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PRUFER d-GROUPS

Jiki MocC¢koR, Ostrava

(Received February 10, 1976)

In a previous paper [3] we studied a ring-like system called a multiring (introduced
by T. NakANo [4]) which differs from the usual concept of rings by admitting a mul-
tivalued addition. We applied ideal-theoretical methods to the theory of m-rings
(multirings) and d-groups to define Priifer d-groups and we obtained several
different characterizations of a special type of Priifer d-groups.

In this paper we extend and generalize some results of [3], especially, we show eight
different conditions equivalent to the property “a d-group is a Priifer d-group”.
Further, we deal with the existence of an extension of a valuation m-ring of a d-
group G to a valuation m-ring of a d-group G’ which is integral over G and we prove
that the integral closure of a Priifer d-group is a Priifer d-group. Finally, we charac-
terize archimedean simply ordered d-groups, d-groups of principal m-ideals and
Bezout d-groups.

1. INTRODUCTION

Our notation will be in general that of [3]. In particular, a d-group is a partially
ordered commutative group G with an element 0 ¢ G, which admits a multivalued
addition @ such that

(a®b=baa,

@) colog-Gobe:
(3) aeb @ c implies bea @ c,
4) a(b®c) = ab @ ac,

(5) 0ca @ b ifand only if a = b,

(6) a,b>cand xea® b imply x = ¢ for any a, b, ce G.
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An m-ring is a commutative semigroup (M, .) that admits a multivalued addition @
and satisfies (1)—(5). In this paper all m-rings are required to obey the cancellation
law and the existence of identity element.

Let A be an m-ring, U(A) its group of units. Then all the quotients ab™' with
a,be A, b + 0 form a group Q(A). It is easy to see that the factor group D(4) =
= Q(A)/U(A) is partially ordered and becomes a d-group. D(A) is called a d-group
relative to A.

A subset J of an m-ring A is called an m-ideal of A provided that a ® b < J,
are J for any a, be J, r € A, and it is called a prime m-ideal provided that ab e J
implies a e J or b e J for each a, b e 4.

An m-ring A is called local provided that a sum of non-units does not contain
a unit, and A is called a valuation m-ring provided that D(A) is simply ordered.
The unique maximal m-ideal of 4 is denoted by M(A4).

A d-group G is called a Priifer d-group provided that a quotient m-ring

(Gi)p={gh™':9€G,, heG, — P}

(where G, = {g € G : g = 1})is a valuation m-ring for each prime m-ideal P of G.
An element p of a d-group G is called integral over an m-subring A of G if there
exist elements ay, ..., a, € A, n = 0 such that

P"leap®.. ®a,.
An m-subring A of G is called integrally closed in G provided that every element of G

integral over A is contained in 4.

2. PRUFER d-GROUPS

In this section we deal with an extension and generalization of [3]; Theorem 8.
In particular, we show eight different characterizations of Priifer d-groups.

First we shall prove several lemmas. In what follows, by 3(G) (B(G)) we shall
denote the set of directed prime d-convex subgroups (prime m-ideals) of G(G.).
For definition see [4].

Lemma 2.1. Let G be a d-group. Then there exists a one-to-one map  of M(G)
onto B(G) such that
H, ¢ H2°W(H1) =2 ‘I’(Hz)

for Hy, H, € W(G). Further, if G is directed, then for any H € M(G) we have
D((G+)yan)) = G[H .

Proof. Let P € B(G). Then the quotient subgroup ¢(P) of the semigroup G, — P
is a directed subgroup of G, thus it is d-convex by [4]; Lemma 5, and ¢(P) € M(G)
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by [4]; Lemma 6. On the other hand, by [3]; Lemma 4 we obtain that Y(H) =
= G, — (H n G,) is a prime m-ideal of G, for any H € M(G). Now it is easy to
see that { and ¢ are mutually inverse bijections. Suppose that G is directed. Then for
gH € (G[H), we may find g; 2 1, he Hn G, such that g = g;h™ ' e (G+)ym)
and it is easy to see that this map may be extended onto a required isomorphism.

Proposition 2.2. Let G be a d-group and let A be an m-ideal of G,. Then
A =N{A4AH : He M(G)} .

