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THE HULLS OF SEMIPRIME RINGS 

PAUL CONRAD^), Lawrence 

(Received November 27. 1975) 

1. INTRODUCTION 

Let G be a semiprime ring and for a, b e G define a ^ b if agb = bgb for all g e G. 
This is equivalent to the fact that a agrees with b on the support of b in each represen­
tation of G as a subdirect product of prime rings. Thus ^ is a partial order for G 
with smallest element 0 and for a, b, x e G 

a '^ b implies ax ^ bx , xa ^ xb and ab = ba . 

We say that a is disjoint from b or that a is orthogonal to b if aGb = 0 (notation ±). 
This is equivalent to the fact that a and b have disjoint support in each representation 
of G as a subdirect product of prime rings. Thus a ± b Ш b la and in this case 
0 =: ab = ba. Also note that a ^ b iïï a - b 1 b, md a + b ^ b iïï a 1 b. If X 
is a subset of G then 

X' = {g e G \ g 1 X for each x e X} 

is the annihilator ideal of X. LAMBECK [11] has shown that these ideals form a com­
plete Boolean algebra which we shall denote by P{G). G will be called 

a F-ring if G = g" @ g' for each g e G (projectable) 
an SF-ring if G = X" ф X' for each subset X of G (strongly projectable) 
an L-ring if each pairwise disjoint subset of G has a l.u.b. (laterally complete) 
an O-ring if G is both an L-ring and an SP-ring (orthocomplete). 

An overring Я is a left essential extension of G if this is the case when Я is considered 
as a left G-module. We prove the following theorems for X = P, SP, L or 0. 

Theorem A. Let G be a semiprime ring and let H be a left essential extension of G 
that is an X-ring, Then the intersection К of all the subrings of H that contain G 

) These results were announced in: The hulls of semiprime rings, Bull. Australian Math. Soc. 
72(1975) 311-314., 
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and are X-rings is a minimal left essential extension of G that is an X-ring; called 
an X-hull of G. 

Theorem B. Each semiprime ring admits a unique X-hull G^. G^ is semiprime 
and G^ is reduced (commutative) iff G is reduced (commutative). If G has an 
identity 1, then 1 /5 also the identity for G^. Finally G^ is the minimal right 
essential extension of G that is an X-ring. 

If G is reduced then the proofs of these theorems are almost identical with the 
proofs of the corresponding theorems for lattice-ordered groups in [5]; one simply 
replace a A h by ab. For semiprime rings the proofs in [5] can be adapted. We 
show that 

G ^G^ ^G^^ ^ (G P̂)̂ ^ = (GP)L = G^ 

and (G^)^ = (G^f^ Ç G^, but here we need not have equality. 
In order to prove Theorems A and В we show that if Я is a left essential extension 

of the semiprime ring G then Я is semiprime and there is a natural isomorphism of 
P(H) onto P{G). If Я is laterally complete then G is an .^-subring of Я (i.e., for each 
disjoint subset {g;^ | A e Л} of G for which VG дл exists, it follows that Уя 0i — VG 9Ä)-

If G is a Boolean ring then so is G^ and G^ = G^. Also G^ is the Dedekind-
MacNeille completion of G iff G has an identity. If G is regular then so is G ,̂ G^̂  
and G^. We show that the ring G^ is determined by the addition and the partial 
order. 

Theorem. Suppose that G is a semiprime ring and consider the system (G^, + , ^ ) 
for X = P, SP or 0. Then there is a unique multiplication on G^ so that 

a) G^ is a semiprime ring, 
b) G is a subring of G^, and 
c) the multiplication on G^ induces the given partial order ^ . 

Almost all of the theory for the X-hulls of latticeordered groups in [5] has a coun­
terpart for semiprime rings. In particular, this is true for the annihilator preserving 
endomorphisms of G and for the theory of semiprime rings with a basis. 

P ( G ) is atomic iff G° is a product of prime rings. From this it is easy to derive 
necessary and sufficient conditions for a reduced ring to be a product of integral 
domains; in particular, those in the literature for commutative rings (see for example 
[7] Theorem 4.3). 

