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CONDITIONS FOR STRONG MAXIMALITY OF LOCAL 
DIFFUSIONS IN MULTI-DIMENSIONAL CASE 

Ivo VRKOC, Praha 

(Received August 26, 1975) 

Introduction. Let an Itô stochastic differential equation 

dx == a{t, x)ât + Б(г, x) dw 

be given in a region Q, Q = (0, L) x D where D is a region in the n-dimensional 
Euclidean space, the n-dimensional vector function a(^t, x), the matrix function Б(г, x) 
of the type n x n and the region D fulfil conditions guaranteeing the existence and 
unicity of solutions, w(t) is an n-dimensional Wiener process. 

Denote by x(t, XQ) the solution of the Itô equation fulfilling the initial condition 
x(0, XQ) — Xo (XQ being a deterministic value) and by Р(Б, a, XQ, ß) the probability 
that the solution x(^, Xo) leaves the region D during the time interval <0, L), i.e. 

P(ß, a, Xo, Q) = P{3{T : х(т, Xo) ^ D, т G <0, L > } } . 

The matrix function B{\, x) or A{t, x) (Л(г, x) = JB(r, x) B^(t, x) where Б^ is the 
transposed matrix) is called strongly maximal with respect to a(t, x) and Q if 

P{B, a, Xo, Q) ^ P{B\ a, Xo, Ô) 

for all XQE D and for all matrix functions B'(t, x) fulfilling the conditions guaran­
teeing the existence and unicity and such that Ä(t, x) — Ä'(t, x) {Ä'{t, x) = 
= B'{t, x) B'^(t, x)) is a positive semi-definite matrix at every point [r, x] e Q. 

This definition was used in the papers [1], [2], [5] with the following conditions 
guaranteeing existence and unicity: 

i) a(t, x), J5(f, x) are Holder continuous in t; 
ii) a(^t, x), P(f, x) are Lipschitz continuous in x; 
iii) A[t, x) = B[t, x) B (̂f, x) is uniformly positive definite in Q; 
iv) the region D is bounded and has the outside strong sphere property [4]. 

If the matrix functions B{t, x) and Ä{t, x) are diagonal at every point [t, x] G ß , 
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the matrix function B(^t, x) (yl(f, x)) is called maximal with respect to a(t, x) and Q if 

P(B, a, xo, e ) ^ P{B\ a. Xo, Ö) 

for all XQE D and for all diagonal matrix functions jB'(f, x) fulfilling the conditions 
guaranteeing the existence and unicity (e.g. i) to iii)) and such that Л(г, x) — Л'(г, x) 
is a positive semi-definite matrix at every point [̂ , x] e Q. 

The matrix function A{t, x) (ß(r, x)) is strongly maximal (maximal) with respect 
to a{t, x) and Q if and only if the bounded solution w(r, x) of the parabolic equation 

du I ^ . ,. . 4 d^u . ^ , , , du 

dt 
1 y^ , rr \ d^u " , , . du 
2 / j = i ex I ex J i=i ox,-

fulfilling w(0, x) = 0 for xe D and w(̂ , x) = I for t > 0, x e D [D h the boundary 
of D) is a convex function of x {d^ujdx] ^ 0, г = 1, ,.., n) in Q, 

This result was proved in [2]. The problem to find conditions guaranteeing the 
strong maximality (the maximality) of A{t, x) is thus transformed to the problem 
to find conditions guaranteeing convexity [d'^ujdx] ^ 0, i' = 1, . . . ,«) of the given 
solution of the parabolic equation. 

The paper [5] is devoted to the one-dimensional case {n = 1) and presents explicit 
conditions ensuring maximahty of B{x) (Theorems 3 and 4 [5]). 

The problem to find conditions guaranteeing maximality of A{t, x) in the multi­
dimensional case is treated in [1] (Theorem 4 [ i j ) . It is assumed in Theorem 4 [1] 
that the solution u{t, x) is convex on the side-boundary S of 6, i.e. on S = <(0, L> x 
X JO. Therefore conditions are given guaranteeing the convexity of и on S pro­
vided the coefficients of the Ito equation as well as the region D depend on a small 
parameter (Theorem 6 [l]) . 

The method which enables us to prove Theorems 3 and 4 in [5] is based on 
Theorem 3 [2] which is valid for linear drift coefficients only. Theorem 1 of the present 
paper is a modification of Theorem 3 [2] to the multi-dimensional case. Examples 1 
to 3 [2] and Lemma 1 [ l ] show that Theorem 3 [2] cannot be generalized to the 
multidimensional case without additional assumptions on A and D, 

The meaning of Hypotheses (A) to (C) (see page 202 ~-203) is evident. Hypothesis 
(D) is closely related to Theorem 5 [ l ] and enables us to investigate more precisely the 
behaviour of w(f, x) near the points [O, x] , xe D where the intitial and boundary 
values differ. 

Hypothesis (E) is simplified to (0, 4) in Remark 2 and in Section 13 it is more 
closely discussed for n = 2 (Examples 1 and 2). 

In the Sections 7 to 12 of the paper the possibility of extending Theorem 1 to 
nonlinear drift coefficients is investigated. Formally it is possible to use the method 
from [5] which was mentioned above and which is described in more detail in the 
introduction to Theorems 2 and 3. Since the general case would be too complicated 
the investigation is limited to weakly nonlinear drift coefficients, i.e. to the drift 
coefficients of the type ---А,х^ + s aj(x) where e is a small parameter. 
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Some assumptions of Theorem 3 could be weakened, for example the assumption 
that a, A are real analytic functions and the assumption that zero is not an eigenvalue 
of (7, 5). However, these generalizations would lead to considerable technical dif­
ficulties. 

The last section is devoted to spherically symmetric equations with linear drift 
coefficients. Example 3 gives conditions under which the problem can be solved by 
virtue of Theorem 1. 

As in the previous papers we shall use the following notation. Let a function 
/ (x i , .... x„) be given in a neighbourhood of a point [x?, ..., x^~\. The function is 
convex or strictly convex at the point [x | , ..., x^^ if the matrix д^'f|дx^ dXj (x?, ..., x^) 
is positive semi-definite or positive-definite, respectively. 

Let / be a nonzero real n-dimensional vector. The derivative of the function / in 
the direction / at the point x^ = [x?, ..., x^] is denoted by d//d/(x^) and defined as 
usual by 

d//d/(x^) = lim (/(x« + Ih) ™ /(x^))//i . 

The column vector of the first derivatives of / : [^//^Xi, ..., dfjdxJi ^^^^ ^^ denoted 
by dfjax and the matrix of the second derivatives d^fjdxi dxj will be denoted by 

Analogously if / is a vector valued function then d//dx denotes the matrix 

We shall study the partial differential equation of parabolic type 

(0,1) 77 = ; ^ -̂vl'' )̂ vir + ̂  '''('' '') r 
Ot 2i,j=i dXiOXj i=l OXi 

in a cylindric region Q — (0, L) x D. Consider a bounded solution fulfilling the 
initial condition 

(0,2) w(0, x) = 0 for X 6 D 

and the boundary condition 

(0,3) u{t, x) = 1 for ^ > 0 , xeD 

{p is the boundary of the region D). 
Throughout the paper the following assumptions will be used. 

Hypotheses. (A) The coefficients a It, x) are Holder continuous in Q {Q is the 
closure of Q) and Aij{t, x) have bounded and continuous derivatives dAuJoxj^, 
ô^'Aij|ôXkдXl, dAijjdt, d^AijjdXj,dxidx„^ and d^Aijjdt^'. The matrix function A{t, x) 
is uniformly positive definite in Q, i.e., there exists a constant K^ such that 

n n 

Y, ^ij{t, ^) ^Aj ^ Kj^J^À^ for all real numbers Я̂ . 
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(в) The region D is bounded and to every point P e D there exists a ball К with 
its centre at P and a system of orthogonal coordinates x^, ,.,, ^„ where ^„ has the 
direction of the inward normal to D with respect to D at the point P such that the 
boundary D can be expressed in the ball as a function x„ =,h[xi, ..., ^„~i) for 
[x], ..., x„_i] e K^ с X* with Holder continuous second derivatives. The set K* 
is defined by X* = {[:^i, ..., x„_i] : [x^, ..., x„_i, 0] e X } and K^ is an open 
subset of K^ containing the origin of the x^, ..., ^n-i ~" coordinate system. 

(C) The region D is strictly convex, i.e., the matrices d^hjd^i d^j(p) are positive 
definite for every Pet). 

Denote by x^, ..., x„ a local coordinate system corresponding to P, P e D, We do 
not require the local coordinate system x^, ..., x„ to be orthogonal at the moment 
but we suppose that the boundary of D in a neighbourhood of P can be expressed 
by x„= Ä(xi,..., x„_i) v^here й(0, ..,, 0) = 0, ôhjdx^iO,..., 0) = 0 for /c= 1, ..., n —1. 
Denote by Л,^, ä̂ - the coefficients of (0,1) in the x^, ..., x„ — coordinate system, i.e. 

Ot 2 ij=l OXiOXj i = l OXi 

Let the coordinate system x^, ..., x„ — be chosen so that Л(0, . . . , 0) = / (/ is the unit 
matrix). Define the matrix Г: Tij — ^^й/^х^ ^Xj(0, ..., 0) for f,j = 1, ..., n — 1, 

И - 1 

Г in = n , = i ^Л„„/^х,(0, ..., 0), / < П, Г„„ = 2â„(0,..., 0) - X ^ii-

(D) The determinant of Г is uniformly positive, i.e., inf det Г > 0. 
p 

The value of det Г is independent of the choice of the coordinate system Xj, ..., x„ 
if only the above formulated conditions are fulfilled. 

(E) The coefficients a^t, x) are linear in x and 

tr Г1 AA^ ^ (t, x) + ABA^ — (t, x) + AB^A^ A(t, x)1 > 0 
[2 dp ^ ^ dl^ ^ J ~ 

for every point [ï, x] e Q, every real matrix A of the type n x n, with orthogonal 
columns, every real symmetric matrix В of the type n x n which has the same 
zero columns as A (i.e., if the k-th column of A is the zero vector then also the k-th 
column of В is the zero vector) and for every unit vector I fulfilling A^l = 0. 

The next theorem is very similar to Theorem 4 [ l ] . The assumptions on the 
difi'usion coefficients in Theorem 4 [ l ] are very restrictive and they do not permit 
any application similar to Theorem 3 of the present paper. Theorem 1 is more ap­
plicable than Theorem 4 [1] in spite of its more complicated structure. 

Theorem 1. Let u{t, x) be the bounded solution of (0,1) fulfilling (0,2) and (0,3). 
Suppose that u(t, x) is convex at the points [̂ , x^, x e D, 0 < t < L. If the assumptions 
(A), (B) , ( C ) , ( D ) and (E) are fulfilled, then u(t, x) is convex with respect to the 
spatial variables x^, ..., x„ in Q. 
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Remark 1. Hypothesis (D) can be formulated in another way. Choose P e D, 
In virtue of (B) there exists a system of orthogonal coordinates Xj, ..., i„. Let the 
coordinate systems Xi, . . . ,x„, ^i, ..., x„ be related by x = P + Tx where T is 
a unitary matrix. Let Äij(t, x), â^t, ^) be the coefficients of (0,1) in the Xj, ..., x„ 
coordinate system. Denote Г the {n x n) — matrix defined as follows: f ,y are the 
elements of the matrix {{Ü^^Y^Y H{ll^^Y^ for / , ; = 1, ..., и - 1, f ,„ = Г„, -

1^дА,,1Щ1дК{Е'%\А„1^^^^ for i<n and Д , = 2 4 ( 0 , 0 ) - " X ^ a -J 
2 

s = l 
where Я is the matrix of the type (^ ~ l) x (n — 1) whose elements are: Hij = 
= d^hjdSti dStj(Q) while li^^ is the matrix of the type [n - I) x [n ~ 1) which is 
constructed in Lemma 2 [1]. Hypothesis (D) is equivalent to the assumption 
inf det t >0. The value of det t is independent of the choice of ß^^ (under the con-
p 

dition that the assumptions of Lemma 2 [1] are fulfilled). Remark 1 together with 
Lemma 2 [ l ] provide a method for evaluation of the determinant of Г. 

Remark 2. Let d^yl/d/^(^, x) be positive semi-definite in Q for all unit vectors L 
Obviously there exist matrix functions M{t, x), Ni(t, x), Pi{t, x) defined in Q all 
of the type n x n fulfilling 

M\t, x) M(r, x) - yl(r, x ) , N]{t, x) Ni{t, x) n^ = d^yl/d/^(r, x) , 

Pi{t, x) - âAldl{t, x) . 

/ / 

(0,4) M\t, x) Ni{t, x) + N'J{t, x) M{t, x) + 7(2) P^(r, x) and 

M\t, x) iV (̂f, x) + Nj{t, x) M(r, x) - ^(2) Р,(г, x) 

are positive semi-definite matrices for every \t, x] G 2 and for every unit vector l^ 
then 

(0,5) X Л ' «? + 2 I '-^ a,.a/,, + 2 ^ Л,,«.«, ^ ^,/,, ^ 0 
/ = 1 Cy^ ij=i dyq i,j=l p^l 

for all real numbers â , ßij{ßij = ßjt) any index q, q> I and an arbitrary unitary 
matrix T where x == Ту, Ä{t, у) — Т^ A{t, x) T. 

Inequality (0,5) implies (4,4) and is equivalent with Hypothesis (E) on A. 