Proof. It is clear that A <€ N{AH : H e M(G)}. We suppose that z € AH for each
H € M(G). Since H is directed, for any H € M(G) there exist age 4, hye HN G,
such that

z = ayzhy'.
Hence by Lemma 2.1, z € (G )y, for any H € M(G). Now we put
B={y=1:yzeA}.

It is clear that B is an m-ideal of G, and B ¢ V(H) for each H € M(G). Hence B
is not contained in any prime m-ideal of G,. Thus B = G, and z € 4.

Let G be a d-group. A subset F = G is called a fractional m-ideal provided that
there exist an m-ideal A of G, and g € G such that F = Ag™! = {ag™' :a e A}.
An m-ideal A of G, is called invertible provided that there exists a fractinal m-ideal F
such that 4. F = G,. In what follows, we shall denote by (ay, ..., a,)¢ an m-ideal
of G, generated by the family {a,, ..., qa,} S G.,.

For the proof of the main theorem we need a generalization of [4]; Theorem 6.
Namely, we shall not assume that all d-convex subgroups in [4]; Theorem 6 are
directed.

Theorem 2.3. Let G be a directed d-group. Then
N{H : He M(G)} = {1}.

Proof. The proof of this theorem is a modification of the original one. Let p e
e N{H : H e M(G)} and suppose that p & 1. Zorn’s lemma shows the existence of
a directed d-convex subgroup H of G such that H is a maximal (in the set of directed
d-convex subgroups of G) in the sense that

Hnl[p ) =0,

where [x) = {g€ G : g = x}. Now, by [4]; Lemma 8 we obtain that H is prime,
hence p~! € H, a contradiction. Thus p = 1.
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Theorem 2.4. Let G be a directed d-group. Then the foliowing conditions are
equivalent:

(1) {G/H : H e M(G)} is a realization of G. (For definition see [4].)

(2) G is a Priifer d-group.

(3) G, is integrally closed in G and for each m-subring A suchthatG, < A < G,
there exists B < B(G) such that A = N{(G)p : P € B}.

(4) Each m-subring A such that G, < A < G is integrally closed in G.
(5) A factor d-group G[H is simply ordered for each H € M(G).

(6) Each finitely generated m-ideal of G is invertible.

(7) Each m-ideal with a basis of two elements of G is invertible.

(8) G, is integrally closed in G and for each a, b € G, there exists an integer
n > 1 such that (a, b)g = (a", b")g.

(9) G; is integrally closed in G and for each a, b € G, there exists an integer
n > 1 such that a" b e(a", b")g.

Proof. (1) = (2). Let P e B(G). Then by Lemma 2.1 we have D((G.)p) =
=~ Gy~ *(P). Since G/~ *(P) is simply ordered, it follows that (G, ) is a valuation
m-ring. Therefore G is a Priifer d-group.

(2) = (3). In [3]; Theorem 8 we have proved that each m-subring 4 such that
G, S A < G is a Priifer m-ring (i.e. D(A) is a Priifer d-group). Now we may assume
that A4 is the integral part of the d-group D(A). Hence, by Proposition 2.2, 4 =
= N{AH : H e M(D(A))} and from the proof of Lemma 2.1 it is easy to see that
AH = Aym,, where

¥ - M(D(4)) > B(D(A))
is the map from Lemma 2.1. Thus
A = N{4p : P e B(D(A))}

and Ap is a valuation m-ring. Since P n G, € B(G) and (G, )p.g, is a valuation
m-ring for each P € B(D(A)), it follows that there exists P’ € B(G) such that Ap =
= (G+)P" Thus A = n(G+)P" !

(3) = (4). Let 4 be an m-ring such that G, < A = G. Hence there exists 8 <
< B(G) such that

A=N{(G4)p:PeB}.

Since D((G)p) = G/Y~!(P) (Lemma 2.1) and G is integrally closed in G, it follows
([3]; Proposition 10) that (G~ *(P)). is integrally closed in G/~ *(P). Hence (G ),
is integrally closed in G by [3]; Lemma 6. Therefore A is integrally closed in G.
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(4) = (2). The proof of this implication is quite the same as the proof of the
implication (3) = (2) of [3]; Theorem 8.

(2) = (5). Let H e M(G). Since (G.)yu, is a valuation m-ring and G/H =
= D((G+)yan) (Lemma 2.1), it follows that G/H is simply ordered for each H € M(G).

