergent. Since
(d?@®1[dI?) (x,) = 1, inequality (9,8) also implies (8/de) (d2p[dI?) (x,)],=0 = 1.
Lemma 9 is proved.

The next remark will be formulated in a more general wording than it is needed
for the proof of Lemma 9. Nevertheless, we shall need this Remark when formulating

Theorem 3 for parabolic equations which slightly differ from those fulfilling the
assumptions of Theorem 3.

< (C,KyY'M

Remark 8. Ler

@ = ZA(p)( ) le
2 i,j J

be a sequence of elliptic operators where A e Ca(D). Assume the operators LP
to be uniformly bounded: “ < K and unlformly positive definite:

ZA(")(x)a 2mYai, m>0.

Further, let the coefficients converge uniformly in D: AP(x) — A{Y(x), p = oo.
If zero is not an eigenvalue of I!%, then for sufficiently great p zero is not an
eigenvalue of I, the operators I — T® are continuous transformations from
C9.+4(D) into C3, (D), there exist inverse transformations (I—T®)™* from C3, (D)
into C3, (D) and the norms (I — T®)™* are uniformly bounded. (The operators
T® are defined by T®Wf = —ALP — 2)~'f, T®fe C3,,(D), for f e C,(D)).

Proof. The first step is to prove that zero is not an eigenvalue of L for suf-
ficiently great p. This proof is very similar to that of Remark 6. Suppose there
exists a subsequence of L® so that 0 is an eigenvalue of L'P. We derote the sub-
sequence by L® again. It means that there exists a sequence f(x) of solutions of
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LPF® = 0, [P e CY, (D), max ‘f(l’)(x)| = 1. By Theorem 5 Chap. 5 [6] we obtain

2+a

[£®]3+« < C. As in the proof of Remark 6 we can choose a subsequence of f@

converging to a certain f(©(x). Certainly LOf® =0, f©eC3, (D) and

max ]f(‘”(x)] = |. This contradicts to the assumption that zero is not an eigenvalue
X

of [{?,

Now, as the second step we shall prove that (I — T®) maps C3, (D) onto C3 (D)
for sufficiently great p. Choose a number p so that 0 is not an eigenvalue of IP.
We shall assume for the moment that the coefficients A{? are real analytic. Due to
(9,6) I — T™® is a continuous operator. Denote by B the image of C3,,(D) given
byl — T. Certainly B is a Banach subspace of C3, (D). The equation f — T®?f =
=g is equivalent to L7f = (L? — 1) g for f,geC3,,(D). If ge C,(D) then
(L» — 1) g e C(D) and due to the assumption about the eigenvalues and due to
Theorems 4,6 Chap. 4 [6] the equation LPf = (L — ]) g has a weak solution f,
fe Hg (the well-known class Hy is defined for example in [6]). Using Theorem 1
[6] we conclude fe C,(D) and by Theorem 5 [6], fe C3,,(D). This implies
(I — T™)f = g so that B = C3, (D). If the coefficients A’ are not real analytic
in D, then they can be approximated by real analytic coefficients AS{’;S’ which con-
verge uniformly to Agf). We proved that to every s and g e c§+,(1)) there exists
a solution of LPf @) = (L) — }) g, [®% e C9.+o(D). Since “f(”’s)“lz)“ < C“g”?“
we can choose a subsequence of f7*) converging to a f® in C3, (D) which is a solu-
tion of LPf® = (1P — ))g.

Since 0 is not an eigenvalue of 1P and therefore it is not an eigenvalue of I — T
and since I — T maps C3,,(D) onto itself we obtain by the closed graph theorem
that the inverse operators (I — T®)™! are continuous. Nonetheless, we need to
prove the uniform boundedness of the inverse operators. To this purpose we shall
formulate an auxiliary statement.

Statement. T®) gre ,uniformly compact” as transformations C,(D) — C,, (D),
i.e., given a sequence of 7 € C(D) so that |||, < 1, there exists a subsequence
SE® 50 that TG converges in the norm of Cy44(D) 10 a g € C,,o(D).
If moreover @ — f© then TWf®) _, T© £ iy the norm of C,,,(D).