It means that the assumptions of the remark together with the linearity of a^ can 
substitute Hypothesis (E). Even though the assumptions of the Remark are stronger 
than Hypothesis (E), they are simpler and more exphcit so that they can be used 
in the next theorem. 

The equivalence of the Hypothesis (E) on A with (0,5) is obtained easily by putting 
Aij = TijOLj, Bij = ßij where x = Tz is the transformation from Remark 2, and ap­
plying the well-known relations Y/^u^ij ~ ^̂  F^C, tr CF = tr FC. 
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Proo f of Remark 2. Inequality (0,5) can be rewritten in the form 

2 t {Bz,, ß'z,) + 2 t {B'z,, ßz,) + t ( ^ ^z, z)^0 

choosing 

a.=^ßij = 0 for i j ^ q , 

where ẑ  is the system of orthonormal vectors which is given by the columns of the 
unit matrix. The elements of the matrix В are AijCHiUj while the elements of the matrix 
B' are (dAijjdyq) â ocj. The elements of ß are ßij. As in the proof of Lemma 3 [2] 
we can substitute the vectors ẑ  by the eigenvectors of the matrix ß (the matrix ß is 
symmetric). Nonetheless, we preserve the,notation of z,- without a change while the 
eigenvalues of ß will be denoted by 1^. Then the last inequality is equivalent to 

2 lAf(Bz , z,) + 2 l?.lB'z, zO + I f ^ aU, z) ^ 0 . 
i i • \Syg J 

Inequality (0,5) will be obviously valid if 

2X' 1 Л , , . , . , + 2Ям E ^ v,vj + ^ X ^ ^ ' t.? è 0 

where Vi, À, fi are arbitrary real numbers. The relation between Л and Л imphes that 
the last inequality is equivalent to 

(0,6) 2Л' X ^ P , Z T,,T^jV,Vj + 2XHJ:^1 T^iT.jViVj + 
p,q iJ РЛ a / i,j 

where Tij are the elements of the unitary matrix T. Suppose T = T^T^ where Ti, T2 
are unitary matrices, T^ transforming d^yl/dP into a diagonal matrix, i.e. 
Ti d^yl/dP Ti = 5 where -S is a diagonal matrix. The last term in (0,6) can be 
rewritten as 

^ Д Г ^ d^ /d /^ Г ) , .? = ^ Х(Гз^5Г,),, .? = ^ I S , , l{T,)%v^ Ш 
Hi n i n p i 
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Using this estimate we see that (0,5) is valid if 

P.« dl "- " n^ ^, d p 

where Wp are arbitrary real numbers. Recalling the definitions of M, Pi, Ni we con­
clude 

(0,7) IX^M'^M + lÀfiPi + jû iVjAT̂  - (Я ^(2) M"̂  + fiNj) (Я V(2) M + AiiV̂ ) + 

4- ЯАХ V ( 2 ) ( V ( 2 ) i'^ - M"̂ iV̂  - NjM) 
and 

(0,8) IX^bfM -f 2AjuPf + M^N îVf = (Я ^(2) M^ - jLiNj) (Я V(2) M - AiiV̂ ) + 

+ k^x V(2) (V(2) P^ + M'Ni + NjM) . 

If 0 < Ад we use the first assumption of (0,4) and the relation (0,8). If 0 > Ад we 
use the second assumption of (0,4) and the relation (0,7). In both cases we obtain 
that the left hand sides of (0,7) or (0,8) are positive definite which proves Remark 2. 
The proof of Theorem 1 is divided into several lemmas. 

Lemma 1. Let D be a region in a p-dimensional Euclidean space. Assume that 
a positive semi-definite symmetric matrix function M(xi, ...,Xp) is defined on D, 
Let the matrix M(xi, ..., Xp) be of the type n x n and let the matrix function be 
continuous in D. If there exists a point [x^, . . . , X p ] e i ) such that M(xî, ..., Xp) 
is positive definite than there exists a region D^, D^ cz D, [x î , . . . , Xp] e D^ such 
that M ( X I , ...,Xp) is positive definite in Dj, it is not positive definite on D^ n D 
and det M(xi, ..., Xp) = 0 on D^^ n D. 

Proof. Evidently, the set of points at which the matrix M is positive definite is 
open. Denote by D^ the maximal region containing [x?, ..., x^] in which M is positive 
definite. Certainly M is not positive definite on D^ n D. It remains to prove the 
statement about det M. Let [xi, ..., Xp] e D^ n D, then there exists a nonzero 
n-dimensional vector y' such that 

(1,1) ( M ( x ; , . . . , x ; ) / , / ) = o 

and 

(1,2) (M(xi , . . . , Xp) y, y) ^ 0 for every vector y . 

Since M(X[, ..., Xp) is a symmetric matrix there exists such a real unitary matrix T 
that M(xi, ..., Xp) = T^ST where S is a diagonal matrix. Denote z = Ту and 
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z' = Ту', Using (1,1) we obtain 

(1.3) IS„(zO^ = 0 
i . . . . . . . 

and using (1,2) we obtain Yßii?^'^ ^ ^- ^^^ ^̂ ^̂  inequality implies S^i ^ 0 and 
£ 

then (1,3) implies S^ = 0 for some /. It means that the determinant of S and also 
that of M(xi, ..., x^) must be zero. Lemma 1 is proved. 

In the sequel we shall need the following remark which is presented without 
proof. 

Remark 3. Let M be a positive semi-definite symmetric matrix of a type n x n. 
If M il — Q for some /, then Mij = Mji = 0 for j = 1, ..., и. 

In order to prove the convexity of u(t, x) we need some approximations of u(t, x). 
In the next section an approximation of u{t, x) will be used which involves four terms. 
The reason is that the second derivatives which are crucial for the convexity are 
unbounded near the points [0, x] , xe D. Due to a specific behaviour of u(t, x) near such 
points the convexity of u[t, x) can be proved only in a part of their neighbourhoods. 
These parts of neighbourhoods are denoted by Qp. The corresponding statement is 
given in Lemma 2. The second part of the proof consists in the study of convexity 
in the whole region Q. Since the original equation is transformed in the course of the 
proof the last part of the proof consists in the reformulation of results. 

First we carry out transformations which simplify the necessary estimates. The 
coefficients а^(г, x), Äij[t, x) can be extended to the whole strip (0, L) x R" so that 
assumption (A) is fulfilled. Let a point P e D Ы given. Due to Hypothesis (A) there 
exists a linear transformation which maps u{t, x) to ü(t, x) and equation (0,1) to 
a parabolic equation with the coefficients Л^у(̂ , x), а,(г, x) such that Л(0, 0) = / 
(the unit matrix). The second part of Lemma 2 [1] states that there exist a number 
(5 > 0 and a function /i^(xi, ..., x„) such that /z^(xi, ..., x„) = Ä(xi, ..., x„) for 
|x| < Ô, /i°(xi, ...,x„) = 0 for |x| > 2(5 and the function has all continuous 
derivatives. The function h is the same as in the definition of Г — see Hypothesis (D). 
Denote 

(1.4) Xi = yi, i = 1 , . . . , / Î - 1 , x„ = y^ + h%y,,...,y„,.,), 

u{t, x) - v{t, y) . 

Equation (0,1) is transformed to 

(1.5) Т = ~Л ^j(^^ y) ^ - ^ + I^^(^' y) 7 " 
dt 2 ij dy^dyj i ôyi 

where a^, A^j are determined in (3,10) [1]. The image of the region D will be denoted 
by D(P), Evidently the boundary of D(P) is described in the (5-neighbourhood of P 
by y^ = 0. Further, <5 > 0 is chosen such that assumption (A) is valid for (1,5). 
Certain approximations of v(t, y) will be constructed in the next section. 
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2 

We shall submit the equation to still another transformation 

(2,0) t = AT , y = С V^ ' K '̂ y) = ^я(^, ^) where À> 0, 

Equation (0,1) is transformed to 

(2,1) '-̂  - . - I<-K W A ) - ^ + Ы(хя,^,а)7я|^ 
от 2 i,j cçi ôÇj i dt,i 

and the conditions i;^(0, (̂ ) = 0 for ^ G D ( F , Я), t;̂ (T, ^) = 1 for т > 0, (̂  e D{P,X) 
where D(P, Я) is the image of D(P), 

Let г;о(̂ . ^) be the solution of dv^jÔT ̂  \Y. ^^^^o/̂ f̂ fulfilling VQ{0, (̂ ) = 0 for 
i 

^ e D{P, 0) and Уо(т,.?) = 1 for т > 0, ^e D{P, 0) where D{P, 0) = {Ç : ̂ „ > 0}. 
We have 

(2,2) .o(t ,ç) = l - '^^ 

Let Z1O(T, ^) be the solution of 

г-'̂ /̂̂  d/ i . 
0 

— - ^2.771- +rTTi-2.^-(0.0)^i + «-(0,0)--
дт 2 , dCi 2 dt,„ , dyt dS,„ 

fulfilling Ло(0, ç) = О for ^ e £»(P, 0) and A^{x, <̂ ) = 0 for т > 0, ^ e D(P, O). The 
solution Л(,{х, ç) can be written in the form 

(2,3) ^o(t,0 = E.^i^-^,0 + 4(T,0 

where 

n-\ 

and 
ZI„(T, О = "-2a„^(0, O) i e-'^'^'' ^т e"^ /̂̂  d/. d l + 

^ Jo Jo 

^ y ^ TT Jo LV'^ 

/ r^ \ r(WVT)V(A/(l-A)) -n 
+ M - Я + ^ A j e-^^/'d^ dA. 
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Further, let до(г, ^) be the solution of 

(2.4) ! ^ . ' ^ | L . . , ' 2 | ^ j ; ^ , ( „ , 

r '̂  5̂̂ , 2 d^^ lot ^"'"^ + 

fulfilling ßo(0, ^) = 0 for e 6 ofP, 0) and ео(т, ^) = 0 for т > 0, ^ s Ù{P, 0) Рщ 

The function Ä^(T, Ç) is the solution of 

Д (2,3) ^ ' = ^^1л?(ы,«7.)||- н-М(.. ,4^д)7д--. 

1 „ Я2 
+ 

. ±В^Пгл. ш - «?(o, о»^». jj;^(<(.«v., _ 

- <.(o, 0) - V^ Z ^ (0,0) f, - л ̂ - (0 ,0) , -

- il .Й^С- »' « ' ) t - j (''•<'̂ - ̂  VA) ^ ».«(0,0) -

-V^.lf^(o.o){.)§-° 

fulfilling R^O, <̂) = 0 for f e £>(P, i) and 

We need estimates for the solution R^. To this aim we write R (r a) = { Л 
+ Rt(T, f) where с7,(т, ^) is the solution of (2,5) in (0, L) x D(p[ 0) fulfilling thl 
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zero initial and boundary conditions. The function i?* is then the solution of (2Д) 
in (0, L) X D(P, X) fulfilling the zero initial condition and the boundary condition 

(2,6) Rtir, i) = '-^fj^ - ^ _ ? 2 ^ _ .Д. , ^) 

for T > 0 , ^e D{P, X). 

We shall need the solutions Уд(г, ^), AQ{T, C) in an explicit form — see (2,2) and (2,3). 
The explicit form of ^o would be too complicated but it is not necessary since the 
following estimates are sufficient 

(2,7) 

(2,8) 

|öo(T,0|g^i^-'"^''' 

d'Qoi-^, й) s,.-™(,.Ä)(l.lI_ä). 

These estimates can be derived by means of the formula 

^O(T, О = (27г)-"/^ те -пЦ ^-{^. п2/2т) 

Uo J 

j: V(v) е • ф(ту, éi + /il VW^ - '̂)) ' • • • 
-(«n/V(t)V(v/(l-v)) 

... (̂ „_ i + /i„_ 1 VWl - v)), ^„v + /i„ Vl'^Hl ~ '̂))) ̂ /̂ « Фл-1 ... djUi dv -

- Г Г ••» Г f^ VWв"^''''î"^ф(тv,ц^ + Ml v w i - v)) , . . . 
Jo J -00 J -00 J(WV(t))>/(v/(l-v)) 

• •. ^n-1 + ^n~ 1 VW^ ~ )̂) ' ^n^ - Â/. V(^4l - ^))) /̂̂ " d/i„_ 1 ... d/ii dv , 
I J 

where exp { —(̂ /̂2т} (/)(т, ^) is the nonhomogeneous term of (2,4). The coefficient Cj 
is independent of P. Estimates for a^ can be derived analogously. We have 

(2,9) (Гя(т, 0 = A»/̂  Г Г . . . 
J О J -00 

рсзо /»00 

г(тя, ^ V^; ^̂ ' »/ v'^) e"""'''" 4 ^ . ?/) d»;» • • • d»?i dv , 
J -00 J o 

where Г(г, x\^, у) is the Green function of (1,5) with respect to the region D{P, 0) 
and e"̂ "*̂ ^̂ ^ <P(T, ^) is the nonhomogeneous term of (2,5). 
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Owing to Theorem 16.3 [3], 

\rit, x; ^, y)\ ^c,\t- i\-'' exp { - c , Ц х , - y,\'j{2{t - ç))} 
t 

and thus (2,9) implies 

Jo J -00 

. . . Г г V(v)e-'^^'''?'"^|<p(rv,^, + / x , V « l - v ) ) , . . . 