ABIAN [1] proved that a commutative semiprime ring G is a product of fields iff G 
is hyperatomic and laterally complete. A student of mine OTIS KENNY has shown that 
a reduced ring Я is a product of division rings iff Я is hyperatomic and laterally 
complete. Thus H^ is a product of division rings if Я is hyperatomic. 

If G is a commutative semiprime ring with 1, then G^ is the Baer extension of G 
that was introduced by KIST [9] and G^̂  is the Baer extension of G that was intro-
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duced by MEWBORN[12] . Thus for an arbitrary semiprime ring G with 1 we have 
the unique Baer hulls G^ and G^̂ . 

In [14] Speed using the technique developed in [4] (which is somewhat cruder 
than that used in [5]) constructed G^ and G^̂  and some hulls in between for com­
mutative semiprime rings with 1. His description of these hulls is categorical, but 
somewhat complicated. 

If G is a semiprime ring then the complete ring of left (right) quotients of G is an 
0-ring that contains G^. 

2. THE BOOLEAN ALGEBRA F(R) OF ALL ANNIHILATOR IDEALS 
OF A SEMIPRIME RING R 

We shall assume throughout this section that Ĵ  is a subdirect product of prime 
rings Til R S HjTf. Note that R is prime iff it contains no disjoint elements. Also an 
ideal A of R is a semiprime ring. For if 0 Ф a G Л then ara ^ 0 for some r e R 
and hence arasara ф 0 for some s e R. Thus aAa ф 0. If i^ is reduced then a ± b 
iff ab = 0 and in this case we shall assume that the T̂  are integral domains (see [2]). 

Proposition 2.1. / / {A^ \ Àe A] is a set of subrings of R such that a J- b for each 
a E A^ and b e Aß with oc Ф ß then the subring [ U ^ J ^ / ^ that is generated by the A^^ 
is the direct sum HA;, of the ideals A^,. 

Proof. Suppose that 0 = «i + ^2 + ... + ß^, where the ai belong to distinct Л^.. 
Then 0 = (^1 + ... + a^gai = a^ga^ for all ^̂  G i^ so a^ = 0 and similarly «2 = 
= ^3 = .. . = fl,. = 0. Thus [ и ^ я ] = 2^^я ^s ^^ additive group, but clearly the ^^ 
are ideals in [ U A ] -

Corollary. / / {Ax I A G A] is a set of ideals of R such that A^ n Aß = Ofor oc + ß 
then [\JA,] = HA,. 

Proposition 2.2. If R = HKi and К is an ideal of R such that RJK is semiprime, 
then К = i:(Ki n K). 

Proof. Suppose that к = ki + ... + k„eK, where the fe^ belong to distinct X;^.. 
Then kRki = k^Rk^eK and hence (K + /cj) RIK{K + fcj) = K. Thus К + k^ = 
= К and hence к^еК n K;,^. Similarly kieK слК,. for f = 2, ..., n and hence 
К Ç l(iC,. n K). 

Recall that for a subset A of R 

A' =^ {rsR\r 1. a for all ae A] . 

If A is an ideal or if R is reduced then 

Л' = {r G i^ I гЛ = 0} = {r G R I Лг = 0} . 
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1) For subsets A and В of R; A ^ В implies A' ^ B\ A ^ A" and A' = A"\ 
In particular, each annihilator in the annihilator of an ideal. 

2) For a e R, a' — {аУ\ where <a> /5 the ideal generated by a. 

Proof. Suice a e <a>, a' ^ <ß>' and if x G a' then xRa = aRx = 0 so x G <«>'. 

3) If A is a subset of R then RJA' is semiprime and if R is reduced then so is RJA\ 

Proof. Here we use the representation of i^ as a subdirect sum of the prime rings T,-. 
Suppose that A' = (A' + a) RIA'(A' + a). Then aRa Ç A' so arasx = 0 for all 
r, s G jR and X G A. If x^ ф 0 and {ara)i ф 0 for some r e R then (ara)i ŝ x̂  Ф 0 
for some s e R since T̂  is a prime ring. Thus x^ ф 0 implies (ara)i = 0 for all r G Я 
and hence since T^ is prime â  = 0. Thus a X x and hence a e A\ Therefore RJA' 
is semiprime. 