Proof of the statement. Consider g = T®f®, This equation can be rewritten as
(9,10) (L(P) - /1) g® = —)f®

Since LP — 2 are uniformly elliptic operators we have 9,4, < C“f(p)”a =C
where the constant C is independent of p. Hence we can choose a subsequence gi(»
converging to a g‘” € C,,,(D). Consequently, there exists a subsequence f(®) gq
that TU@)f0®) 5 () jn the norm of C, (D). If moreover f® — £, then using
(9,10) we have (L'” — 1) g@ = —if©, i.e. TOf©@ = g(©. The statement is proved.
If the operators (I — T®)~! are not uniformly bounded, then there exists a se-
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quence f(p)e C(2)+,,(D), f(p) — 0 such that g» _ (I _ T(pl)~1f(p) fulfil |Ig(p)“g+ —
= 1. The last relation can be modified to g'» — T®g'®» 4 £ Using the staten:em
and the fact that f® — 0 in C, +4(D) we obtain that a subsequence of g» converges
to a certain g” e C, +o(D). Using the last assertion of the statement we have g© =
= Tg(®. Since 0 is not an eigenvalue of T we obtain g© = 0, which contradicts

the assumption ||g(")“2+a = 1. Remark 8 is proved. The proof of Remark 8 com-
pletes the proof of Lemma 9.

10

|
!3+1

|

We shall need still the convergence of the series ) &*| ¢+

Lemma 10. Let L be an elliptic operator

0
0x;

=5 a1 S Lk s
AN OXj axi

Assume that the coefficients of Lbelong to C,, (D;) where | is nonnegative integer,
DM, D@ are regions fulfilling DY = DV = D® < D@ < D;. We have

(10,1) [£17% e = (|22 + [ f]5)

for f € Ciy 5 +4(Ds) where the constant C depends only on I, on the regions D, D),

on the norms of the coefficients of L in C,., and on the coefficient of ellipticity of L.

Remark 9. Lemmas 9 and 10 imply that to every nonnegative integer [ there
exists a positive number &, so that

(10.2) yer

is convergent for ]sl < &
Lemma 10 is a generalization of Theorem 3 Chap. 5 [6] since.the proof can be
without change applied to the case of elliptic operators of order m.

i(p(k,")I!lD+a

Proof of Lemma 10. If [ = 0, then the lemma is a consequence of Theorem 3 [6]
Suppose that the lemma is true for I. Choose a region D® so that D@ < D® <
= D® < D®. Applying (10,1) to DD, D® instead to D), D@ we obtain

a D(1) a D(3)
9 §C1<|Ll g ) i=1,..,n
0

0xill142+4 0x; 0x;
LY -8y Ly O oa o e

D)
+

I+a

for fe Cpi3+4(Ds)- Since

0x; 6xi 2kp 6x,- axk axp k axi 0x,, 0x;
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we obtain

of

D
0 )

i

l

D1y s o
<c (numﬂ AT L

I+2+a

where C, depends on the norms of the coefficients in Cj++4(Ds). Applying (10,1)
to the regions D D@ we conclude

(?f”

LI <o (Jurlpien + Ut + 11 +

ill+2+a

+ CFI87) = S e + 1187

With respect to the definition of C,4 3., the last inequality implies that (10,1) is true
also for I + 1. Lemma 10 is proved.

11

Now, all is prepared for the proof of Theorem 3. Assume 0 is not an eigenvalue of
the operators L, given by (7,5). According to Remark 6 we choose a number d, > 0
so that 0 is not an eigenvalue of L, in any region Dy for 0 < 6 < d,. A positive
number &, is chosen such that Lemma 9 and Remark 9 are valid. Let a point [7, xo] €
€ Q and an n-dimensional unit vector [ be given. Denote

(15,1)  ¢P(x) = ¢*P(x) where the sign + is taken if dulox (i, x,) = 0,
the sign — is taken if du[ox (i, x,) < 0.