(5) = (6). We show first that X/H is an m-ideal of (G/H).. for each m-ideal X of G,
and for each H € M(G). In fact, let xH, yH e X|H, zH € xH @ yH. Hence there
exist hy, h, € H such that

zexh, @ yh, .

Since G/H is simply ordered, we may assume that xH = yH. Thus x = yhg for some
heH, g = 1. Hence
zey(hhyg ® hy) < y(G,H) < XH .

Thus z = ah' for some a € X, h’ € H and
zH = aH e X|H .

Now let gH = H, xH € X[H. Then we have gh™* > 1 for some h € H and gxH =
= xgh™'H € X/H. Thus X/H is an m-ideal.
Further, assume that A = (ay, ..., a,)¢ is an m-ideal of G. We set

B={g=1:ga,Za, for k=1,...,n}.

It is easy to see that B is an m-ideal of G ;. We shall prove that
A.B=[a)={g=21:92a.
In fact, by Proposition 2.2 it suffices to prove that
A.B[H = [a,)|H

for each H e M(G).
First we shall show that

B/[H = {bH =2 H :ba;H = aH for k =1,...,n}.

In fact, suppose that bH € (G/H), such that ba,H = a;H for k =1, ..., n. Then
there exist hy,e H, k = 1, ..., n, hy € H such that

bah, Z2a,, b=hy; k=1,..,n.
Since H is directed, there exists h € H such that

hzh, hg'; k=1,..,n.

Thus
(bh) ay = bhyay = a,, bh=1; k=1,..,n.

Therefore bh € B and bH = (bh) H e BJ[H. The converse inclusion is trivial.
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Now, since G/H is simply ordered, for each H e ‘JJI(G) there exists ay € {a,, ., a,}
such that

AJH = [ayH).
Hence .
A.B|H = {zgH : zayH 2 a,H, gH 2 ayH} .

Since a,H = ayH, it follows that there exists zH = H such that

aH = ayzH = ayH
and we obtain
[a)/H = A. B[H .

The converse inclusion is trivial. Thetefore [a,) = A . B and we obtain
(B.[a7").A=0G,.

Thus A is an invertible m-ideal of G .

(6) = (7). Trivial.

(7) = (8). It is clear that (a, b)g = (a°, a’b, ab?, b*); = (a, b)g . (a?, b*)s. Since
(a, b)g is invertible, it follows that (a, bje = (@, b?)g.

(8) = (9). Trivial.

(9) = (1). Let H e M(G) and suppose that gH € G[H. Since G is directed, there
exists @ = 1 such that ag = 1. Hence there exists an integer n > 0 such that

aug = ((l", (ag)")(; .
Thus we have

ang e ulau @ uzangn

for some u; = 1, u, = 1 and using (3) from the definition of a d-group we obtain
u, = guj for some '

uiel ®u,g" ',
Since G[H is local and

HeuiH® uy,g" 'H,

it follows that H = uiH or H = u,g" 'H. In the first case we have H < uH =
= guiH = gH; in the second case we have (¢ ')""' H = u,H = H. Suppose that
(¢7")""' H > H. Since G[H is local, we have

(67~ H®H = ().

Thus (¢~") H is integral over (G/H)... Since G, is integrally closed, it follows by [3];
Proposition 10 that (') H = H.

&
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Suppose that (g ~*)""* H = H. Again (g~ ') H is integral over (G/H), and we
obtain gH < H. Therefore G/H is simply ordered for each H € (G). Now Theorem
2.3 implies that {G/H : H € M(G)} is a realization of G.

From the above theorem we obtain a characterization of Priifer integral domains.

Recall that for an integral domain A4 the family

A={x={x,—x} :xeA}
is an m-ring with respect to the addition
Y@y ={x+y x -y
and multiplication
X.5=xy.
Proposition 2.5. Let A be an integral domain. Then A is a Priifer domain if and
only if {D(A)[H : H e M(D(A))} is a realization of the d-group D(A).

Proof. Let A be a Priifer domain. Since Ap = A, for each prime ideal P of 4,
we obtain that 4 is a Priifer m-ring (i.e. D(4)is a Priifer d-group) and by Theorem 2.4
the set {D(A)/H : H € M(D(A))} is a realization of D(A).