If R is reduced and (A' + a^ = A' then a^ G A' and hence a^x = 0 for all x e A, 
But a^Xi = 0 implies that â  = 0 or x^ = 0 since T^ is an integral domain. Thus 
ax = 0 and hence a e A\ Therefore RJA' is reduced. 

4) / / A and В are ideals then {A n B)" = A" n B\ Thus if A n В = 0 then 
A" n JB" = 0 and if A, Be P{G) then A n В = {A n Bf e P{G). 

Proof. Note that if ne A' n A'' then nRn = 0 and so n = 0. АпВяА and В 
so (A n ву Ç A" n B". Now consider xe A" r\ B" and у e{A n B)' and show 
X Ly.lï aeA and beB then aRb ^ A n В so yRaRb = 0. Thus xRyRaRb = 0 
so xRyRa ^ B' пВ" = 0 and hence xRy £ A' n Л" = 0. 

5) If a,beR then a' n b" = {aRb)" so if a Lb then a" n b" = 0. Also if R is 
reduced then (aRb)" — ab". 

Proof. aRb Я: a" n b" so (aRb)" ^ a" n b". Now suppose x e a" n b" and 
V G (aRby and show x l j . Since yRaRb = 0, xRyRaRb = 0. Thus xRyRa £ b" n 
n b' = 0 hence xJR>̂  ^ a" n a' = 0. 

Now we assume that R is reduced and show (aRb)' = (ab)'. If x e (ab)' the xab = 
= 0 and hence xagb = 0 for all g e R. Thus (ab)' ^ (aRb)'. If x G (aRb)' then 
xa^b = 0 and so xab = 0. Thus (aRb)' Я (ab)', 

6) Each annihilator ideal В is the intersection of all the minimal prime ideals 
that do not contain B'. 

This is well known (see [11]). 

7) If A is an ideal in R and a is an automorphism of R then A'a = (Aa)' and so 
A"a = (A'a)' = (Ла)". Thus if A = A" e P(R) then Aoc = (Aa)" and if A = Aa 
then A'a = A'. 

Proposition 23. The set P(R) of all annihilator Ideals of a semiprime ring R 
form a complete Boolean algebra with respect to Ç and with complement map 
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^ -^ j \ ' . Moreover 

ПВ, = (Ußi) ' = C\B,, UB, = (ns; .) ' = (Uß . ) " , 

У4 П ( и ^ я ) == LJ(^ П ^я) ^"^ dually where А and the В^ are elements from 
P{R) and П (^^d U ore the join and meet operators in P(JR). In particular ifR~ 
= A @ В then В = A' is uniquely determined by A. 

This is well known (see [11]). 
There is a converse to the last Proposition. Let S be an arbitrary ring and for each 

ideal Л of S let 
Л* = {x 6 S I хЛ = Ax = 0} 

and let 
K{S) = {A^\A is an ideal of S} . 

Proposition 2.4. The following are equivalent for a ring S. 

1) S is semiprime 
2) K[S) is a Boolean algebra with respect to ^ and with complement map 

X -^ X* and zero element 0. 

Proof. (Otis Kenny). If S is semiprime then for each ideal A of S, /4* = A' and 
hence K(S) = P(S). Then by the last Proposition (l) implies (2). 

In (2) holds and A^ = 0 for some ideal Л of S then Л ^ Л* n Л** = 0 so 5 is 
semiprime. 

Note also that if for each a e S 

S = iay @ <a>** 

then S is a semiprime ring. Thus P-rings are necessarily semiprime. For if aSa = 0 
then a 6 <(7> ç= <д>** and hence if a^ = 0 then a e <a>** n <a>* = 0 and so S 
is semiprime. But we know that a^ = 0 and a^Sa = aSa^ = 0 so «^ G <a>** n 
n <a>* = 0. 

3. PROOF OF THEOREM A. 

Throughout this section let G be a subring of Я . 

Lemma 3.1. / / G is semiprime and left large in H then H is semiprime, and if, 
in addition, a, b e G and aGb = 0 then aHb = 0. Thus a and b are disjoint in G 
iff they are disjoint in H. 