The functions ¢{’(x) are given by Lemma 9 and by Remark 7 for ¢ < 0 or —i.
Actually, the functions goﬁ‘)(x) depend on t but since this dependence affects neither
the radii of convergence nor the norm of ¢{” in C,, (D), the parameter # will not be
explicitly marked in ¢{"(x). According to Theorem 2 the transformation ¢ = ¢,(x),
u(t, x) = u(t, £) maps equation (7,1) into

A ov

(11,2 Z ACE o, aé il‘é'aéi
and the region D onto @e(D) so that the function v(t, &) is the bounded solution of
(11,2) fulfilling ©(0, &) = 0 for ¢ € ¢,(D) and (1, &) = 1 for t > 0, ¢ € 3(D). The
transformation & = @,(x) converges to the identical transformation & = ¢o(x) = +x
for ¢ — 0. The Jacobian of ¢,(x) converges to the Jacobian of (,?)O(x) which equals
one. Obviously there exists an inverse transformation x = y (&) for sufficiently
small .

We shall derive formula (11,3) for y(¢).

Let z be an n-dimensional vector with components +1 or — 1. Denote ¢{(z, x) =
= ¢{*Y(x) where the sign + is taken if z; = 1 and the sign — is taken if z; = —1.
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The Jacobians of transformations & = (pE(Z, x) converge to one for ¢ — 0. Certainly
there exist inverse transformations x = ¥,(z, £) for sufficiently small &. Using (10,2)
it can be written

-3
POz, 8) = &+ Y er PPz &) + o790z, &, 6)
p=1

where )z, &) € Cy44(Dy,), ||9]| 5% — 0 for & — 0 uniformly with respect to z.
Let z(g) be defined by: z (a) = +1 if oufox7, x) 2 0 and zfe) = —1 if
dulox (1, x,) < 0. We have @,(x) = @,(2(¢), x) and ¥,(&) = ¥(z(e), £) such that

-3
(11.3) 00 = &+ TG + 0 o)

where YU "’(5) can depend on & nevertheless |y ”)”3 +» are uniformly bounded
and ||y(”!|3+¢ — 0 for e > 0.

Using the property of ¥,(¢) function A®(&) can be written as

70 - (%) awion () )

Now we shall apply Theorem 1 to equation (11,2) which is considered in the region
¢(D). We shall successively verify the assumptions of Theorem 1. Choosing for
example [ = 4 in (11,3) we see that Hypothesis (F) together with (11,3) ensure Hypo-
thesis (A) of Theorem 1. Hypotheses (B) and (C) (for small ¢) directly follow from
Hypotheses (B), (C) of Theorem 3 due to Lemma 6.

Now we shall deal with Hypothesis (D). Let a point P € D be chosen arbitrarily.
The transformation £ = ¢,(x) maps P to P, and the region D onto ¢,(D). Due to
Lemma 6, P, e @(D). Let x, ..., x, be a local coordinate system fulfilling the con-
tions which are given before Hypothesis (D) where (0,1) is replaced by (7,1) .Let

ou’ ou’
11,4 = : ayx')—
(11.4) ot 22 ’() ;()6x§
be the form of (7, 1) in the xj, ..., X, coordinate system. Certainly we have A’(O) = 1.
The relation between the coordinate systems is x’ = T(x — P) where T is a regular
matrix of the type n x n. We introduce a new coordinate system &%, ..., &, by
& = N(¢& — ¢(P)) where N = T((d¢,/dx) (P))~*. Since the transformations x’ — x,
x = & & — & are all one-to-one, there exists a one-to-one transformation &' =
= ¢'(x), i.e. @)x") = N[o(T 'x" + P) — ¢(P)] and

(dey/dx") (x") = N(d¢,/dx) (T~ 'x" + P) T™*.
We shall need some properties of the transformation & = @(x’) which follow
immediately from the definition:

(11,5) do ©) =1,
dx’
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(119 o2 0) = pru(r -y 8y 7o
If the region D can be described in a neighbourhood of P by an inequality x, >
> h(x4, ..., X,;_;), then due to Lemma 6 the region ¢,(D) can be described by
&> h(&, ..., &) in a neighbourhood of ¢,(P). Certainly h'(0) =0, (11,5)
together with (6,1) imply (0h’[0¢}) (0) = 0 and by virtue of (6,2), also

K h Pl

11,7) 0) = 0 0).
(1.7 65;65}() 6x:-6x}()+ Ox; 0x J()

By &' = o)(x"), u'(t,x") = v'(1, &) equation (11,4) is transformed into

(11,8) ‘ —_~Z ag 66 .M
where
mron Aoy (dog T

(119) (e ) = G2 i) A0 (i ») ,

" s 002
(11,10) ai(e, &) = Yai(W'() P (&) + .

-
Toh o)

and /. is the inverse transformation to &' = (pé(x'). Relation (11,9) yields

(11.11) 0 - 20+ 2 0

and also A'(e, 0) = A'(0) = I.

If & converges to zero, then due to (11,1), (9,2) it is (d¢,/dx) (P) — I and
(426 |dx?) (P) > 0. This implies that the matrix N (depending on &) converges
to T for ¢ - 0 so that by (11,6), (d%¢;*/dx"2) (0) converges to the zero matrix.

Further (11,7) and (11,11) imply (0°h'[0¢; 0&;) (0) — (0*h[ox; 0x}) (0) and
(04,[E}) (£, 0) — (04,,/0x7) (0), respectively, while (11,10), (11,5) ensure d(e, 0) —
— a,(0). We can conclude that the matrix I constructed for (11,8) at P, converges
to the matrix I constructed for (11,4) at P; or, which is the same by Remark 1, to
the matrix constructed for (7,1) at P. Since it is assumed that det ' > 0 fore =0
we conclude that Hypothesis (D) is fulfilled for sufficiently small &.

Now we shall prove that equation (11,2) fulfils Hypothesis (E). The drift coef-
ficients are linear. In virtue of Remark 2 it is sufficient to prove that conditions
(0,4) are fulfilled for sufficiently small e.
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As was stated above the matrix of diffusion coefficients of (11,2) is

- (8 s (82)")

Putting ¢ = 0 we obtain A©(¢) = A(¢). Since

~ 2 (k) 3 A(k)
9_‘/{5 - d_(& -1 and 0* P - 7P =0
dél=0 dxX|.=0 0x, 0X,|,=0 0%, 0X, 0X,|.=¢

we can construct matrix functions M®(&), P{(£) and N{?(£) continuous in 5 such that
(M(e)(é))T M(s)(f) A(s)(f) P(s)(é) dA(e)/dl(é) and (N(e)(f))T N(e)(é) n? =

= d2A®[dI*(¢) where k = (dy,/d¢) I and M, P,, N, are the matrices corresponding
to A by Remark 2. We can find these matrix functions in the form

- () . -3 () Y -
NOE) = Ny(y) ((‘”Z) ) + 0(s).

As M® - M, P{? - P and N{¥ — N uniformly, condition (0,4) is valid for A(&)
if ¢ is sufficiently small.

Since we proved that equation (11,2) fulfils Hypothesis (D) we obtain by applying
Theorem 5 [1] that there exists a positive number t, such that u(t, &) is strictly
convex on (0, #y) X (;E(D). In this way we have verified the last assumption of
Theorem 1. Due to this theorem we know that u(z, £) is convex as a function of ¢
in (0, to) x ¢(D).