Conversely, let { D(A)[H : H € M(D(A))} be a realization of D(4). We may assume
that A = D(A),. Then by Lemma 2.1, D(A)[H = D(Ayu)) = D(4p) for P = Y(H).
Thus 4 is a valuation m-ring. Now it is easy to see that 4 is a valuation ring and
applying the bijection from Lemma 2.1 we obtain that A is a Priifer domain.

3. INTEGRAL EXTENSIONS OF d-GROUPS

Let G be a d-group, ¢ a d-group integral over G. We shall consider in this section
the existence of extensions of valuation m-rings of G to valuation m-rings of ¥, the
rank of this extension and an extension of a Priifer d-group.

Proposition 3.1. Let G be a d-group, 9 a d-group integral over G such that 9,
is integral over G, and let R be a valuation m-ring of G containing G,. Then
there exists a valuation m-ring R of 9 such that '

ANG=R.

Proof. We show first that the proposition holds if G is a simply ordered d-group
and R = G,. In fact, set

M={geG:g>1},

g = {oc € 9, : there exists m € M such that o > m}. It is easy to see that # is
an m-ideal of ¥, and M < . Suppose that # = ¢ ,. Then there exists m € M such
that m~! = 1. Since ¥, is integral over G, and m is a non-unit of G, we obtain
a contradiction with [5]; Lemma 1.
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Hence there exists a maximal m-ideal .# of ¢4, such that

Ff s,
and we have
Mc fnG,c MG, S M.

Therefore M = .4 n G,.
Now by [3]; Proposition 3 there exists a valuation m-ring # of % such that

MA) NG, = .

Let xe 2 n G and suppose that x < 1. Then x ' e M = M(%Z) n G, thus x =
= (x71)7! ¢ #, a contradiction. Thus 2 n G < G and since the converse inclusion
is trivial, the proposition holds in this case.

Now, to prove the proposition in a general case, we put

G =D(R), ¥ =D(R),

where R’ is the integral ciosure of R in . First we show that the canonical homo-
morphism
G[U(R) - #|U(R)

is injective. Indeed, suppose that g €e U(R') n G and g ¢ U(R). If g € R, we have
g '¢R, g ' eU(R') € R, a contradiction. If g ¢ R, we have g~ ' € R, g integral
over R and by [5]; Lemma 1 we obtain a contradiction. Thus g € U(R) and we may
regard D(R) as a d-subgroup of D(R’). It is clear that D(R’) is integral over D(R).
Now, according to the first part of this proof, there exists a valuation m-ring %’
of %’ such that
R NG =G, .
Put
R={0eY:aUR)eR}.

Then £ is a valuation m-ring and

A2NG=R.

Using Proposition 3.1 we obtain the “lying-over theorem” for prime m-ideals.
(See [1].)

Proposition 3.2. Let G be a d-group, % a d-group integral over G and such that 9,
is integral over G, and let P be a prime m-ideal of G.. Then there exists a prime
m-ideal P of 9, such that

Proof. By [3]; Proposition 3 there exists a valuation m-ring R of G such that
M(R) n G, = P. By Proposition 3.1 there exists a valuation m-ring # of ¢ such that

AnG=R, MZ)nG=M(R). -
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Put # = M(2) N 9.. Then
P0G, =MRBNG, G, =MRANG, =P.

If R is a valuation m-ring, the ordinal type of the set of proper (% R) prime m-ideals
of R (ordered under =) is called the rank of R and is denoted by r(R). By Lemma 2.1
r(R) equals the ordinal type of the set of directed prime d-convex subgroups of D(R)
ordered under <.

We shall use the following notation: We set

[G:G]<n

for d-groups G’, G if G is a d-subgroup of G’ and for any g7, ..., gn+, € G’ there
exist ay, ..., a,; € G such that

0€g1a1 @ @ g:l+1an+1 .

Proposition 3.3. Let [G' : G| < n. Then G’ is integral over G.
Proof. Trivial.
Proposition 3.4. For simply ordered d-groups G, G’ such that G’ is integral
over G, the factor group G'|G is a torsion group.
Proof. We show first that the proposition holds for
[G:G]=n.

In fact, let a € G’ and suppose that a’¢ G for i = 1,...,n + 1. Then there exist
go, - -+ gn € G such that

0eg,a"®...®g,.
Since G is simply ordered, there exists an index i, 0 < i < n such that

gi<gy for k=0,..,n.