Proof. (PHIL MONTGOMERY). If 0 Ф /i e rad H then 0 + ghe G for some g e G 
and since gh e rad H it is strongly nilpotent in H and hence in G. But G is semiprime 
and thus gh = 0, a contradiction. Therefore Я is semiprime. 
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Now if aGb = 0 and aHb ф 0 then ahb ф 0 for some h e H and so 0 ф xahb G G 
for some xe G. Since bGa = 0, xahbGxahb = 0, but this contradicts the fact that G 
is semiprime. 

A similar argument shows that if a, b e A an ideal of G, then a and b are disjoint 
in Л iff they are disjoint in G. 

Corollary. / / G is semiprime and left large in H then a ^ b in G iff a S b in H. 

P r o o f . « й b in G if a - b 1 b in G m a - b 1 b in H iïï a й b in H. 
Note that Я is a subdirect product of prime rings (T^ | i el} and so we have shown 

that a ^ binGif ai = bi for all bi ф 0. 
Denote the annihilator operation in the semiprime ring G(H) by '(*). For В e P{G) 

and С e P{H) define 
Bii = (Б')* and Cy = С nG, 

Proposition 3.2. / / G is semiprime and left large in H then fi is an isomorphism 
of P{G) onto P{H) and y is the inverse of jd. Moreover, Bfi = JB**. 

Proof. If a E B' then aGb = 0 for all Ь G Б and so by the last Lemma aHb = 0. 
Thus B' Ç JB* and (B'f ^ 5** ^ Б. Therefore (Б')* n G ^ B"^^ r^ G ^ B. If 
X G (ß')* n G then X G G and xB' = 0 so x e B'' = B. Thus 

Б/гу = (ß')* n G = Б** n G = Б**у = Б . 

We next prove that С n G = (C" n G)' e P{G). If X E С n G and y E C^ n G then 
xy — 0 and so 0 = x(C* n G). Thus since C* n G is an ideal in G, С n G Я: 
Ç (С* n G)'. Now suppose (by way of contradiction) that 0 ф x G ( C * n G)\C. 
Then xa Ф 0 for some « G C*; otherwise x E C^^ = C. Thus 0 Ф уха E G for some 
y E G and hence 0 Ф уха E C^n G and yx G ( C * n G)'. Therefore yxaGyxa = 0, 
but this contradicts the fact that G is semiprime. 

Cyfi = {C nG)fi = {C^ n Gy^i = (C* n G)''* = (C* n G)* ^ С . 

Here we use the fact that C^ r\ G E P{G) by the above. 
Now suppose (by way of contradiction) that 0 Ф z G ( C * n G)* \ C. Then 0 ф za 

for some a E C^' and so 0 Ф j z a G G for some y e G. Therefore 0 ф yza E C^ n G 
and z G (С* n G)*. Thus yza E ( C * n G)* and hence yzaHyza = 0, but this con­
tradicts the fact that H is semiprime. 

Corollary. / / G is semiprime and left large in H and X is a subset of G then 
(i) (Z'O** = X** and X""^ nG = X\ and 

(ii) (X')** = X* and X"" nG = T, 

Proof. Since X Ç Z " we have Z** Ç (X")**- Also X** n G = Z**7 3 X" 
since Z**y G P(G) and contains X. Thus X" Ç X** and hence (X")** Ç X** 

X** n G = (X'')** n G = X > 7 = X " . • 
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From (i) and the Proposition we have 

Finally from Lemma 3.1 we have 

X^ nG = {gEG\ дНх = 0 for all xeX) 
= {geG\ gGx = 0 for all xeX] = X'. 

G is an ^-suhring of a semiprime ring Я if for each disjoint subset {gx | A e Л} 
of G for which Ус9х exists it follows that УнЯх exists an dequals УоОх-

Proposition 3.3. / / G /5 semiprime, left large in И and H is laterally complete, 
then G is an ^-subring of H, In particular, the intersection of all the laterally 
complete subrings of H that contain G is laterally complete. 