Formula (5,6) can be modified to

Gg ey 0[S (T

dr

a‘ll(k,l) d2¢)(i,l)>

+ —— )+ ey, ¢
Ei: 0x; dr (&)

dl2 v =0 dk?

where k = (d¢,/dx) I. Since u(t, &) is convex it is (d*v[dk?)(t, &) 2 0. Formula
(11,1) yields (0u/ox,) (7, x,) (d2¢*V[dI*) (xo) = 0 and since by Lemma 9
(d?¢*V[dI?) (x,) equals one or minus one the expression

[ ) e (T )

dar

a (k,1) 32 4(i,1)
Ly WD d
P oox;  dP

(xo)> + e9(@xo0). 8)]
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is nonnegative for small &. The modified formula implies that d*u/dI*(7, x,) = 0.
Since [7, x| was an arbitrary point from (0, to) x D and lan arbitrary n-dimensional
vector we have proved that u(t, x) is convex as a function of x for t € (0, t,) and
x € D. Theorem 3 is proved.

12

As was mentioned above the method used in the proof of Theorem 3 can be
applied to slightly disturbed parabolic equations.

Remark 10. Let A;(x), a{x), 2; and a region D fulfil conditions of Theorem 3.

Given a positive number C then there exist numbers voy > 0, g5 > 0, t, > 0 such
that the bounded solution of

L4y (X)

ou
12,1 R
(121) -

+ Z(—lix,- + sa?(x))gﬁ

1
21, x; i

Sulfilling u(0, x) = 0 for x € D, u(t, x) =1 fort > 0, x € D is convex as a function
of x in (0, t,) x D and for |8| < &, provided the coefficients Ajy(x), ai (x) fulfil

oA}
IA;;'(X) = A(x)| < vo, ‘ :
_ 0x;,

aa

o, ()

(x) -

< v,

2 4+ 2
A5 () — LAy

4 <cC
o ox, ) T ampam, | T |45 ]2+ <

and the third derivatives (6°4;;/0x 0x, dx,) (x) are continuous, |af(x) — a{x)| <
< Vo, “aguzm =C

The proof of Remark 10 will be sketched only. Nevertheless, we need a modifica-
tion of Lemma 8.

Lemma 11. Let the assumptions of Remark 10 be fulfilled. There exists a number
M > 0 such that to every point x, € D and to every n-dimensional unit vector 1
there exist solutions ¢ *(x), x*(x), of

1 P
12,2 Lo =-Y 4},
(12.2) ¢ =524 o0

fulfilling
pte C2+a(Da/2) > |d2 +/dlz(xo) - 11 <13, I|(P+”D+a =M
1" €Cyiu(Dsp2), ldz *ld P(xo) + 1] <13, "X+[|2+a =M.

- le + ho = f*(x)

The first part of the proof of Remark 8 proves that 0 is not an eigenvalue of (12,2)
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for sufficiently small v,. As at the beginning of the proof of Lemma 9 we can conclude
that

(123) Lo = EZ o) 5 a"’ ~Z/1x +)k(p f(x) (K fixed)

has a solution ¢ fulfilling ”(pHH, < 0. (the coefficients Aij(x) are real analytic
in x) under the condition that f is real analytic in x. Considering (9,8) we see that the
assumption concerning the analyticity of f can be substituted by the assumption
f € C(Dy). Similarly we can assume only that the coefficients 4;;(x) belong to C,(Dj).
This follows again from (9,8) since the coefficient C, depends only on the given
bounds for coefficients and on the coefficient of ellipticity of A(x) (see Remark 8).
Denote by ¢(x) the solution of (12,3) given by Lemma 8, fulfilling d’¢/dI*(x,) = 1,
[o]2%2 < M, Put

g(x)_"Z( u_ U izfp——f(x)'f'jﬁ(x)'

0x; 0x;

From the above considerations we know that there exists a solution A(x), 4 €

€ C3.1o(D;) of L*4 = g. The function ¢* = ¢ + 4 is certainly a solution of (12,2).

Since the equation for 4 can be rewritten as 4 = —(1/4,) (I—T*)™! T*g, we obtain

[d2@*[d2(xo) — 1| £ C,M,v, using (9.8). The proof for x* is quite analogous.
Now the solutions ¢, (x) of

2
4
i.z,: ax )6x-("x +V‘( A, +su+(x))‘+ Jyp =0

J 0x;

which are of the form (9,2) and which transform (12,1) onto a parbolic equation with
linear drift coefficients exist due to Remark 8. The convergence of (10,2) can be
ensured by Lemma 10. The rest of the proof of Remark 10 follows the same lines as
that of Theorem 3.