Then we have

0€gid"®...®ad @ ... D g,
for some g; € G, k =0, ..., n. Since gza* # gja’ for k # j, by [3]; Lemma 1 we
obtain that

a' = min {gia* : k * i} = gja’
for some j, 0 < j < n. Thus a'~/ € G, a contradiction. Now let {Gi} e be the set of
simply ordered d-subgroups of G’ such that for any i €I there exists an integer n;
with

[G: : G] é n;.
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Since G’ is integral over G, we have
G' =U{G;:iel}.

Therefore G'/G is a torsion group.

Lemma 3.5. Let G be a simply ordered d-group and let H be a d-convex subgroup
of G such that G[H is a torsion group. Then r(G,) = r(H.,). ;

Proof. For H' € M(H) we set
f(H') = {g € G: there exists an integer n = | such that g"e H'}

and for K € M(G) we set
gK)=KnH.
It is easy to see that f(H') € M(G), g(K) € M(H) and f, g are mutually inverse. The

rest follows by Lemma 2.1.

Proposition 3.6. Let G be a d-group, 9 a d-group integral over G and let R be
a valuation m-ring of G. Then r(R) = r(Z) for any valuation m-ring # of %
such that
ANnG=R.

Proof. We may regard the d-group D(R) as a d-convex subgroup of D(#). Now
it is easy to see that D(2) is integral over D(R). Hence by Proposition 3.4, D(%)/D(R)
is a torsion group and by Lemma 3.5, r(D(%)).) = r(D(R).). Thus r(2) = r(R).

Theorem 3.7. Let G be a Priifer d-group, % a d-group integral over G and let 4,
be the integral closure of G, in 4. Then % is a Priifer d-group.

Proof. Let # € M(¥) and set
H=1{ab"":a, be# nG,}.

It is clear that H € M(G). (See [4]; Lemmas 5,6.) Let a € ¢ and suppose that a# %
% . Since a is integral over G, there exist g4, ..., g, € G such that

ad'ega'®..Dyg,.

By Theorem 2.4, G/H is simply ordered. If we suppose that g;H = H for each i,
i =1,..., n, we obtain that

gH =2H for i=1,...,n.

Then by ‘[3]; Proposition 10 it is a# = #, a contradiction. Thus there exist
bo, - .., b, € G such that

IIA

(1) b## zH# for j=0,..,n; b# =H forsomei, 0Zi<n
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and
a'boH ed by H D...®bH.
Assume that the above equation is of the lowest possible degree. Since aby# is

integral over (%)), it follows that abo# > H#.
Now there are three cases to be considered.

Case 1. bg# = A#. Then a# = abyH = H#, a contradiction.

Case 2. by# > # and aby# = H. Then we have a# < aby# = A, thus
a‘H = H.

Case 3. bo# > A and aby# > # . Then there exists

biH €abyH @ b, H
such that

(2) bla" *Heba *H D...®b,H .

Since fﬁ/%’ is a local d-group, we obtain b # > # if and only if b;# > #. Since
the equation (2) is of the degree n — 1 and satisfies the condition (1), we obtain
a contradiction. Thus n = | and we have

abo# = b, H = H , a 'H = byH > A .
Therefore %/ is a simply ordered and by Theorem 2.4, % is a Priifer d-group.

4. SOME PROPERTIES OF AN ORDER RELATION IN A d-GROUP

A d-group G is called a Bezout d-group provided that every finitely generated
m-ideal of G, is principal, and it is called a d-group of principal m-ideals provided
that each m-ideal of G, is principal.

Proposition 4.1. Let G be a directed d-group. Then G is a Bezout d-group if and

only if G is a lattice ordered group and every finitely generated m-ideal of G, is
a filter.

Proof. Suppose that G is a Bezout d-group. Let a, b € G. Since G is directed,
there exist ¢, a;, b; = 1 such that a = a,c™ !, b = b,c™!. Thus there exists d > |
such that (aq, b)¢ = [d). Since d € a;g @ b,q for some g = 1, ¢ = 1, we obtain
d =a, n b, =inf{a,, b,}. Hence dc™' = a A b and G is an l-group. For 4 =
= (ay,...,a,)c we have A = [a, A ... A a,) and A is a filter. The rest is trivial.