Proof. We may assume that Я is a subdirect product of prime rings {T^ | i el}. 
Suppose that {a^ \ Àe Л} is a disjoint subset of G and g = \/G9Ä exists. Then by 
Lemma 3.1 {a;^ | A e Л} is also a disjoint subset of Я . Let h = Ун9л- Then we must 
show show that h '^ g. For each / such that (0^)1 4= 0 for some À we have hi = (a^)^ = 
= gi^). Suppose that gff ф 0 and (a;)i = 0 for all À. To complete the proof we must 
show that hi = gi. If not then h — g ^ 0 and is disjoint from all the fl;^. Now 
0 ^ t(h - g)E G for some t e G. Pick j so that {t{h - g))j + 0. Then gj + 0 or 
hj Ф 0. 

If gj Ф 0 then g + t{h — g) is an upper bound for the a^^ in G that does not 
exceed g, a contradiction. If hj Ф 0 than h + t{h — g) is an upper bound for the a^ 
m H which does not exceed h, a contradiction. 

Let К be the intersection of the set {Я^ | (5 e zl} of all the laterally complete sub-
rings of Я that contain G and let (fc^ | Я e Л} be a disjoint subset ofK. Then for each ô 
Уно^х — Ун^х since Я^ is left large in Я . Thus Уя^я is the least upper bound of 
the ax in К and hence К is laterally complete. 

If Я is not laterally complete then can we conclude that G is an «^-subring of Я? 
We are now ready to prove Theorem A. The last Proposition takes care of the 

case when X = L. Suppose that Я is an SP-ring and consider Y Я К where К 
is the intersection of all the SP-subrings H^ of Я that contain G. Let the annihilator 
operations in И, К and Яд be *, # and X. We wish to prove К = У# © 7 # # . 
If 0 Ф X G X Ç Яя = 7^ © 7^^ then x = x^ + X2, where x^ e 7^ and X2 e Y^\ 
Since Яд is left large in Я we have by the Corollary to Proposition 3.2. 

y^ = 7* n Яд and 7^^ = 7** n Яд . 

Thus X = Xi + X2 is the decomposition of x in Я = 7* @ 7** and this holds for 
all X. Therefore x^, X2 e ПЯд = К and so Xj e К n 7* = 7 # and X2 6 К n 7** = 
=, УФ#. Thus X e 7 # © 7 # # and hence i^ = 7 # © 7 # #• 

'̂ ) Here we use the corollary to Lemma 3.1. 
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A similar proof works for X = P and if К is both an SP-ring and an L-ring then 
it is an 0-ring. 

Lemma 3.4. / / G is reduced and large in H then H is reduced. 

Proof. Suppose (by way of contradiction) that 0 Ф /z e Я and /г̂  = 0. There 
exist elements a, b e G so that 0 ф ah, hb e G. Now 0 = ah^b = (ah) [hb) = 
= (ah) G{hb). Thus 0 = (ahb) (ahb) and hence ahb = 0. But M = {x e G \ xh e G} 
is a large left ideal of G and we have shown that Mhb = 0. Now G is a subdirect 
sum of integral domains and it follows that (the support of M) n (the support 
of hb) is the null set. Therefore M n Ghb = 0 but this contradicts the fact that M 
is left large in G. 

A n o t h e r proof. Since G is reduced the singular ideals of G are zero. Thus [6] H 
is a quotient ring of G and so H is reduced [15]. 

4. PROOF OF THEOREM B. 

Throughout let G be a semiprime ring. A partition of P{G) is a maximal pairwise 
disjoint set of non-zero annihilator ideals of G. Let D(G) be the set of all partitions 
of P ( G ) and for J3/, ̂  G D(G) define ей/ ^ ^ if each Ae ^ is contained in some 
С e ^ . This is a lower directed partial order for D[G). LI fact, if ^ , ^ e D(G) then 

^ n ^ = {C n D I С e ^ ,̂ D e ^ and С n D Ф 0} 

is the greatest lower bound of ^ and ^ in D{G). 

If (Лд I Д e Л} ^ P{G) and С = UÄ;, = (П^я)' then С = f l ^ l and so there is. 

a natural isomorphism 
С + g-^ {-A', + g-~) 

of GlC' into UGJAl Now if ^ ^ ^ in D ( G ) then for each С e ^ we have С = LJ^я^ 
where the Л^ ^ ^ ? so there is a natural isomorphism 

G^ = U G\C - . " ^ ^ n ^ G/Л' = G^ . 