J -00 J(^n/VtV(v/(l~V)) 

• ••<?«-1 + /^.-1VW^ - ^0)' ^n^ + /^«V(^4^ - ^)))| ^^n'-' Ф1 dv. 

The last inequality yields 
(2,10) |a,(T, 01 ^ c,T /̂̂ e-̂ -'̂ «^" /̂̂ '> ( l + ^ i I 1^*1') • 

We still have to estimate the function B^x{x, ^). Put ^Д/ , у) = i^t(i:, ^), using the 
inverse transformation to (2,0). The function R^, j ) is a solution of (1,5) fulfilling 
zero initial condition. Using (2,6), estimates (2,10), (2,7) and formulae (2,3), (2,2) 
we obtain |ЯДг, j)] ^ сЯ"^^^ for r > 0, j G D ( P ) where с is a constant and P.^, y) = 
= 0 for f > 0, j^ = [j/j, ..., Уп-и 0], | | j | | < ^. Suppose r > 0 is such a number 
that the ball K^ with radius r and with its centre at the origin of the J i ...>>„ — co­
ordinate system fulfils K^ n D{P, 0) с D{P). Denote by R{t, y) the solution of (1,5) 
fulfilling ^(0, y) = 0 for J G К,, R{t, у) = Ifov t > 0, ye K,. Certainly \R^{t, y)\ S 
S cÀ~^^^ R{t, y) for уеК.п D{P). The Green formula for R{t, y) has the form 
(see for example (7,5) from [ l ] ) 

R{t, y) = I Z{t, y; 0, i^)érj + Г di | Z{t, y; т, 7̂) ^ ^o« cos (v, ;;,) cos (v, tjj) x 

X — (T, rj) da , 

where Z is the fundamental solution of (1,5). Due to the estimate \Z(t, y; т, ^)| g 
й c,\t - т | -«/^ехр{-С2|х - ^Y\\î - т|} (see (13,1), Chap. 1У [3]) and due to 
lim lj(t) [dRJdQ (r, P) = const (see Remark 8 [1]) we obtain 
r-*0 

| J i ( , , , ) | S a e x p { - £ j ( 0 ] for H S ^ 

Further, 
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and 
\R*(t, C)| ^ ^ ^-(c2/2rXHr/2)2 ^ ет ^T ^-(c^/2tA)(r/2)î ^ 

This inequality together with (2,10) yields 

(2,11) \R,{r, ^)| è c,T^/^.-<-/^><^"''^' Л + 4 ^ S | 4 | Л , for 1̂ 1 

The constants c,, Сг are positive and independent of P. Let p be a number 0 < p < I. 
By Theorem 4, IV [4] we obtain estimates 

^2''^Л' 

(2,12) 

(2,13) 

(^.f) 

d'R, 
S^id^j 

which are valid for [r, Q fulfilling \^i\ < /?^, / = 1, ..., л — 1, \^„ + т ~ p\ < p^, 
<„ > 0, 0 < T < p. The constant K(p) may depend on p. 

These estimates of the approximations will be sufficient for the following considera­
tions on convexity of the solution u(t, x). 

For brevity we shall denote the point [O, ..., 0, x„] in the local coordinate system 
Xi, ...,3c„ by X*. 

The point [^ X*] is assigned a point [т, 0, ,.., 0, (̂ „] and a number À by this 
prescription: Let the number т be the solution of 

(2Д4) x'. ^ (P - rf 
t T 

This equation has always two positive roots. The number т is the less of them, i.e. 
the one fulfiUing т ̂  p. Put 

(2,15) ^, = 0 , i = l , . . . , / Î - 1 and ç„ = p - т . 

The point [T, Ç J lies on the straight line т + i„ = p. Put 

(2,16) 
T 

Conversely, if a point [t, 0, ..., 0, ^ J , т + ^„ = p and a number Я > 0 are given 
we put t = AT, y^ = 0, / = 1, ..., П - 1, y„ = ^„ ^X (see (2,0)) and by (1,4) we can 
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express this point in the local coordinate system x^, ..., x„ : Г = Ят, x̂  = 0, Ï = I, . . . 
. . . , n — 1, x„ = CnV'̂ - ^^^ point [T, 0, . . . , 0 , (̂ „] and the number Я correspond 
to [r ,x*] by (2,14) to (2,16). 

In the sequel we shall use the transformation (2,0) with X given by (2,14) to (2,16). 
The solution ü(t, x) can be written in the form 

u(t, x) = v{t, y) = 1;д(т, i) = 

= t;o(t, )̂ -f V(^) M^^ )̂ + ^ ^O(T, )̂ + Я VW R,{r, )̂ . 
The transformations [r, x] -^ (̂ , y) and (?, >̂ ) -^ (т, Ç) are given by (1,4) or (2,0), 
respectively and the second derivatives can be calculated 

(2,17) 
dXj dxj V(A) LV̂ n̂ 

^ ' ' ' ' ( r ,g + V(A)^^(T,o + 
d^n 

dç„ ) ÔXi OX: ÔÇ 'аИ + 

ÔR дЧ + ^ - ^ ( t , ^ ) r H : r ( 0 ) + VW 
SL 

д^ 

ÔX:дх, Hi Hi 
(т, ^) for i Ф П Ф 7 , 

(2,18) - ^ ^ (r, X*) = 4 - f^^ (., ̂ ) + VW -^^ (̂ . ^)) + 
öx,ax/ VWU« ^^5^i3ê„ 7 

+ VW {-Л) 

for Ï Ф n, 

(2,19) g(/,x*) = ' [ ^ М . ) . 7 ( я ) | " , . 0 . я ^ М ) ] 

where the point ^ = [^i, ..., ^„] corresponds to the point x* by (2,0) while the 
point [T, 0, ..., 0, ^„] and number X correspond to the point \t, x*] by (2,14), (2,15) 
and (2,16). Now we substitute expressions (2,2), (2,3) into the right-hand sides of 
(2,17) to (2,19) and use the estimates (2,8), (2,12), (2,13). These estimates can be used 
because of the choice of Я. Thus we have 

(2,20) _^!^(,,,*)__J__ 
dx^ dXj v(^) 

2 \ _^„./2. дЧг 
dXiôXj 

r(0) 

- ( 
1 + --=^ ]e 

^3/2 

•in^/2r + V ( A T ) C , ( I + | ) ,-i.42. ^ 
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+ cjl+ -f-\ e-^"'"' + л а д c,T /̂2e-<^ /̂̂ ><«"̂ '̂ '> + 

+ ^{X}K{p)c,r"'e-''^"'''"'"'\ for i + « + j , 

(2,21) 1 - ^ (t, X*) Î — ^ " (0, 0) / - i ^ ^ e-<^"'̂ '̂ > < 

(2,22) 
ÖX^ я T V 7ГТ 7(27гтЯ) 

< 

+ M,-«..^/- + cl 
0 
+ VWX(;7)c.T^'^e-<^^/^>'^-/^^> 

where the constants c^, с2 are independent of both the point P and of the number p. 
The constant K{p) appeared first in (2,12), (2,13). 

The matrix d^üldxi dxj(t, x*) is positive definite if and only if the determinants 
of d^üjdXi ôxj(t, X*), i,j = 1, ..., /с are positive for /c = 1, ..., n. Multiply the rows 
of these matrices by ^/(Я7гт/2) e "̂̂ ^ \̂ Denote by dij the elements of the resulting 
matrices and by Df^ the determinants of dij, i,j = 1, ..., /c. With respect to (2,20) to 
(2,22) we obtain 

dij 

\d„„ ~ 

for z, J = 1, ..., n — 1 , 

к -1 ^" (0,0) f 1 - ^ ) | è VW с. VW (1 + -Ar, 
\ 2 ду1 V ^ /1 V ^ VW. 

+ я K(p) CiT^e*' --./2)(«.V2T) ^ for / Ф и , 

VW-

+ 

2й„°(0, 0) *4Jw"^)"-^'"' 1 + •vo 
+ XK{p)c,x'e^'-^^''^'''''"'' 

The number Cj can be greater than the constant c^ in the previous formulae but 
it is independent again of both P and p. Denote 5,j = d^hjdxi dxj[0) for i, j = I, ... 
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...,n-^l, a,„ = a„, = iiôAllÔy^) (0, 0) for / Ф n, a„„ = 2a„^(0, 0). Due to Hypo­
thesis (C) all determinants Д , /c = 1, ..., n — 1 are positive and due to Hypothesis 
(D) also the determinant D^ is positive (we have to take account of that 

(ÔÀjdx,) (0, 0) = (дЛЦду,) (О, 0) and 2a^„{0, 0) = 2аД0, 0) - tr Г) 

where D,^ is the determinant of the matrix â^j, i, j = I, ..., /c. Thus there exists a 
number ^o > 0 so that the inequalites \dij — Л,у| < ÔQ / ф n Ф j , d„„ > â„„ ~ ^o 
imply that the determinants Dj^ are positive and in particular that D„^^ > 
> ^ min dQt {d^hidXi dXj(0)Yiji I (the last expression will be denoted by Z). This 

Feb 

assertion is trivial for Dj^, к = 1, ..., n — 1, but the determinant D„ needs special 
consideration. The assertion follows from the fact than D„ can be written as 

(2,23) ^n = d„„D„_^ 

where Dij is the subdeterminant corresponding to the element dij. Further, we 
choose ^1 > 0 so that (dA^jdy,) {CIT) < ^o, ^ i ( ^ ^ + Ch') < Ы^ f^r 0 й 
^ ^„ < ^1 , T = jp — ^„ and a number a > 0 so that 

a < K(p) c^ , ajp^ < ^0 Ш)(-^)-' - C 2 / 2 ) ( Ç „ 2 / 4 T ) ^ ^ 

and 

(2,24) p 1№1^\ ,(i-2/2)(̂ .V4r) ^ 2a„̂ (0, 0) - c, i ^ + ^^ - ^ 1 Z > 

> 

where M 
Define 

(2,25) 

M 

(A 
^ 
5j< 

(0,0) c„̂  + -r^j for „̂ à (5i, T = p - {„ 

max {\D,^\:PeÙ,i,j= \,...,n- 1}. 

^ p ( ^ ) = K{p)c, 
(1-са/2)(«Л2.) ^j^^j.^ ^„ = p - T . 

With respect to the choice of numbers ÔQ, ̂ i , a we obtain \dij ~ àij\ < (2<5o/3) for 
z,y Ф n and Я = '^р(т), i.e. the determinants Dj^, к = 1,..., n — 1 are positive. Let 
us consider the last one, D„. Suppose 0 ^ ^n S. ^i- Since 

\di„ - Ц й 
ôy^ т + 

2ôa 

we have \di„ - 5i„| < <5o-
Further, d„„ ^ rf„„ - ^o (the term (1/V^) (^„/т) being nonnegative) so that D„ 

is nonegative for ^„ satisfying the above inequality. 
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Suppose (̂ „ ^ ^1 , i.e. т ^ p — (Зр In this case we have 

;̂  1 а Л 1 (̂ „̂  
and 

2 dy^ T I 3 

Due to (2,24) the right hand side of (2,23) is positive so that the determinant D„ is 
positive in this case, too. We summarize these results in a lemma. 

Lemma 2. Let the conditions of Theorem 1 be fulfilled. Assume that p is a number 
0<p<i. The solution U{t, x) is a strictly convex function as a function of x^, ..., 5ĉ  
at those point [̂ , x] where t = ЯДт) т, Xi = 0 for i = 1, ..., n ~ 1, x„ — (p — т) . 
• {^р{'^)У^^' ^^^ parameter т being an arbitrary number 0 < т ^ p and Яр(т) being 
given by (2,25) with ^„ = p -~ т. 

Lemma 2 implies that the function u(t, x) is strictly convex (the relations between x 
and X are linear) on a certain set which can be described as the boundary of a sub-
region of Q. The precise description and basic properties of the region and of u[t, x) 
are given in the next section. 

Denote Np{P) = {[t, y] : t == тЯ, у, = 0 for i = 1, ..., n - 1, y„ = {p - т) ^(Я), 
О ^ Я ^ Яр(т), О ^ т ^ p}. By means of the transformation (1,4) and the transfor­
mation mentioned in Hypothesis (D) or Remark 1 the points [f, j ] e Np(P) can be 
transformed to the original coordinate system x^, ..., x„. The resulting set will be 
denoted by Np(P). Of course, both the sets Np(P) and Np(P) represent the same set 
of points (epressed in two difterent coordinate systems). Put Mp = U ^p{P) ^"^ 
e , = (0, L) X D - M p. ^^^ 

Lemma 3. The set Mp is closed. The boundary of Qp is smooth for sufficiently 
small p, i.e. the set Qp n {[т, x] : x e Д 0 < т < p} is locally of the type (£) 
(see [4]). We have Q = [J Qp. If u(t, x) is the bounded solution of (0,1) fulfilling 

p>0 
(0,2) and (0,3) then 

lim sup ^^w/^X| dXj(t, x) = 0 for every p > 0 , /, j = 1, ..., n . 