13

We shall discuss now Hypothesis (E) in more detail in the two-dimensional case
(n = 2). Since the matrix 4 of the type 2 x 2 has to be singular we can assume

A=<acos<p 0

. >0, 1
asin @ 0) a >0, ¢ real numbers

and the matrix B in the form

b0
B = (0 0), b a real number .
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The condition on A can be written as

2 d4 d24a d24
—| cos? o ——L 4 2 cos ¢ sin 12 4 sin? 22 | 4
2[ ¢ dr2 Pome dr TE

dAa dAa dA

+ a?b| cos® ¢ —L + 2 cos ¢ sin 12 4 sin? ¢ —22| +
[ al MARPT al

+ a*b*[cos’@ A, + 2cos @sin @ A, + sinp A4,,] 2 0

where the vector [ is given by [" = (—sin ¢, cos @) or I = (sin ¢, —cos ¢). Taking
into account a * 0 and the definition of | we obtain

: 1 [o%4 A,, . 24 %A
13,1 | —Hcos* o + ——Fsint g + [+ 22—
(13.) 2[ ay? ax? ax? oy*

aZA ; ) 62 2 .
- ——¢>coszqosm2(p+2 TA _ 0L cos® @ sin @ +
0x dy dy? dx dy

P4, @ _ '
+ 2 __].Z__fl_/_lzi COS(PS]I’[3(,D + b a_A;l_lcos:;(p +
ax? 0x dy oy

+{ - T + PRt cos? @ sin ¢ + SO +
Ox dy ox

da4,, . aa,, .
+ =22 ) cos g sin? @ — —22sin’ ¢ | + b2[A4,, cos® ¢ +
ay ox

+ 24, cospsing + Ay, sin* @] 20

for all real b and ¢. The linearity of a together with condition (13,1) can substitute
Hypothesis (E) since another choice of A4, B:

0 acoso 00
A_<0 asin(p)’ B—<0b)
leads to the same condition (13,1).
If b = 0 then (13,1) yields

cycos* o + cysin*@ + ¢;cos?psin?g + c,cos’@sing + cscos psin®o =0

for all real @ which is equivalent to P(4) = 0 for all real A where P(1) = ¢,4* +
+ esA3 + ;A% + ch + ¢y

Statement. Let D, be the discriminant of P(A) and DY the discriminant of the
derivative P'(3). If D, > 0, Dy < O then P(A) > O for every real A.
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Since the term A, cos®> @ + 24,, cos ¢ sin ¢ + A,, sin? ¢ is positive due to the
positive definiteness of A, the term on the left-hand side of (13,1) can be treated as
a quadratic polynomial.

Example 1. Suppose Alz(t, X, y) =0, let A4,, depend only on ¢ and x, 4,, only
on t, y. Condition (13,1) is reduced to

1 /%4y, 0%A,, . oA
13,2 S 222 cos? psin2 @ + b — —2lcos o +
(132) 2 ( ox? oy® ¢ ¢ ox ?

+ @ sin (p) cos ¢ sin @ + b*(A;, cos®> ¢ + A,,sin? ¢) = 0
oy

for all real @, b. Inequality (13,2) is valid if and only if

Ay, + ?ﬂ%@ >0,
ox? ay?

0A;,\? <24, 0*A,, 4 0*A,, , 04,,\? <24, %Ay, + 0*4,, ,
ox ox* ay? dy ox? oy*

2 2 2 2
All aAzz + AZZ 6/111 é 2A11A22 a All + a—/lzz .
dy ox ox> oy*

Example 2. Suppose Alz(t, x,y) = 0andlet A,, depend onlyont and y, A,, only on t
and x. In this case condition (13,1) is reduced to

(13,3)

19%°4 oA oA
Leostp + - —22sin*gp + b Heosdp — —2sin* o) +
2 ox? dy ¢ 0x

+ b*(A,, cos? @ + A,,sin* @) = 0.