Let d?(G) be the direct limit of these rings G^. Then (9(G) consists of all vectors / = 
= (—/<g—) such that for j / ^ J* in T>{G) we have 

l^ Ф 0 or 1^ = 0 implies / ^ П ^ ^ = /^ , and 

/^ = 0 and /^ Ф 0 implies /^ ^ G^U^^ . 

Note that each non-zero component l^ of / completely determines /. Also if G is 
commutative so is 0{G). 

The map % of л: G G.^ onto the element I e (P(G) with L^ = x is an /-isomorphism 
of G<g'into (P(G). (9[G) is the join of the directed w.r.t. inclusion set of subgroups G^Ö*.̂ . 
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1) The map g -^ g is an isomorphism of G into 6[C), where 

gc = (—С + g~) for all Ce^ , 

If G has an identity 1 then 1 is the identity for (9{C). 
2) / / 0 Ф /, /c e 0{G) then 0 ^ el e G and eke G for some с e G. Thus (P{G) is 

a ring of left quotients of G and also a ring of right quotients. In particular, 
G is large in (P{G). 

Proof. Pick ^eD(G) so that /<̂  Ф 0 Ф k^. Then l^ = {-~C + x—) with say 
С + X Ф С and hence ex ф 0 for some ce С Now cD = 0 for all D G ^ , D Ф C, 
so D' + ex = D' for all such D. Thus С + ex is the only non-zero component of 
cx<g. For if ex e С then ex e С n С = 0, a contradiction. Thus 0 ф % /^ = cx^^ 
and hence 0 ф c/ = ex e G. 

Now /c<̂  = (—C' + j ; — ) Ф 0. If cy Ф 0 then as above 0 ф cA: = cĵ  e G and if 
cy = 0 then e.̂  Ф 0 Ф kc^ and %/c,^ = 0, but then c/c = 0 G G. 

Corollary. (9{G) is semiprime and if G is reduced then os is (9{G). 

Proof. This follows from (2) and Lemmas 3.1 and 3.4. One can, of course, prove 
this directly from the construction of G{G) since (9{G) is the set theoretical join of 
a directed set of copies of the G^. 

3) {P(G) is laterally complete. 

Proof. Let 5 be a disjoint subset of (9{G). It suffices to find a partition S of P(G) 
so that the elements / G S have non-zero disjoint support in G^. For then yig exists 
in G^ and hence V^ exists in ^(G). Suppose that I, к e S and have non-zero com­
ponents L^ and k^. Then /^ = (..., С + /(C), . . . ) , where /(C) G G, and С + /(C) ф 
Ф С iff /(С) С Ф О iff </(С)> С Ф О iff </(С)> п С Ф 0. Let j / be а partition of 
P{G) so that ^ ^ ^ and J3/ contains all the (</(C)> n C)'' Ф 0. Then (</(C)> n C) + 
+ /(C) are the only non-zero components of /^. For suppose that Ae j ^ , Ä Ç С e^^ 
and .4 n «/(C)> n C)" = 0. Then 

</(C)> Л Ç </(C)> пАЯ </(C)> n С n Л ç «/(C)> n С)" n Л = 0 

so A' + /(C) = A\ 
We next show that {D n Щи)})" n {C n </(C)»'^ = 0, First 

l^n^j = (..., (C n ny + /(C), ...) and k^^^ = (..., (C n D)' + /c(Z)), ...) 

and since I 1 к it follows that <7(C)> <fe(D)> ç (C n D)'. Now GJD n C)' is semi-
prime and since the product </c(I^)) OyC)} is zero modulo (D n C)' so is the inter­
section. Thus </c(D)> n </(C)> £ (i> '^ c y and so 

{D n ik{D)yy n{Cn </(C)»" = 

= {DnCn </c(D)> n 0{ФУ ^{DnCn{Dn С)У = 0" = 0 . 
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Now choose a partition ê of P{G) that contains all of the (C n </(C)>)" Ф 0 for 
all the / G S. Note that S need not be < ^ . For a fixed J G 5 choose ^ and ^з/ as above 

Pick the element t e (9{G) will non-zero S compinents (</(C)> n C)' + /(C) for this 
fixed / G 5 where, of course, </(C)> n С Ф 0. Then 

Thus 0 Ф f̂  = /^ and so each / G 5 has non-zero support in C^ and these supports 
are disjoint. 