Proposition 4.2. Let G be a directed d-group. Then G is a d-group of principal
m-ideals if and only if G is a complete lattice ordered group satisfying the descend-

ing chain condition and every m-ideal of G, is a filter.
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Proof. Suppose that G is a d-group of principal m-ideals. By Proposition 4.1, G is
an l-group and every finitely generated (and so every) m-ideal is a filter. Now let
{a;}ier £ G be such that there exists a € G such that a < a; for each iel. Then
aa™! =d; (iel)forsomed; = 1. Let A be the m-ideal of G, generated by the family
{d}ier. Then there exists b = 1 such that A = [b) and since bed; g, ® ... ® d; g,
for some iy, ..., i,€1, gy, ...,9,€ G, we obtain b = inf {d;:iel}. Now d, g, =
2d;, A...Ad;,hence b =inf{d;:iel} 2d, A...Ad; =b and we obtain
ba~' =inf{a;:iel} = a; A ... A a;, Therefore G is a complete I-group with the
d.c.c. The converse is trivial.

A d-group G is called archimedean provided that the ordered group G — {0} is
archimedean, i.e. if " < b for every integer n, thena = 1(a, b e G). An m-subring A4
of a d-group G is called completely integrally closed provided that for any ge G
such that there exists a € G with the property ag” € A for each integer n > 0 it follows
that g € 4.

We shall deal with the following properties of a d-group G:
(1) G is an archimedean d-group,

(2) there is no proper prime m-ideal of G,

(3) there is no proper prime d-convex subgroup of G,

(4) there is no proper d-convex subgroup of G,

(5) G, is completely integrally closed in G,

(6) if g€ G, g * L, then ﬂz(g" @ g") = {0}.

Proposition 4.3. Let G be a directed d-group. Then (2) < (3) = (4), (5) = (1).
Further, if G is a local d-group then (1) <> (6) and finally, if G is a simply ordered
d-group, all the propositions are equivalent.

Proof. (2) = (3). This follows by Lemma 2.1.

(3) = (4). Suppose that there is a d-convex subgroup H of G such that H + {1},
H #+ G. Then there exists an element p > 1 such that

Hn[p)=09.

The Zorn’s lemma shows the existence of a d-convex subgroup H’' of G maximal in
the sense that H' n [p) = 0. By [4]; Lemma 8 we obtain that H' is a prime d-convex
subgroup of G, a contradiction.

(4) = (2). Again this follows by Lemma 2.1.

(5) = (1). Suppose that a" < b, ne Z for some a, b € G. Then for each ne Z,
we have b(a™!)" > | and similarly, for each ne Z_ we have ba™" > 1. Since G,
is completely integrally closed, we obtain a = 1,a"* = 1. Thus a = 1.
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Now we suppose that G is local.

(6) = (1). Suppose that there exist a, b € G, a =+ 1 such that a" < b for each n € Z.
Since G is local, we obtain a” @ b = {a"} for b € Z, hence b € () (a" @ a"), a contra-
diction. nez

(1)=(6). Let g€ G, g + 1, and suppose that there exists a € G — {0} such that
aeN (9" ® g"). Then a = g" for each n e Z. If we suppose that a = g" for some

neZ

neZ, we have g"e g""!1 @ g"*!, hence 1 e g @ g and since G is local, we obtain
g = 1, a contradiction. Thus a > g" for each n € Z. Since G is archimedean, we have

g = 1, a contradiction. Thus ) (¢9" ® ¢") = {0}.
neZ
Finally, we suppose that G is a simply ordered d-group and we shall prove (4) = (5).
In fact, let g, a € G be such that ag” = 1 for each n € Z, and suppose that g < 1.
Then a > 1. Let H be the d-convex subgroup of G generated by g < 1. Now, since
a? > 1 and a? e H, there exists an integer m such that

Since, g™ > 1, it follows that m < 0. Further, a = ¢" for any integer n < 0 and we
obtain a = g™ > a?, a contradiction. Thus g = 1 and G is completely integrally
closed.

From the above proposition we obtain the following well-known corollary.

Corollary. A non-trivial valuation ring R is completely integrally closed if and
only if it is one-dimensional.

Proof. Let G be a value group of R. Then G is a simply ordered d-group with
respect to the addition

f@®g=1{heG:fAg=FfAh=gAh}.

Suppose that R is completely integrally closed, then G. is completely integrally
closéd in G and by Proposition 4.3, G is an archimedean group. Thus dim R = 1.
The converse may be proved in a similar way.
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