The set described in Lemma 2 on which u(t, x) is strictly convex is just the side-
boundary of g ,̂ n {[T, x] : X e D, T 6 <0, p}}. (It can be easily shown that the points 
[f, 0, ..., 0, y„] where t = Ят, y„ = „̂ V W ' '^ + ^n = P^ ^ > ^p('^) do not belong 
to Np(P).) At every point P e D there exists a local coordinate system Xj, ..., x„ 
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(Hypothesis (D)). The direction of the coordinate x„ is determined uniquely with 
respect to the original coordinate system X| , . . . ,x„. The direction of x„ depends 
smoothly on P. The set Np[P) lies in the plane which is determined by x„ and is 
parallel to the ^axis. The Hypothesis (B) ensures that for sufficiently small p the sets 
Np(P) are disjoint for different P. We have always emphasized that the constants 
c*,, C2, ̂ (p) do not depend on P. It can be easily proved that the set Mp is closed and 
that the boundary of Qp is smooth in the sense required. (2,25) implies 1р(т) ^ 1 so 
that [t, x] e N'^{P) yields t й ^p{r) т ^ т ^ p and 0 й Уп й [p - т) (ЯДт))^^^ ^ р 
where у corresponds to x by the transformation used in (D) and (1,4). Thus we have 
Ç\MpCi <0, L) X 6 and и бр = Ô. 

p > 0 j?>0 

Now we shall prove the other part of Lemma 3. Let 0 < p < 1 be chosen. Let 
\f, x^] be a point from op- The construction of Qp guarantees the existence of a point 
P, P E D and the corresponding coordinate system x^, ..., x„ such that the point x 
fulfils Xi = ЗС2 = ... = x^-1 = 0 where x^ are the coordinates of x^ in x^, ..., x„. 

Analogously as above let x* denote the point [0, ,.., 0, x^]. Let the point 
[T, 0, ..., 0, (^J and the number À be determined for [t^, x*] by (2,14), (2,15) and 
(2,16). Assume 

(i) x^ + fèp. 

If the point [f̂ , x^] is written in the form f = Ят, x? = X2 = ... = x^_i = 0̂  
^n~{p~- '̂ ) V'^ ^^^ ^̂  ^^ ^^^^ ^^1^ account [̂ ,̂ X*] ^ ^p{^) ^^ obtain Я ^ ^pi'^)-
The inequality x^ + t^ й P implies Я ^ 1. 

Let us consider the inequalities (2,20) to (2,22). Replace all À in the numerators 
by 1 and all À in the denominators by ЯДт). In this way we obtain 

(ЗЛ) 
2г7 Ô^iï 

dxi dxj 
{t\ X*) 

T 

Др).-( 

where L(jp), c^ are constants independent of P. 

By virtue of t ^ Ар(т) т and 0 < Яр(т) < I for т > О we obtain т -> 0 for t -^ 0. 
Inequality (3,1) then imphes 

lim sup {\d4ldXi dxj{f, x*)|; {f, x°] e ß^,, l̂  + x^ ^ I?} = 0 . 

(ii) If f -^ xl> p, then 

lim sup {Id^ldx, dxj{t\ x*)|; [t\ x^] e Qp, f + x,̂  > p} = 0 

follows from the continuity of the second derivatives and from (0,2). Lemma 3 is 
proved. 

In the next section we shall need an auxiliary statement about convex functions. 
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Remark 4. Let f{xi, X2» ^3) be defined in a neighbourhood of the origin and let f 
have continuous derivatives of the third order. Let f be convex in the neighbourhood. 
If 

d^fjdx\(Q, 0, 0) = d^fjdxlifd, 0, 0) = 0 , 
then 

eypxi 0X2 ^хз(о, 0,0) = 0. 
Proof. Certainly 

d^fjdxl{0, 0, X3) = I 'd^fjdxl ахз(0, 0, ц) ац = xA d'^fjdxl дх^{{), О, ХзГ) dt. 
Jo Jo 

The Lebesgue theorem impHes 

lim I d^fjdxl ахз(0, 0, Хз̂ ) dt == d^j\dx\ ахз(0, О, 0) . i.e. 

d^fjdxl (9хз(0, О, 0) - lim Хз~' d^fjdxKO, О, Хз) . 

By virtue of convexity of/ we easily deduce 

(3.2) d'fldxl dx,{0, 0, 0) = 0 

and similarly 

(3.3) d'fldxl ахз(0, 0, 0) = 0 . 

Since {d^fldx, 5x^(0, 0, 0))^ й d^fldxl{0, 0, 0) d^fjôxl{^, 0, 0) - 0 we can write 
d^-fjdx^ ^X2(0, 0, X3) = X3 Jo d^fjdx^ 8x2 dx^{0, 0, Х3Г) dr. The matrix A : A^j = 
= d^-flôXi dxj[0, 0, X3), i = j = 1,2 can be written as 

Ixy j d^fldxl ^Хз(0, 0, ХзГ) dr X3 d^fjôx^ дх2 дх^{0, О, ХзГ) dA 
I Jo Jo ' 

1 Хз ô^fldx^ дх2 ̂ Хз(0, О, ХзГ) dr Х3 d^fjôxl дх^{0, О, ХзГ) dr 

As the determinant of this matrix has to be nonegative we have 

( I d^fjdx^ 8x2 2x3(0, 0, Х3Г) dr j S ô^fjôxl 5x3(0, О, ХзГ) dr х 

X aV/2x2 2хз(0, О, ХзГ) dr 

and for Х3 -^ О we obtain 

{d^fjdx^ дх2 2хз(0, О, 0))^ й d^fjdxl ôx^{0, О, 0) d^fjdxl дх^{0, О, 0) . 

The statement of Remark 4 follows immediately from (3,2) and (3,3). « 
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In this section we shall study the convexity of u{t, x) in the interior of Q under the 
condition that u(t, x) is convex on the side boundary of Q. For the purposes of the 
section we shall need the following notation. 

Let Я be a subregion of Q. Denote by Я(^о) the intersection of H with the set 
{[t, x'] : t > to, X e D] and by Я(Го, ̂ i), ô < î ^ Lthe intersection of Я with the 
set {[^ x~\ : ÎQ < t < ti, XE D}. The parabolic boundary of H(tQ, ti) will be denoted 
by ôH(tQ, ^i), i.e. 

Ш(Го, t,) = H{to) - {r J X D , dH{to) = H{to) - {L} X Z) . 

Lemma 4. Let Hypothesis (A), (E) be fulfilled and let u(t, x) be the bounded 
solution of (0,1) fulfilling (0,2) and (0,3). / / the derivatives up to the second order 
are continuous in Я(^о) and if u(t, x) is convex on dH^to), then there exists a positive 
number ô such that u{t, x) is a convex function of x in H(tQ, to + ô). 

We prove Lemma 4 by contradiction. Since the violation of convexity at one point 
would not imply any contradiction we add a small convex term to the right hand 
side of the given parabolic equation. 

Denote by u^^^(t, x) the solution of the equation 

du 1 x̂  ^ , Ч d^u ^ , .du v̂  2 
dt 2 ij ox I ox J i ox I i 

fulfilling u^^\tQ,x) = }]x? in the half-space t > to, XER", The coefficients of the 

equation were extended to the whole half-space at the beginning of the proof of 
Theorem 1. Put u^{t, x) = u(t, x) + a u^^^t, x) where г > 0 and u[t, x) is the bounded 
solution of (0,1) fulfilhng (0,2) and (0,3). The function ujj, x) is evidently a solution of 

dt 2 iJ OXiox J i OXi 

fulfilling the initial condition 

(4,2) u,{to, x) = u{to, x) + s X^? . 

As u^^\to, x) is strictly convex and the second partial derivatives of u^^^ are continu­
ous, there exists a positive number ô such that u^^\t, x) is convex on (^to, to + ôy x 
X D. We shall prove that this ô has the properties from Lemma 4. 

Since w(r, x) is convex on dH{to) and u^^\t, x) is strictly convex on {[^, л:] : Q̂ ^ 
^ t S to + S, X E D} the function ujj, x) is strictly convex on dH(to, to + <5). 

Assume that uj(j, x) is not strictly convex in Я(Го» ô + ^)y i-^- there exists a point 
[t^, x^] 6 H(to, to + Ö) (to < t^ < to + Ô) such that u^(t, x) is strictly convex in 
H(to, t^) but not at the point [t°, x^]. Denote by Uj(t, x) the matrix of the type n x n 
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whose elements are d^'u^jdXi dxj{t, x). Denote by Dj^t, x) the determinant of this 
matrix. The properties specified above yield that Dj^t, x) > 0 in H{ÎQ, f), Dj^f, x) ^ 
^ 0 for [t^, x^eH and by Lemma 1, D,{t^, x^) = 0. Denote by k the rank of the 
matrix Uj(t^, x^). Evidently 0 ^ к < n. Certainly there exists a unitary matrix T 
such that T^Uj^f, x^) Г is a diagonal matrix and the transformation x = Tz, 
u^(t, x) = û(t, z) maps (4,1) into 

dû I ^ ^ д^й ЛР ~ / \ ^й y^ 2 
77 = - Z Л,1и z) — — - + X«,(f: г) — + e I ^ f • 
Ot 2 ij aZi OZj i CZi i 

Since the number г is fixed it will be omitted in the sequel. The regions D, Qp, H(tQ, t) 
are mapped onto D, Qp, H(to, t), respectively and the point [t^, x^] to [r^, z^]. 
We have 

(4,3) d4IÔz^i{f, z^) > 0 for / = 1, ... , /c and 

d4IÔz^i{f, z^) = 0 for z = /c + 1, . . . , П . 

Denote by С^^+Дг, z) the matrix of the type (k + 1) x (/c + l) (where к is the rank 
of l/g) with the elements d^ûldZidzj{t, z), Uj = 1, . . . , /c + 1. Let 5fc+i(^ z) denote 
the determinant of this matrix. The function Dk+ii^> ^) Mfib the parabolic equation 

at 2i,j = i oziOZj i=i oz; s=i oZj 

1,7 = 1 ^ s = l OZj dZiOZjCZ^ i = k + 2 1=1 s=l OZi OZ^CZs 

2 i j = i dZidzj i = i ÖZ,-

^ П fc+l fc+l л З ~ Я3*7 ^^^ 

-̂  z z z^~.r^Vr4V^-' + ''=̂ "̂ 
2 i j=i r,ï=i p,q=i dZi dz^ dZj, OZj ozi oz i=i 

where C(/) = X ^^is^^fl^Zidz^. Ai^ being the algebraic complement of Üj,+^(t, z) 
ï , s = l 

with respect to the element d^UJdzi dz^, 

^pr,,i = (-l)^'"'^'' '*'"4r,.z for p < ^ , r < / or p> q, r>l, 

^pr,ai = (~l)^^ '" ' ' ' ' ' ' ' '^p. ,ai for p<q, r>l or p > ^ , r<l 

and5^,^,5fisthesubdeterminant of O^̂ +i resulting from it by omitting the rows p, q 
and the columns r,l. Obviously at the point [t^, z°] we have i>k+i{^^^^^) = 0> 

к 
Л+1,к+1(*°, z°) = П d^ujdzXt'^, z°) while all other AiJ^f, z") equal zero. 

S = 1 
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A -A - ^-1\ П ^ 
^pp;k+l,k+i ^ ^k+l,k+l;pp ~~ \ ^ 2 I ^K Л'т^ 

к 

dzlJ ^tdz^ 
"P 

^p,k+l;k+l,p — ^k+l,pip,k+l ~ I л 2 1 A-i ^=idzt 

for p < к + 1 and all other terms of this form equal zero. As was stated above, 
D,^,{f, z^) = 0, 5,+ i(r, z) > 0 for t < t"" so that 5fc+i(^^ ^) ^ 0. These relations 
imply on the one hand dDJoz^f, z^) = 0 and on the other that the matrix 
d^DldZidzj{t^,z^) is positive semi-definite. Since d^ûjdzU-^{t^, z) ^ 0 and from 
(4,3) d4ldzU,{t\ z^) = 0 we obtain ô4jdz, dzU,{t\ z^) = 0. Since T^Ulf, x^) Г 
is a diagonal matrix, (4,3) yields d^ujdz,dzj,+^{f,z^) = 0 for 5 ^ /c + 2. The 
linearity of ai implies ((«,) = 0. Moreover, by virtue of Remark 4 the equation for 
ß/,+ 1 can be reduced at \f, z^] to 

dt^ '^ ' 2 ij^i " dz, dzj 2 (=1 BzU, 5z? s A dzl 

+ -^ 1 ^—;—I n T T + 
i,j = i dzk+i dzi dzj dz^+i s=i dz. 

^ ^ r I дЧ дЧ (дЧу Л '̂" ^ о п 
+ Z ^0-1 ^ - ^ - т ^ - Т - ^ TT П TT + 2£ Ц 

i j=i p=i dZidZpdz^+i dzjôzpôzi,+ i\dzpj s=i ôz, s=i 
Due to (4,3) the numbers ô^ulôzj{t°, z°) are positive for i = 1 , . . . , /c. Denote a; = 
= ^{d4ldz]) and ßi^ = (1/a.a;) (a^M/^Z; Öẑ . Sz^+i). If (E) or (0,5) is fulfilled then 
(see Remark 2) 

2 i=l OZk + i iJ=l OZk+x 

к к 

so that dDi, + ijdt(f, z^) > 0 which contradicts the assumption that Dj,+ i{t, z) > 0 
in H(tQ, t) and D^t+l(^^, z°) = 0. We have proved the convexity of uj[t, x) in 
H{to, to + S). Since the number e was an arbitrary positive number and the choice 
of Ô was independent of s, Lemma 4 is proved. 