It is easy to obtain sufficient conditions for (13,3), namely

%Ay, >0, 0*4,, >0,
ay? ox?
2 2 2 2
aAll ézAlla All, a/122 §2Azza A22’
dy dy? ox ox?

2 2 2 2 2 2
A, T LA“) Ay, T2 (M) o 24,4y, T T2
ay* \ ox ox* \ oy oy*  ox?
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The last section is devoted to the case when the problem (0,1) to (0,3) is spherically
symmetric.

Example 3. Let the region D be an n-dimensional ball D = {xe R": lxl < R}
and let A(x) = f(|x|)1, a(x) = —ax where I is the unit matrix, f(r) is a positive
function with a continuous third derivative defined for » € {0, R) and « is a positive
number.

In this case the bounded solution u(t, x) of (0,1) to (0,3) depends only on ¢ and |x|.
Define a function o(t, ) = u(t, x) where r = /().x7). The function v(t, r) fulfils the
1

equation

o 1 0%v n—1 ov
14,1 L2 4 (- + ()2
(1) ot 2j(1)6r2 < Y 2r f(r)>6r

With respect to (0,2), (0,3) and [4] we have du/dv (t,x) > 0 for t > 0, lx‘ =R
where v is the outer normal at [#, x]. This implies

(14,2) ; %U(t,R)>() 1>0.
r

If we assume

n—1
14,3 —aR + -f(R) <0
(143) ey
then (14,1) and (14,2) yield
2
14,4 a—i’t,R >0 for t>0.
or?

Let A4, i = 1, ..., n be real number. We have obviously

%u
LX) Aid, =
P (t x) 24,

; 0x; r

| —

0%

r2

2 (t.r) (L) +

N
D

1 ov 2

+ 52200 [ A - (T

The last relation proves that u(t, x) is convex as a function of x at the points [¢, x] :
t>0, lxl = R due to (14,2) and (14,4). We have just proved that the assumption
of Theorem 1 about convexity of u(t, x) on the side-boundary of Q is fulfilled. We
shall verify the other assumptions of Theorem 1. Hypotheses (A) to (C) are obviously
fulfilled.
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Let X, ..., X, be a local coordinate system fulfilling Hypothesis (D). Denote by

ii(t, X) the solution u(t, x) expressed in the (X, ..., X,)-coordinate system. We have
(145 Do P U R+ (IR - RS -
ot 2f(R) =1 0x;
- Ou  aR ou

e o)

The function h(X,, ..., X,—,) is given by

0 G 5)

In this case

(14.6) i = JURYR, i=1,.n=1,

I'y=0fori%j,i%n,j*n,

Equation (14,5) implies I';, = I',; =0 for i <n and I,, = 2aR//(f(R)) —
— (n = 1) J/(f(R))/R. With respect to (14,3) we have I,, > 0 and this together
with (14,6) ensures that Hypothesis (D) is valid.

Remark 2 shows that we can assume (0,4) instead of Hypothesis (E). We see easily
that if

2
(14,7) d—[(lxl) >0 forall xeD and for all unit vectors /
dr?
) 2
(14,8) \/(2f(|x|)%{(|x|)> +n %{(le) >0 forall xeD

and for all unit vectors I, then (0,4) is fulfilled. Applying Theorem 1 we obtain the
following.

Statement. Let D = {x: |x’ < R}, A(x) = f([x|) I, a(x) = —ax where f(r) is
a positive function with a continuous third derivative defined on <0, R). If (14,3),
(14,7) and (14.,8) are fulfilled then the bounded solution of (0,1) fulfilling (0,2) and
(0,3) is a convex function of x in Q = (0, L) x D, i.e. the matrix function A(x)
is strongly maximal with respect to a(x) = —oax and Q.

Lemma 1 [1] implies that condition (14,3) in the statement is not only sufficient
but also necessary.
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