4) Ф{0) is a P-ring. 

Proof. We need to show that for 0 Ф / G 0{G) 

6[G) = /** e / * 

Consider 0 ф î : G (P(G) and pick ^ G D{G) such that /^ Ф 0 Ф fc^. Then l^ = 
= (—С + /(С)—-). Pick ^ ^ S/E D{G) SO that each (C n </(C)»'' Ф 0 belongs 
to j / . Then 

G^ = ПС/(С n </(c)»' e П G/^l 

Let x{y) be the element in (P(G) with j / - t h component x^ if x ^ ф 0 ( j ^ if y^ Ф 0) 
and zero otherwise. Then к = x + y. Now we have shown that the only non-zero 
components of / are of the form (C n <;(C)>)' + /(C). Thus /^ ± y^ and so 3; G /* 
and hence it suffices to show that x G /**. Consider 0 ф / G (P(G) such that / ± f. 
To complete the proof we must show that x 1 t = 0. 

Pick ^ G D(C) so that 0 Ф r^ = (~—D' + t{D)—). We know that (C n </(C)»'' n 
n (D n <r(D)>)'' = 0 so we may choose 9 ^ ^ e D{C) that contains the 
(C n 0{C)yy Ф 0 and the {D n <t(/))»" Ф 0. 
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Now x^ has non-zero components of the form (C n </(C)»' + z and these are also 
the non-zero component of x^n^- ^^^o t has non-zero components of the form 
{D n <t{D)yy + t{D). It follows that x^^^ 1 t^^^ and hence x 1 f = 0. 

Lemma 4.1. / / G is a semiprime ring and also a V-ring and an L-ring then G 
is an 0-ring. 

Proof. Consider С e P(G) and let {a;^ [ Я e Л} be a maximal disjoint subset of С 
Then a = \/a;^ exists and it suffices to show that С = a'\ for then G = a" @ a' = 
= С @ a'. Now G is a subdirect sum of prime rings [Ti\i G I}. If a ф С then 0 ф ax 
for some x e С and since x Xa^ we have that ax is disjoint from the support of 
each of the a^- Then ax + a is an upper bound for the a^ that is not comparable 
with a, a contradiction. Thus a G С and so a" ^ C" = С 

Now it suffices to show that a' ^ ClfO ф у G a' then yGa ~ 0 and so yGa^ = 0 
for all Д. Now if y ф С then О Ф су for some с G С. Thus {су] u {а^ | Я e Л} is а dis­
joint subset of С, but this contradicts the maximality of {a;t | Я e Л}. 

For an arbitrary semiprime ring G we have the following corollaries. 

Corollary I. (P(G) is an 0-ring. 

Corollary II. If С G P{G), {a^ | Я e Л} is a disjoint subset of С and a = У^я 
exists then a G C. 

Thus we have proven the existence of an X-hull for a semiprime ring G, where 
X = P, SP, L or 0. We next prove the uniqueness. 

First suppose only that G is semiprime and left large in H. 

Lemma 4.2. There is a natural isomorphism т of (9(G) into (9{Н) and Gx is left 
large in (9(H). 

Proof. Since G is left large in Я for each С G P(G) we have С = G n C^^ and 
С = G n С*. Thus С + g -^ C^ + g is an isomorphism of GJC into HJC^. For 
each ^̂  G D(G) let 

Then ^ " G 1)(Я) and there is a natural isomorphism % of Gr̂  into H<^-. Moreover 
if ^ ^ ^ in D(G) then 

n.,w 

commutes. Then the % determines an isomorphism т of 6'(G) into (Р(Я). 
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Let a (ß) be the natural isomorphism of G (Я) into (P{G) {Ф{Н)) 

H (9{Н) 

Ga:=G^ (9{G) 

= {—С + ^—) т., = ( -C* + If g eG and #̂ G D{H) then (дост),^- = {goc^g т, 
+ ö̂ —) = (ö î5>e-. Thus дат = gß. 

Consider О ф I G С0(Н) with /.^- = (—С* + х—) where say 

С* + X Ф С* = {у G Я I уЯС - 0} = {у G Я I СНу = 0} . 