The proof of Theorem 1 is now easy. We choose a number p > 0 by Lemma 3. 
We shall apply Lemma 4 with H = Qp. The solution w(r, x) is certainly convex 
on ^Я(О) by Lemma 2 and the statement after Lemma 3. Lemma 3 asserts that the 
second derivatives of u{t, x) are continuous on Я(0). This means that we can apply 
Lemma 4 and we know that u{t, x) is convex in some Я(0, è). First we shall prove 
that u{t, x) is convex in the whole Я(0). If this statement were not true then there 
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would exist a number ô ~ <̂  such that u[î, x) is strictly convex in Я(0, ô) but not 
in any Я(0, to H- rj), rj > 0. Since u[tQ, x) is convex in x and w(f, x) is a solution of 
(0,1) fulfilling a consistent boundary problem the second derivatives of и are 
continuous and hence Lemma 4 can be apphed to Я(Го)- Using this lemma we obtain 
that u(t, x) is convex in some H(tQ, to + ^), <5 > 0 and this is a contradiction with 
the definition of ô- We have proved that u{t, x) is convex in Qp. Due to Lemma 3 we 
have 6 = U6p So that w(f, x) is convex in the whole Q. Theorem 1 is proved. 

Theorem 1 is a modification of Theorem 2 [5] to a multidimensional case. In [5] 
a method was suggested which enables applications of Theorem 2 [5] to the case of 
nonlinear drift coefficients. We can proceed similarly in the case of multidimensional 
problem. We outline briefly the main points of the method. We choose arbitrarily 
a point [?, 3c] from the region Q. We transform equation (0,1) onto (5,4) by a trans­
formation X = ф{£), u{t, x) = v[t, ä) so that the corresponding drift coefficients 
are linear in Ç. Theorem 2 provides the corresponding relations for the components 
of ф{С)- Obviously, we need the transformation ф to be one-to-one and to have 
a nonzero Jacobian. Let (p{x) be the inverse transformation. According to Theorem 2 
the components of (p{x) fulfil equation (5,5) which is simpler than (5,3). If the trans­
formed equation (5,4) fulfils the conditions of Theorem 1 then solution v(^t, C) is 
convex as a function of <̂ . The relation between the second derivatives of w(f, x) and 
v{t, ^) is given by (5,6) in Lemma 5. Since v[t, C) is convex it is sufficient to guarantee 
that the last term in (5,6) is nonnegative. We need this condition to be fulfilled only 
at the point [?, 5cj. It means that the transformation (p(x) may depend on the sign 
of ôulôxjj(t, x), i.e., on the point [?, 3c], and on the direction I. 

The method can be described shortly: the functions (Pi{x) are solutions of (5,5) 
so that the transformation ^ = (p{x) is one-to-one with nonzero Jacobian on the 
whole D and so that the expression 

к дх^ i d^i d/̂  

at the point [?, 5c] is nonnegative. 
In article [5] this method was used to derive Theorems 3, 4 [5]. The method is 

however much more complicated in a multidimensional case. Nevertheless, it can 
be used under some circumstances. We shall use this approach in the case when the 
drift coefficients differ little from linear functions, i.e. when the drift coefficients 
are — AjXi + s а^(х) where 8 is a small parameter. We shall preserve the assumptions 
of Theorem 5 [1] which guarantee the convexity of u[t, x) on the boundary set 
(0, to) X D for sufficiently small ÎQ. We shall be able to formulate conditions (Theo­
rem 3) under which the solution u{t, x) is convex in the whole (0, ô) x ^ ^or small e 
and 0̂- It means that Theorem 3 gives conditions under which the matrix function 
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Ä(J,X) is strongly maximal with respect to -~i,Xj- + e a,(:x) and with respect to 
(0, to) X D for small e and tg. 

First a theorem is formulated where the relations for the transformation (p{x) 
are given guaranteeing that (0,1) is transformed onto an equation with linear drift 
coefficients. 

Theorem 2. Let a parabolic differential equation 

(5Д) -л7 == Ö ^ '̂•^•(̂ ' ""^^T~ + ^^^(^' ""^ V 
ot 2 ij ox I exJ i dXi 

be given in Q = (0, L) x D. A transformation x = ф{^), u{t, x) = v[t, ̂ ) trans­
forms (5,1) onto 

2 p,r,k ô^pd^,\d^J,f, Jd^, 

where dî/̂ /d(̂  is the matrix (di^/d^)j-j = dil/ijd^j, i,j = 1, ..., n; if a{t, x), ä[t, ^) are 
considered as column vectors then ä(t, С) = (à^jd^)"^ a{t, ф{^)) and Ä[t, ^) = 
^ {dil/jd^y^ A{t, \l/{^)){{dxl/ld^)~^y. The matrix Ä{t, ^} is positive definite if the 
transformation ф has a nonzero Jacobian. Conditions 

(5,3) alt. ^^\Y. Kif. )̂ ^ ( ^ ) " + a,(0 -f Y.KiS) c. 

ensure that equation (5,2) is of the type 

(5.4) ^ = J I Ä,{t, )̂ -f^ + Ж « + lß.{') i^)^ . 
dt 2 iJ OÇi CÇj s I CÇs 

Assume that the inverse transformation ç = cp{x) to x = xj/^^) exists. Then the con­
dition (5,3) can be rewritten as 

(5.5) J E A,j{t, x ) / ^ + Y.alt, x) ^ = a,(0 + I ß„{t) ,p,{t) 
2 iJ dXi ox J i ox I к 

and in this case 

dx \dx J 

ä,{u i) = Y.<t, <,-4^))^(<p-4^)) + \1л,{и ф - ( ^ ) ) ^ - ( „ - ( ^ ) ) . 
i oXi 2 ij dXi ox J 
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To prove Theorem 2 we substitute the transformation into (5,1). Since the proof 
consists in some tedious calculations it is omitted. We shall omit the proof of both 
the following lemmas for the same reason. The next lemma deals with the relation 
between the second derivatives of и and v. 

Lemma 5. Let u(^ty x), v(^t, ^) fulfil the assumption of Theorem 2. / / / is an arbitrary 
nonzero vector then 

(5,6) (r, x) = -— ил) + T — (t, 0 — ^ = + 

-, du у дф^ d̂ <Pi 
t дх, i d^i dF 

where the vector к is (dcpjdx) I and the points x, ^ are related by ^ ~ <p{^)' 

We shall need still some information about the change of the boundary of the 
region D and, in particular, about the convexity of the region transformed. 

Lemma 6. Let the region D fulfil Hypothesis (B) and let a transformation ^ = (p(x) 
on D be given so that (p(x) has continuous second derivatives up to the boundary, 
(p is one-to-one and its Jacobian is nonzero. Suppose that the boundary D can be 
described by [xj , Хз, ..., x„_j, h(xi, ..., x„_i)] in a neighbourhood of an arbitrary 
point P on the boundary, the function h being continuous and with continuous 
second derivatives. Then P = (p[P) e ф{0), the region (p{D) fulfils Hypothesis (B) 
and if the matrix A defined below is regular then there exists a neighbourhood of P 
so that the boundary of (p{D) can be expressed by ^^ — lj^\, ..., ^n-\) ^^^ ^^^ 
first and second derivatives of „̂ are given by 

(6Д) ^ = (ЛГ^«, 

(6,2) g ^ := {A'y' p " ' -"çV^XH")"' «). + ^'"' -

-Ъ'%{АГ' al + hh^ ( ^ -"E Ç^ ЦЛГ' a)) + 

+ 
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where A, Ф^'\ Ф^'\ H are matrices of the type (n - 1) x (n - 1) with the elements 

Л,. = ^ . ( Р ) + ^ ^ ( Р ) ^ ( Р ) , ф(^)= ^ v 
dXj 

^ (P) 1!L 
dx„ dx ; dXi dXj 

ф ) = . Т±^ (р) — (р) + 1 :̂̂  ^pj — (р) , 
ОХ,- ÖX„ CXj. ÖX^ ÖX„ OX; 

я,; ЙХ( dXj 
(Р) , j , j = 1,..., п - 1 

w/ii/e й, а are (n — i)-dimensional column vectors with the elements 

dxi ex I dx„ ox I 

Remark 5. Lemma 6 implies that the region (p{D) is convex at the point P e ф{0) 
provided 

s = l s = l 

+ \dx„ s=i ax„ / V^x„ s=i dx„ J 

is positive definite. We do not assume that x^, X2, ..., x„ is a local coordinate system 
in Lemma 6 so that the numbers hi = dhjdxlP) may be nonzero. 

The application of the above described method requires some more definitions and 
notation. 

Definition. Let D be a given region. Denote by D^ the d-neighbourhood of D, 
i.e. D^ = {x : ||x — j ' l < è, у e D). Let a real function / (x) be defined on D. The 
function / (x) is called real analytic in D if it can be extended to a D^ so that the 
extension can be developed into a power series in a neighbourhood of every point 
of D. Define, as usual, the Banach space C2+a(^) as the claàs of all functions defined 
on D with Holder continuous second derivatives, 

ll/ll? = sup | / (x) | , HID) = sup № ^ ^ , ||/||^- = | / | ^ + HID), 
D ||X - y\\ 

\\f\\2.. = ll/ll? + Z df 
dx, 

+ 1 
0 bi 

dV 
dXi dXj 

The upper index D will be omitted if there is no danger of ambiguity. The space 
C2+^{D) is the set of all functions / ( х ) б С 2 + а(^) satisfying / (x ) = 0 for x e l ) . 
The norm in the space C^+a{^) is the same as in the space Ca+aV^)-
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Let an elliptic operator Lbe given in D. We say that zero is not an eigenvalue of L 
if Lf = 0, / e CLa(i>) implies f(x) ~ 0. 

In the present section we have to subject the coefficients Aij, a^ to much stronger 
assumptions than Hypothesis (A). 

Hypothesis (F). Assume that the coefficients Äij{x), ai{pc) are real functions in­
dependent oft which are real analytic in D. The matrix function A(x) is uniformly 
positive definite in D, 

Similarly, Hypothesis (E) will be substituted by Hypothesis (G). 

Hypothesis (G). The matrix functions 

M\x) N{x) + N]{x) M{x) + V(2) Pi{x) , 

M\x) Ni{x) + Nj{x) M{x) - V(2) P^x) {see (0,4)) 

are uniform positive definite matrices with respect to x e D and to every unit 
vector I. 

In virtue of Remark 2 these conditions are stronger than the condition on Л(х) 
formulated in Hypothesis (E). 

We shall consider a parabolic differential equation where the drift coefficients 
slightly differ from linear functions: 

(7Д) 17 = ; ^ M^) -Г-Т- + li-^i^i + <= «.-W) — 
dt 2 ij OXi ox J i CXj 

with the initial condition 

(7.2) w(0, x) = 0 for xe D 

and with the boundary condition 

(7.3) u{t, x) = 1 for t > 0, xe D . 

If e = 0, equation (7,1) assumes the form 

/П A\ ÔU 1 ^ . . d^u У-. du 

dt 2 ij dXi dXj i dXi 

Theorem 3. Let Hypotheses (B), (C), (D) for (7,4) and (F), (G) be fulfilled. If 0 
is not an eigenvalue of the elliptic operators 
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(7.5) L, = I x ^uW"-V" - Î .̂-̂ ' ^ + ^" ^ = 1> - , " 
2 i,j CXi OXj i OXi 

then there exist to > 0 and во > 0 such that the bounded solution of {1,1) fulfilling 
(7,2), (7,3) 15 convex as a function of x for 0 < t < tçy, x e D, \8\ < SQ. 

First of all, we shall say something about the location of points [Aj, ..., Я„] at 
which the operators Lj^ have not zero eigenvalue. Namely, we shall show that these 
points are not spread too densely. Obviously, given numbers Я ,̂ ^2, ..., 4 - 1 , 4 + 1 , . . . 
..., Я„ then there exist only countably many values 4 without an accumulation point 
such that Lj. have zero eigenvalue. Even in the case À = À^ = /I2 = ... = 4 we can 
prove 

Lemma 7. Let the functions A^j^x), (^О^/^ХД.) (x), [dcjdxi^)(x) be Holder conti­
nuous in D. If the matrix function Л(х) is uniformly positive definite in D, then 
there exists at most countably many values À without an accumulation point such 
that the operator 

(7.6) L, = -УЛ,(х)^~~ - Х^Ф)4- + ^Ф) 
2 ij ОХ I OXj i CX^ 

has zero eigenvalue. 

Proo f of Lemma 7. Denote L Q / = i X ^ o W ^^fl^^i ^^j ^nd L^f = X^i(x). 

. dfjôxi ~ c(x)f. If zero is an eigenvalue of L^, for a certain Я then there exists 
a nontrivial / e C^2+(x{^) such that L^f = ÀL^f, Since the operator LQ considered 
on C2+a(l>) has an inverse operator LQ^ we can rewrite the last equation as ITf = f 
where T = L'^^L'^, T: Ci+^(D) -> C2+a(^). This means that the number l i s an eigen­
value of T. Due to (5,39) [6] we have Ц/Цг+а ^ < (̂i| W | | a + ||/||o) and with respect 
to(2,4)[6], II/II2+. й Cl | |Lo/||, for /eC^+, ( i ) ) . These inequalities imply ||Т/||2+, S 
= C2||/||i+a for /G Ci+^D). We proved that Tis a continuous linear operator from 
Ci+a(^) iJf̂ to C2+X^)- If Tis considered as a transformation C^+J^D) -^ C^+^(D), 
then it is a compact operator and it can have mostly countably many eigenvalues 
without an accumulation point. The lemma is proved. 

Remark 6. Assume that 0 is not an eigenvalue of the operators L^ defined in 
(7,5). Then there exists a number SQ > 0 such that 0 is not an eigenvalue of L^ 
in D^for 0 й S < SQ. 

Proof. Suppose that there exist nontrivial Л 6 Сг+Д^^!/,,) fulfilling LJ^ = 0 
{к fixed). These functions can be normalized by sup {|/„| :x e D^j„} = 1. The proof 
of Theorem 5 [6] suggests that С is independent of n. We have 

(1 7) il /' P^/" < r 
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This inequality yields that there exists a converging subsequence/,, -^/о- The func-
tion/o is a solution of LJo = 0 and due to (7,7)/o e С2+Д1>) and sup {|/o| : x e D} = 
= 1. This contradicts the assumption that 0 is not an eigenvalue of L;, in D. 

The p r o o f of Theorem 3 will be splitted into several lemmas. Hypothesis (F) is 
essentially used only in the next lemma. 

8 

Lemma 8. Let Aij(x) Ö,(X), c(x),f(x) be real analytic in a region D^ and let Л(х) 
he uniformly positive definite. If there exists at least one solution of 

,(8.1) IS M^) / f + i«.-w ^ + <^) <p = m 
2i,j ax I ex j i ox I 

belonging to C2+OL{^Ô) then there exists a positive number M such that to every 
point XQE D and to every n-dimensional unit vector /, solutions (p{x), x{^) of (8,1) 
can be found fulfilling dV/cl/^(xo) = 1, ЦфЦз+а й M and d^x/dP(xo) = - 1 , 
üzfi+a ^ -^. respectively. 

Proof. Put / = [ l , 0, ..., 0]. First we shall prove the following statement: Given 
a point XQ G DQ, there exists a solution (p{x) of 

(8,2) \ Z Л ,(x) - ^ +1 a^x) ^ ^ + c(x) ^ = 0 
2 ij OXi ox J i OX I 

defined on the whole D^ and fulfilling d^(pldxl(xo) Ф 0. 

Let XQ e D^ be given. Due to Kovalevska's theorem there exists a solution 
</?o(xi, ...,oc„) of (8,2) defined in a small ball ||x - ХоЦ < r and fulfilling Фо(хь ••• 
••- ^n-u (xo)n) = ^ih {^<Pol^^n)i^i->'-'^ ̂ n-u (xo)n) = 0. The adjoint equation to 
(8,2) has also real analytic coefficients. According to the analyticity theorem [6] 
every solution of the adjoint equation is real analytic. It means that the adjoint 
equation has the property of weak extensibility. Owing to theorems of Malgrange 
and Laxe [6] we know that (8,2) has Runge's property, i.e. to every ^ > 0 there 
exists a solution (p^{x) defined on D^ fulfilling \(Po(^) ~ 9^{^)\ < <̂  for |x - Xo|| < 
< r/2. By virtue of (5,31) [6] we obtain lim д^(р^1дх1(хо) = d^(po.l^^l{^o) = 1- The 
statement is proved. ^~^^ 

Denote M(xo, /o) = iî f {||<?̂ ||2+a} where the greatest lower bound is taken over all 
solutions of (8,2) which are defined on D^ and fulfil d^(p/d/o(^^o) = 1- Due to the above 
statement this set is nonvoid. The function M(x, /) is finite for every x e 0^/2, h ||'|| = 
= 1. We shall prove that M(x, /) is upper-semicontinuous. Let XQ, /O be given. 
Given a positive number ^ we can find a solution cp^ (8,2) fulfilhng d^^Jd/o(xo) = 1 
and |</> |̂2+а й М(хо, /о) + ?. Since the second derivative is continuous, there exists 
a number ^ > 0 such that |d>Jd/o(xo) - dV,^M^i(^i)| < ^ ^^^ i 

228 



11̂0 - ^i|| < ^' The function w^(x) = ç?^(x)/[d^(pjd/i(xi)] is a solution of (8,'2) 
fulfilling d^w^ldll{x,) = 1 and \Ых)\\^Г. й (М(хо, /о) + Щ 1 - ^). Hence 
M(xi, Ix) S (М(хо, /о) + ^)/(1 - <ï). The upper semi-continuity implies bounded-
ness so that M(x, /) g Mo for some MQ, xe D, \\l\\ = 1. 

Denote by (p(x) a solution of (8,1) belonging to C2+a{^ô)' Let f/ be a positive 
number and XQ e D. Denote by (Pr,{x) a solution of (8,2) fulfilling d^'(pJdl^(xo) = 1, 
lkj2i^^ йМо + rj and w„(x) = ф{х) + (1 ~ d^^/d/^(xo)) Ф,(х). 

The function w,,(x) is certainly a solution of (8,1) fulfilling 

d^H;JdP(xo) = 1 and ЫЛ^Га й ||<̂ ||?1-̂ ^ + (l + max |d^^/dP(x)|) . 
Dô/2,\\l\\ = ^ 

• (Mo + fl) . 

The function ;;: can be expressed in the form /(x) = ^(x) — (1 + d^^/d/^(xo)) <p,,(x). 
As d^çJdP^x) is bounded on the compact set 5 /̂2 the lemma is proved with the 
constant M: 

\d^ç 
M > WçWi+a + ( 1 + max 

x,l .,' « 
Mo. 

The outlined method suggests that we need to transform equation (7,1) onto 
a parabohc equation with linear drift coefficients. The existence of such transforma­
tion is ensured by 

Lemma 9. Let all the assumptions of Theorem 3 be fulfilled. There exist positive 
numbers SQ, ÔQ such that for every 0 < s ^ SQ, 0 < ô ^ ÔQ the elliptic equations 

(9.1) \ I ^ . 7 « / f - + Я-^i^i + « Ф))^^ + \<P = 0, 2 ij ox I ox J i ox I 
/c = 1, ..., n 

have solutions (pf\x) belonging to Cz+ai^ô) and fulfilling 

(dlde) (d>fVdP) (xo)/,=o = 1 for every XQ e D, \\l\\ = 1. The functions (pf\x) can 
be written in the form 

(9.2) 9f\x) = x , + f8><^->(x) 
S = 1 

where (p^^'^\x) are solutions of 

2i,j oXidxj i cXi J dxj 

for 5 ^ 1 
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fulfilling (p^^''\x) = 0 for xe D^, s > 1, (p^^'^\x) = Xj,. Finally, there exist con­
stants C, M independent of XQ, I so that 

Remark 7. It can be proved in the same vv̂ ay that there also exist solutions (pi~^\x) 
fulfilling 

да dF ( Х О ) / Б = О — 

Also for -So ^ e < 0 there exist solutions fulfilling {djôs) (d^'cp^^^^jéf) {XQ)I^^Q ^~ 
= ± 1 and the other conditions of Lemma 9. 

P roo f of Lemma 9. With respect to (9,3) the function cp^^'^^x) fulfils 

(9.4) i l ^ , , ( x ) / f - lA,x.^^- + Л,<р = - a , ( x ) . 
2 ij CXi OXj i OX I 

We choose a number ÔQ as in Remark 6. Due to this Remark zero is not an eigenvalue 
of the operator L;̂  defined in (7,5) in JD .̂ Theorem 1 Chap. 4 [6] yields that zero is not an 
eigenvalue of L^ in our sense if and only if it is not an eigenvalue in the sense of [6] : 
there does not exist a nontrivial solution of the generahzed Dirichlet problem 
Li^ip = 0 in Z)̂  (see § 4.6 [6]). This fact enables us to use Theorems 4 and 6 Chap. 4 
[6]. Hence there exists a generalized solution of (9,4) in DQ, Due to Theorem 1 [6] 
the solution has continuous second derivatives and due to the analyticity Theorem it 
is real analytic. Thus we can apply Lemma 8 which implies that there exists a solution 
(p^^^^\x) fulfilling (dV^ '^ '^V^ '^W = 1 and ||ç>^ '̂̂ ^||?la ^ M. Applying Theorems 
4, 6, Theorem 1 and the analyticity theorem from [6] once more we arrive at the 
conclusion that equations (9,3) have real analytic solutions for every s > 1. 

To prove Lemma 9 it is sufficient to derive some estimates for Ц̂ ^̂ '̂̂ ^̂ Цг+а- Consider 
an equation 

(9.5) L,(p=f where ф = 0 on I ) , ; feClD,) 

and Lĵ  is defined in (7,5). Put Tcp = —Xyj^Lj^ — A^)"^ (p {k is fixed). The operator T 
maps ClD,) into C^+,(D,) and 

(9.6) \\Tipf,%^UC\\cpf^^ 

Equation (9,5) can be rewritten as 

(9.7) cp = Tcp-yTf, cpe C^X^^Ö) , / e C^D,) . 

As (p = T(p is equivalent to L̂ cp = 0 and zero is not an eigenvalue of L^, we obtain 
that zero is not an eigenvalue of the operator / — T where / is the identical operator 
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and I — Tis considered an operator from C\j^Jj)^ into C\^J^D^. Remark 8, which 
will be formulated and proved later, implies that I — T has a continuous inverse 
operator (/ — T)~^ (as a transformation from C^+^(^D^) to С^+а{^о)- Thus using 
(9.7) we conclude 

and with respect to (9,6), 

(9.8) М2%.йС,\\ф. 

In our c a s e / = - ^ «iW ( V ' ^ ' ^ V ^ ^ i ) W and since Ца^Ц ̂  К,\\(р^''-'^\\^%^ й M 
i 

(see Lemma 8) we obtain 

(9.9) \\ср^'^'%%ае{С2КУ~'М, 

The last inequality implies that for 0 < SQ< (C2i^)~^ the series is convergent. Since 
(d^^^'^Vd/^) (xo) = 1, inequality (9,8) also implies (^/5e) (d^f^ /dP) (xo)/e=o = 1-
Lemma 9 is proved. 

The next remark will be formulated in a more general wording than it is needed 
for the proof of Lemma 9. Nevertheless, we shall need this Remark when formulating 
Theorem 3 for paraboHc equations which shghtly differ from those fulfilHng the 
assumptions of Theorem 3. 

Remark 8« Let 

2 ij ax I ox J i ox I 

he a sequence of elliptic operators where A^fj^ e C^{D). Assume the operators li^^ 
to be uniformly hounded: Ц̂ /у̂ Ц« Û К and uniformly positive definite: 

ХЛ<^(x) a,aj ^ m ^ « ^ m > 0 . 
i,j i 

Further, let the coefficients converge uniformly in D: A^^\x) -> A^ß\x), p -> oo. 
If zero is not an eigenvalue of lS^\ then for sufficiently great p zero is not an 
eigenvalue of lS^\ the operators I — T^^^ are continuous transformations from 
C^+J^D) into C2+a(^), there exist inverse transformations (I — T^^^)~^ from C2+a(D) 
into C^+J^D) and the norms (/ — т^^^)~^ are uniformly bounded. (The operators 
T(̂ > are defined by T^^^f = -X{&^ - X)-^ f, T^^>/G C^+,(D), f o r / e C,(i))). 

Proof. The first step is to prove that zero is not an eigenvalue of IS^^ for suf­
ficiently great p. This proof is very similar to that of Remark 6. Suppose there 
exists a subsequence of IS^^ so that 0 is an eigenvalue of j6^\ We denote the sub­
sequence by IS^^ again. It means that there exists a sequence f^^\x) of solutions of 
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jKP)y(P) ^ o^f(p) e С^^(/)), max \f'\x)\ = 1. By Theorem 5 Chap. 5 [6] we obtain 
X 

\\f^^^\\2+a è С. As in the proof of Remark 6 we can choose a subsequence of/^^^ 
converging to a certain /<«>(x). Certainly L̂ >̂/(°> - 0, /^^^ e C^^,(D) and 
max |/^^^(^)| = 1. This contradicts to the assumption that zero is not an eigenvalue 

ofL^'\ 
Now, as the second step we shall prove that (/ — T̂ ^̂ ) maps C2+„(/)) onto C2+a{^) 

for sufficiently great p. Choose a number p so that 0 is not an eigenvalue of li^\ 
We shall assume for the moment that the coefficients A\f are real analytic. Due to 
(9,6) / — T^^^ is a continuous operator. Denote by В the image of C2+a{f>) giyen 
by I - T^P\ Certainly Б is a Banach subspace of C2+^D). The equation/ - T^̂ V = 
= ^ is equivalent to Ь^̂ У = {&^ - À) g for /^деС^+^П). If geC.^{D) then 
{p^^ — X) g e C^(D) and due to the assumption about the eigenvalues and due to 
Theorems 4,6 Chap. 4 [6] the equation li^^f = (iS^^ ~ X) g has a weak solution / , 
/ G Яо (the well-known class Я J is defined for example in [6]). Using Theorem 1 
[6] we conclude feC^{D) and by Theorem 5 [6], / e C2 + a(^). This implies 
(/ ~ T^P')f = g so that В = C^+^(D). If the coefficients A\f are not real analytic 
in D, then they can be approximated by real analytic coefficients A\^f^ which con­
verge uniformly to A[f. We proved that to every 5 and g ^ Cl+„{D) there exists 
a solution of L(̂ '̂ >/(̂ '̂ > = (L<̂ '̂ > - Я) ̂ ,/^^'^> e C^+,(i)). Since ||/^'^^||?+. ^ ^lkl|2-fa 
we can choose a subsequence of/̂ '̂̂ ^ converging to a/^^^ in C2+«(/)) which is a solu­
tion of L<̂ >/(̂ ) = (L̂ )̂ - Я) ̂ . 

Since 0 is not an eigenvalue of If̂ ^ and therefore it is not an eigenvalue of/ — T^^^ 
and since/ — T^P^ maps C2+«(/>) onto itself we obtain by the closed graph theorem 
that the inverse operators (/ ~ T^P^)"^ are continuous. Nonetheless, we need to 
prove the uniform boundedness of the inverse operators. To this purpose we shall 
formulate an auxiliary statement. 

Statement. T^P^ are ..uniformly compact as transformations Cj^D) -> C2+O,{D\ 
i.e., given a sequence of f^^^ e Cj^D) so that \\P^% ^ 1» there exists a subsequence 
/̂ '*̂ >̂> so that т('(^))/-(ад) converges in the norm of C2+,{D) to a ^̂ ^̂  G C2+,(/)). 
/ / moreover f^P^ -./(<^), then T^P^pp"^ -, r(o)y(o) f^ /̂̂ ^ ^ivrm of C2+XD). 

P r o o f of the statement. Consider g^^^ = pp^f(p\ This equation can be rewritten as 

(9Д0) (L<̂ > >-Я) ^(^) = ~Я/^> . 

Since &^ - Л are uniformly elliptic operators we have Цо̂ ^̂ Ц̂г+а S <^||/^^^а g С 
where the constant С is independent of p. Hence we can choose a subsequence ^^'(^» 

converging to a g^^^ e C2+oc(J^)' Consequently, there exists a subsequence/^''^^^> so 
that T^^(p)>f(i(p^) -^ g(o)in the norm of С^+Х^У If moreover pp^ - ^ / ^> , then using 

(9,10) we have (ß""^ ~ A) g^""^ = -Af^'K i.e. T^^^^^^ = g(^>. The statement is proved. 
If the operators (I — T^P^)~^ are not uniformly bounded, then there exists a se-
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quence /̂ ^> e C^ + ,(i))^ f(p) _, о such that g(p) = (/ __ T<P)yif(p) fu]fii | |^(P)| |^^^ = 
= 1. The last relation can be modified to g^p) = т^р)д(р) j^ pp)^ Using the statement 
and the fact that/(^) _ о in C^-^^iD) we obtain that a subsequence of ^̂ >̂ converges 

(0) to a certain g^^^ e C2+XD). Using the last assertion of the statement we have g 
= T^o)^(o) 3jĵ ^g Q .̂  ̂ ^^ ^̂ ^ eigenvalue of T ô) ^^ obtain g^^^ = 0, which contradicts 
the assumption Цо'̂ '̂̂ Цз+а = 1- Remark 8 is proved. The proof of Remark 8 com­
pletes the proof of Lemma 9. 

10 

We shall need still the convergence of the series Х^Ц^^^'^Цз + а-

Lemma 10. Let Lbe an elliptic operator 

и = J i ^ i o W r ^ + г<-)^ + c{x)f. 
2 ij OX I ox J ox I 

Assume that the coefficients of L belong to Ci^X.D^ where I is nonnegative Integer^ 
D^'\ D^^^ are regions fulfilling D^^^ с D^^ cz D^̂ ) c= D ^ cz i> .̂ We have 

im) ||/||i+2+a = ^v|l^/|h+a ^ Ц/Цо ; 

forfe С 1+2-^X^0) ̂ here the constant С depends only on I, on the regions 
on the norms of the coefficients of L in Ci+^ and on the coefficient of ellipticity of L, 

Remark 9. Lemmas 9 and 10 imply that to every nonnegative integer / there 
exists a positive number £Q so that 

(10,2) Ie"|j,p<'-"'|!f+, 
n 

is convergent for Ы ^ 80. 
Lemma 10 is a generalization of Theorem 3 Chap. 5 [6] since .the proof can be 

without change applied to the case of elliptic operators of order m. 

P r o o f of Lemma 10. If / = 0, then the lemma is a consequence of Theorem 3 [6]. 
Suppose that the lemma is true for /. Choose a region D^^^ so that D^^^ cz D^^^ <=: 
с W^ с D^^\ Applying (10,1) to D^^\ Z)̂ ^̂  instead to D^^\ D^̂ ) we obtain 

df 
dXi l+2+a \ dXi 

D(3) df 
dXi 

D(3) 

/ = 1 , . . . , П 

for feCi+^+X^ô)' Since 

1^дЛ^ 
J-f-~ll-~ S'f _ sr Gak df dc 

dXi dXi 2k,p dXi дх^дхр k dXi дх^ dXi 
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we obtain 

dx, 

Din / WdfW^ \ 
è <^l ( ||A/ | | i+l+a + C2\\f\\i+2+a + 7 ~ I 

l + 2 + oc \ " » l l ^ ^ 

where C2 depends on the norms of the coefficients in Ci+i+ai^ô)- ^Pplying (10,1) 
to the regions D^^\ D^^^ we conclude 

dx\ 
й ^ l ( | |A/ | | /+l+a + <-2<--3(|l^/||l + a + ||./||0 j + 

+ с,||/||Г)^Сз(|№Г^. + |/||Г). 
With respect to the definition of Ci+3+^ the last inequality implies that (10Д) is true 
also for I + 1. Lemma 10 is proved. 

11 

Now, all is prepared for the proof of Theorem 3. Assume 0 is not an eigenvalue of 
the operators L^^ given by (7,5). According to Remark 6 we choose a number ^0 > ^ 
so that 0 is not an eigenvalue of Lj^ in any region D^ for 0 ^ (5 ^ ^o- ^ positive 
number EQ is chosen such that Lemma 9 and Remark 9 are valid. Let a point [?, XQ\ G 
G Q and an n-dimensional unit vector / be given. Denote 

(11,1) Фе'Х^) = <Pe"'\^) y^here the sign + /5 taken if dujdxf^, л;о) ^ 0 , 

the sign — is taken if dujdxiit, XQ) < 0 . 

The functions <pi'\x) are given by Lemma 9 and by Remark 7 for г < 0 or — i. 
Actually, the functions ф['\х) depend on t but since this dependence affects neither 
the radii of convergence nor the norm of ф[^^ in C2+«(/)), the parameter t will not be 
explicitly marked in ф[^^{х). According to Theorem 2 the transformation ^ = фJ(x), 
u(t, x) = v(t, £) maps equation (7,1) into 

(11.2) 
dt 2ij d^id^j i d^i 

and the region D onto фJ^D) so that the function v{t, ^) is the bounded solution of 
(11,2) fulfilling г;(0, (̂ ) = 0 for ^ G ф^П) and v{t, ^) = 1 for t > 0, ^ e ф^О). The 
transformation ц = ФЕ{Х) converges to the identical transformation £, = ^o(^) = + x 
for 8 -> 0. The Jacobian of ФЕ{Х) converges to the Jacobian of фо{х) which equals 
one. Obviously there exists an inverse transformation x = ФЕ{^) for sufficiently 
small 8. 

We shall derive formula (11,3) for ф^^\^). 
Let z be an n-dimensional vector with components + 1 or — L Denote cpi'\z, x) = 

= (pi'^^Xx) where the sign + is taken if ẑ  = 1 and the sign — is taken if ẑ  = —1. 
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The Jacobians of transformations ^ = (рг{^^ ^) converge to one for г -> 0. Certainly 
there exist inverse transformations x = \l/J^z, ^) for sufficiently small e. Using (10,2) 
it can be written 

^(^•)(z, ^) = ^, + X ê  i? '̂'̂ >(z, 0 + ^'-'r\z, ^, г) 

where i/̂ '̂'̂ (̂z, <̂) e Сз+^(/)5^, IMiaî a -^ 0 for e -^ 0 uniformly with respect to z. 
Let z(e) be defined by: z (̂8) = + 1 if dujôxlt^Xo) ^ 0 and z^(a) = - 1 if 

dujdx{t, XQ) < 0. We have фе(х) = <Pe(z(£), x) and lAe(̂ ) = ^e{^{^\ C} such that 

Z-3 

(11,3) Ф'т = ^^ + 1^г' Ф''Л^) + ''"' У''% )̂ 

where ф^^'^\^) can depend on e nevertheless ||1/̂ '̂'̂ |̂|з+̂ ос are uniformly bounded 
and | | / '^j |3+°^->0for8->0. 

Using the property of фе{С) function Ä^^\^) can be written as 

я«.«) = (^-)-*л(«е))((&)-7. 
Now we shall apply Theorem 1 to equation (11,2) which is considered in the region 
ФЕ{0). We shall successively verify the assumptions of Theorem 1. Choosing for 
example / = 4 in (11,3) we see that Hypothesis (F) together with (11,3) ensure Hypo­
thesis (A) of Theorem 1. Hypotheses (B) and (C) (for small e) directly follow from 
Hypotheses (B), (C) of Theorem 3 due to Lemma 6. 

Now we shall deal with Hypothesis (D). Let a point P e I) be chosen arbitrarily. 
The transformation £, = фе{х) maps P to Pg and the region D onto Фе{^). Due to 
Lemma 6, Pg e (^^(D). Let x[, ..., x^ be a local coordinate system fulfilling the con­
tions which are given before Hypothesis (D) where (0,1) is replaced by (7,1) .Let 

(^Ь4) - ^ = Ö ^ ^ ^ - ^ )7 -7V7 + E ^b) —, 
Ot 2 ij dXi dXj i CXi 

be the form of (7,1) in the xi , ..., x^ coordinate system. Certainly we have Л\0) = / . 
The relation between the coordinate systems is x' = T(x — P) where Tis a regular 
matrix of the type n x n. We introduce a new coordinate system ^[, ---Л'п by 
^' = Щ - ФДР)) where N = T((d^g/dx) (P))~^ Since the transformations x' -> x, 
X -> (J, (J -> (̂ ' are all one-to-one, there exists a one-to-one transformation (̂ ' = 
= ц>{х% i.e. cp'ix') = ^1ф1Т~^х' + P) - ф,(Р)] and 

(d(/);/dx') (xO = iV(d^,/dx) (T-^x ' -h P) T - ^ 

We shall need some properties of the transformation ^' ~ Фе(х') which follow 
immediately from the definition: 

(11,5) ^ ( 0 ) = / , 
dx 
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(11,6) ^ (0) = TN,{T-'y 5 - ^ [P) T-^ . 
âx к dx^ 

If the region D can be described in a neighbourhood of P by an inequahty x'„ > 
> /7(xi, ..., x^_i), then due to Lemma 6 the region фДВ) can be described by 
C> hX^[,...,^n-i) in a neighbourhood of ф,(Р). Certainly /i'(0) = 0, (11,5) 
together with (6,1) imply {dh'jd^\) (0) = 0 and by virtue of (6,2), also 

(11,7) J!^(o) = ̂ ( o ) + «::;(o). 
d^'i dl,] dx'i dXj dx\ dx) 

By ^' ~ <Pe(x'), u'{t, x) ~ v'(t, ^') equation (11,4) is transformed into 

where 

(11,9) А'{ел') = ^ Ч ^ Х ^ ' ) ) ^ ' № ' ) ) ( ^ Ч ' А : ( ^ ' ) ) ) ' > 

(11 ДО) «;(<=' «') = Е«;;('А'(^')) ^ ' (^х^') + 
к ÔXk 

2fcj ôxj^dxi 

and i/'e is the inverse transformation to ^' = (Pe^x')- Relation (11,9) yields 

(11,11) ^ ( e , 0 ) = ^ " ( 0 ) + 2 ^ f ; ( 0 ) 
ÔÇi OXi OXi OXn 

and also А'{г, 0) == Л'(0) = / . 
If e converges to zero, then due to (11,1), (9,2) it is (d^Jdx) (P) -> / and 

(d^фf^làx^) (P) -> 0. This impHes that the matrix N (depending on г) converges 
to Tfor e --> 0 so that by (11,6), (à^q)'^^^jéx'^) (O) converges to the zero matrix. 

Further (11,7) and (11,11) imply {d^h'jd^\di^'j){^)-^ {d^hjdx\dx'j){(S) and 
(ai';„/5(^;) (г, 0) -> (ал;„/^х;) (0), respectively, while (11,10), (11,5) ensure a^(e,0) -^ 
-^ â!^(0). We can conclude that the matrix Г' constructed for (11,8) at P[ converges 
to the matrix Г constructed for (11,4) at P^ or, which is the same by Remark 1, to 
the matrix constructed for (7,1) at P. Since it is assumed that det Г > 0 for 8 = 0 
we conclude that Hypothesis (D) is fulfilled for sufficiently small £. 

Now we shall prove that equation (11,2) fulfils Hypothesis (E). The drift coef­
ficients are linear. In virtue of Remark 2 it is sufficient to prove that conditions 
(0,4) are fulfilled for sufficiently small 8. 
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As was stated above the matrix of diffusion coefficients of (11,2) is 

Putting £ = 0 we obtain Ä^^\^) = Л(^). Since 

dx 

2A(fc) 

= I and д'Ф: 
дХр дх. 

3 A W О'Ф: 
,=0 дх дх дх. 

= О 

we can construct matrix functions M^^\^), P\^\0 and N\^\^) continuous in ^ such that 
{М^%^)У M^'\i) = Ä^%^1 P\'\^) - dJ(^>/d/(^) and {N\'\^)y Nf\^) n^ = 
= d^yl^^Yd/^(^) where к = (di/^Jd^) / and M, Pj^, Nj^ are the matrices corresponding 
to Л by Remark 2. We can find these matrix functions in the form 

M-(0 = м(ф.)((^)"у, то = (^) '^ Р.{Ф.) {{^yj + 0(e), 

ш{(^ d^ 

- 1 \ T 
+ 0(e). 

As M '̂̂  "> M, P '̂̂  -> P and N\'^ -^ AT uniformly, condition (0,4) is valid for Л^'Щ 
if £ is sufficiently small. 

Since we proved that equation (11,2) fulfils Hypothesis (D) we obtain by applying 
Theorem 5 [ l ] that there exists a positive number ÎQ such that v(t, ^) is strictly 
convex on (0, to) x ^^(D). In this way we have verified the last assumption of 
Theorem 1. Due to this theorem we know that v{t, ^) is convex as a function of ^ 
in (0, to) X $,{D). 

Formula (5,6) can be modified to 

d r dk"^ к dXf, L d r 

гу(<̂ , s) 

^2ф(кД) 

df + 

where к = (d^Jdx) / . Since t̂ (t, <̂) is convex it is (d^y/d/c^) ((, ^) g 0. Formula 
(11,1) yields (ôujdx^) (t, XQ) (d^ф<*^^Vd/̂ ) (XQ) Ш 0 and since by Lemma 9 
(d^(^*'''^'/d?^) (XQ) equals one or minus one the expression 

ÔU 

dxu 

+ E 
3^(1^.1) d^^f' . i ) 

5Х; dp 
— (xo)j + £7(^ДХО),8) 
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is nonnegative for small в. The modified formula implies that d^w/dJ^(f, XQ) ^ 0. 
Since [it, Xo] was an arbitrary point from (O, tg) x D and / an arbitrary n-dimensional 
vector we have proved that u{t, x) is convex as a function of x for t e (O, to) and 
X e D. Theorem 3 is proved. 

12 

As was mentioned above the method used in the proof of Theorem 3 can be 
applied to slightly disturbed parabolic equations. 

Remark 10. Let Aij{x), а^(х), Я̂  and a region D fulfil conditions of Theorem 3. 
Given a positive number С then there exist numbers VQ > 0, SQ > 0, tg > 0 such 
that the bounded solution of 

(12Д) 
Ot 2 i,j OXiOX: i OX; 

fulfilling w(0, x) = 0 for x e D, u[t, x) = 1 for t > 0, x E ï) is convex as a function 
of X in (O, ô) ^ ^ and for |e[ ^ EQ provided the coefficients Ä^j(x), a^{x) fulfil 

^4(^)_.MM(^) 
ax, дхь 

< Vn 

f)^A^ 

dXk dxi dxj^ dxi 
< V, 0 Î Ио-12+« й с 

and the third derivatives (5^Л J/^x^ 5x; ^x ,̂) (x) are continuous, |а^^(х) — «i(x)[ < 
< Vn *i 2+a S С. 

The p r o o f of Remark 10 will be sketched only. Nevertheless, we need a modifica­
tion of Lemma 8. 

Lemma 11. Let the assumptions of Remark 10 be fulfilled. There exists a number 
M > 0 such that to every point XQE D and to every n-dimensional unit vector I 
there exist solutions (p'^{x), x^{^)^ ^f 

(12,2) 

fulfilling 
2i,J OXiOXj i OX: 

(P^ 6 C2+.(D,/2) . | d > 7 d P ( x o ) - 1| < i , I k ' ||2+a 

X* 6 C,Ul>s,2), I d ^ z ^ d ^ o ) + 1| < i , i|z1|2+« й M . 

The first part of the proof of Remark 8 proves that 0 is not an eigenvalue of (12,2) 
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for sufficiently small VQ. As at the beginning of the proof of Lemma 9 we can conclude 
that 

(12,3) Lcp = l l A,j{x) - ^ - 1 Я , х , ^ + Л,ср= f{x) {к fixed) 
2 ij cXidXj i ox I 

has a solution ф fulfilling ||< |̂|2+a < °о. (the coefficients ^,-j(x) are real analytic 
in x) under the condition t h a t / i s real analytic in x. Considering (9,8) we see that the 
assumption concerning the analyticity o f / c a n be substituted by the assumption 
/ e C^(D^). Similarly we can assume only that the coefficients Äij{x) belong to C^{D^). 
This follows again from (9,8) since the coefficient C2 depends only on the given 
bounds for coefficients and on the coefficient of ellipticity of yl(x) (see Remark 8). 
Denote by <p(x) the solution of (12,3) given by Lemma 8, fulfilling d^<p/d/^(xo) = 1, 

\\ср\\^2Га è M o P u t 

g{x) = i I (Л,, » Atj) -f^ - f{x) + Г{х) . 
2 ij ox I oxJ 

From the above considerations we know that there exists a solution A(^x), A e 
e C2+a{^ô) of L^A = g. The function cp'^ = (p + A is certainly a solution of (12,2). 
Since the equation for A can be rewritten as J = — ( l /^J (/ —T"^)"^ T^g, we obtain 
\d^(p^ldP(xo) — l | ^ C2M0V0 using (9,8). The proof for x'^ ŝ quite analogous. 

Now the solutions (p^{x) of 

Jz^o-W/f - + Z(-̂ -̂ < + '̂ «Г(х))~- + л<р = 0 
2 гJ cXiCXj i dXi 

which are of the form (9,2) and which transform (12,1) onto a parbolic equation with 
linear drift coefficients exist due to Remark 8. The convergence of (10,2) can be 
ensured by Lemma 10. The rest of the proof of Remark 10 follows the same lines as 
that of Theorem 3. 

13 

We shall discuss now Hypothesis (E) in more detail in the two-dimensional case 
[n = 2). Since the matrix A of the type 2 x 2 has to be singular we can assume 

. /a cos (p 6\ ^ I t A = \ . ^] a > Q , (D real numbers \a sm (p 0 / 

and the matrix В in the form 

^ = ( л гк I ' ^ ^ ^^^^ number . 0 0 
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The condition on A can be written as 

« T 2 cl^^u . . d^Ä,2 • 2 d^^22l — cos^ (o h 2 cos cp sin Ф ^ + sin (p 4-
2L df dp dp J 

y.r -y d ^ i , ^ . dЛl2 . 9 ^ ^ 2 2 ! . 
+ a^b cos*- Û) ь 2 cos Û? sin cp — ~ + sin^ cp + 

L dl d/ dl ] 
+ a^b^ [cos^<p Л11 4- 2 cos ç sin 9 Л12 + sin^ cp Л22] ^ 0 

where the vector / is given by F = ( — sin cp, cos cp) or 1̂  == (sin cp, —cos r/)). Taking 
into account a Ф 0 and the definition of / we obtain 

(13Д) _ ^ cos^ (p + ---f^ sin^ Ф + — ^ + 

. ^ ^ / l t 2 \ 2 • 2 . / ^ ^ ^ 1 2 ^ ^ ^ l l \ 3 • 
„ 4 1± \ cos^ <p sm^ cp + 2[ ~ ~ ) cos cp sm cp + 

dx dy J \ dy^ dx dy J 

+ 2 ^ ~ I COS cp sin^ Ф + Ь — ^ cos^ cp + 

<p sin (p + ( -

+ Ь^[Л11 cos^ cp + 

_l- ( 11 _!_ 2 —^1 j cos^ cpsmcp +1 - 2 — ^ 
dx dy J \ dx 

дЛ^Л . 7 ^Л22 . 3 H ~ j cos cp sm^ cp sm ф 
5y / dx 

+ 2A^2 cos (p sin Ф -f- Л22 sin^ <p] ^ 0 

for all real b and ф. The linearity of a together with condition (13,1) can substitute 
Hypothesis (E) since another choice of Л, Б: 

^ /O.cos.y ^ /00 
\̂ 0 a sm cpj \ 0 b 

leads to thé same condition (13,1). 

If Ь = 0 then (13,1) yields 

Ci cos'* cp + C2 sin"̂  Ф + C3 cos^ cp sin^ Ф + C4 cos^ ф sin ф + c^ cos ф sin^ Ф è 0 

for all real ф which is equivalent to P{X) ^ 0 for all real Я where Р(Я) = СзЯ'* + 
+ CsÀ^ + СзЯ^ + c^À + Cl. 

Statement. Let D^ be the discriminant of Р(Я) and D3 f/ie discriminant of the 
derivative P^X). If D^ > 0, D3 < 0 then P(X) > 0 for every real X. 
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Since the term Л ц cos^ (p + 2Ai2 cos cp ûxap + Л22 sin^ (p is positive due to the 
positive definiteness of Л, the term on the left-hand side of (13,1) can be treated as 
a quadratic polynomial. 

Example 1. Suppose A^2{U ^, y) = 0, let Л ^ depend only on t and x, Л22 only 
on f, V. Condition (13Д) is reduced to 

(13,2) - ( ~ + ™ cos^ (p sm^ Ф + Ь ( ~̂ i cos (p + 

dA22 . H ^ sm mq)\ cos ф sin Ф + ^^(Лц cos^ ф + Л22 sin^ ф) ^ 0 

for all real (p, b. Inequality (13,2) is valid if and only if 

Example 2. Suppose л 12(^^5 j ) = О and let Л ц depend only on Г andy, Л22 0п1у on t 
and X. In this case condition (13,1) is reduced to 

(13,3) ^̂ - cos^ cp + — sm^ (p + hi — - cos^ Ф ^ 
^ ^ 2 ау2 2 ax^ V ^y ^^ 

+ ^^(Лц cos^ (p + Л22 sin^ ф) ^ 0 . 

It is easy to obtain sufficient conditions for (13,3), namely 

^ ^ ^ 1 1 ^ r. ^^A22 ^ r. 
Li > 0 , ^ > 0 , 

dy^ "" ax^ ~ 

M i V ^ o . ^'Ai / ^ ^ 2 2 V ^ . . d'A ^ 2 Л , 1 — ^ , - - - ^ ^2Л22 ^22 

ду J '' ^j^ V ^̂  / ^̂ ^ 

aŷ  \Ôx J дх^ \Sy J ~ 
A-,-, 

dy^ dx' 
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The last section is devoted to the case when the problem (0,1) to (0,3) is spherically 
symmetric. 

Examples. Let the region D be an «-dimensional ball D =^ {x e R" : |x| < R} 
and let A(x) = / ( | x | ) / , a(x) = — ax where / is the unit matrix, / ( r ) is a positive 
function with a continuous third derivative defined for r e <0, Я> and a is a positive 
number. 

In this case the bounded solution u[t, x) of (0,1) to (0,3) depends only on t and |x|. 
Define a function v(t, r) = u(t, x) where r = \/(S^?)- ^^^ function v[t, r) fulfils the 

equation 

With respect to (0,2), (0,3) and [4] we have ди\д\ {t, x) > 0 for Г > 0, |x| = R 
where v is the outer normal at [f, x ] . This implies 

(14,2) ~{t,R)> 0 t > 0. 
dr 

If we assume 

(14,3) -OCR + ^ ^-f{R) < 0 
2R 

then (14,1) and (14,2) yield 

(14,4) ^ - | (f, JR) > 0 for t> 0 

Let Ai, i = 1, ..., n be real number. We have obviously 

[t, x) ÀiÀj = 
' dXi dxj r^ dr^ 

r or i J 

The last relation proves that w(t, x) is convex as a function of x at the points [t, x] : 
/ > 0, |x| = î  due to (14,2) and (14,4). We have just proved that the assumption 
of Theorem 1 about convexity of u{t, x) on the side-boundary of Q is fulfilled. We 
shall verify the other assumptions of Theorem 1. Hypotheses (A) to (C) are obviously 
fulfilled. 
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Let X|, ..., x„ be a local coordinate system fulfilling Hypothesis (D). Denote by 
u(t, x) the solution u(t, x) expressed in the (x,, ..., x„)-coord)nate system. We have 

du I " " ' 
(7Г 2J[R) t=i j=i ат 

^ _ du (xR du 
— a > X: 1 , 

it', dx, V(/(R))ax„ 

The function h{x^, ..., x„_i) is given by 

/îfx,, ..., x„_.) = ~ 

In this case 

(14,6) r,,^^{f{R))JR, i-

1ж^-Ш 
= \,...,n - 1 , 

Equation (14,5) implies Г,.„ = Г„^ = 0 for / < n and Г„„ = 2cLR\^[f{R)) — 
- (n - 1) ^{f[R))lR. With respect to (14,3) we have Г„„ > 0 and this together 
with (14,6) ensures that Hypothesis (D) is valid. 

Remark 2 shows that we can assume (0,4) instead of Hypothesis (E). We see easily 
that if 

Alf 
(14.7) —^ (Ixl) > 0 for all xeD and for all unit vectors / 

d/^ ' ' 

(14.8) ^ ( ^ 2 / ( | x | ) 0 ( | x | ) ^ ± . ^ ( H ) ^ O for all xeD 

and for all unit vectors /, then (0,4) is fulfilled. Applying Theorem 1 we obtain the 
following. 

Statement. Let D = {x:\x\< R], Л{х) = / ( | x j ) / , a{x) = —ax where / ( r ) is 
a positive function with a continuous third derivative defined on <0, JR>. / / (14,3), 
(14,7) and (14,8) are fulfilled then the bounded solution of (0,1) fulfilling (0,2) and 
(0,3) /5 a convex function of x in Q = (0, L) x D, i.e. the matrix function Л(х) 
is strongly maximal with respect to a(x) ~ ~ax and Q. 

Lemma 1 [1] implies that condition (14,3) in the statement is not only sufficient 
but also necessary. 
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