We first show that Cx ф 0. For suppose that Cx = 0 and hence CGx = 0. We 
know xHC Ф 0 and so 0 ф xhc for some he H and x G С Thus there exists an 
element g e G such that 0 Ф gxhc = ke G n C** = С Thus /cGx = 0 and hence 
kGgx = 0. But then kGk = 0 and hence /c = 0, a contradiction. 

Thus 0 Ф cx for some с e С == G n С**. Now find D Ф C** in ^ ~ , then cD = 
= Dc = 0 so D* + cx = D*. Therefore C* + cx is the only non-zero component 
of (cx) jß̂ g--. Therefore (cx) ßrg~ = (cß^^- hß- and hence (cx) jß = cjS/ in Hß. 

Now GjS is left large in Hß so there exists g eG such that 0 ф gß{cx) ß e Gß. But 

gß{cx) ß^gß cßl = {gc) ßl . 

Thus Gß = GT is left large in (9{Н). 
Now suppose that Я is an X-hull of G. We show that Я is unique by showing that a 

can be extended to an isomorphism Q of H onto the X-hull К of Ga in (P(G). 

G ^ H 

Goc^K ^ (9{G) 

Now Gj5 = Gai с (P(G) T which is an X-group. By Lemma 4.2 Gj? is left large in ^(Я). 
Thus Hß n é̂ (G) T is an X-group that contains Gß and since Hß is an X-hull of Gß 
we have 

Gar = G/i ^ Hß ^ 6{G) T ç е?(Я). 

Thus Hßx~^ is an X-group that contains Ga and so 

Ga = GßT-' Ç X Ç Я^От-^ ç (P(G) 

and since Я)5т~ ^ is an X-hulI of Gßx'^ we have К = HßT~^. 
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Thus if H^ and H2 SLÏQ X-hulls of G then there is an isomorphism of H^ onto H2 
that induce the identity on G. Actually it follows from Theorem 5.4 that the iso­
morphism is unique. This completes the proof of Theorem B. 

5. PROPERTIES OF X-HULLS 

Throughout this section let G be a semiprime ring. If ^ e D(G) then there exists 
a partition j / ^ ^ that consists of principal annihilators of G. For in each С e ^ 
pick a maximal disjoint subset {a^ [ a e Л^}. Then С = (П^а)' ~ (U<^a)'' " l-iK-
For a^ e С and so a'^ ^ С and hence П^« — ̂  • Suppose that x e fj^« then xGa^ = 0 
for all a. If X Ф С then 0 Ф xc e С for some с e С and hence a fixe = 0 for all a, 
but this contradicts the fact that (a^ | a G AC} is a maximal disjoint subset of C. 

Theorem 5.1. / / G fs a F-ring then each 0 ф / e (9{G) is the join of a disjoint subset 
of G. In particular G^ = (9{G) and hence G^ is an SV-group. 

Proof. Consider 0 Ф Z e (P(G) and suppose that h^ ф 0. Then their exists a parti­
tion ^ ^^ß that consists of principal annihilators of G. 

j ^ = {al I Я e Л} . 

Now 0 Ф /^ = (—a'x + /(A)— )̂ and since G = «^ © Й^ we may assume that each 
/(Я) belong to a[. In particular the /(Я) are disjoint in G and 

Й ^ = (0 - 0, ^1 + /(Я), О - 0 ) . 

Thus /^ = V^W^ ^"<i hence / = \J\{}). 

Corollary I. / / G is an 0-ring then G = G — (9(G). 

Corollary II. G ^G^ ^G^^ ^ (G^^f = (G^f = G^ = C){G) when the indicated 
X-hulls are in ^ ( G ) . In particular 0(G) is the orthocompletion of G. 

Proof. It is clear that G ^ G^ Я: G^^ and {G^f Ç {G^^f ^ G^ ^ (P(G) so it 
suffices to show that [G^f = (9(G). 

Let H be the P-hull of G and a, ß, т be as in the proof of Theorem B. Then by 
Theorem 5.1 (Hß)^ = (9(Н) and 

ß 
H ^ Я ç (Hß)^ =(9(Н) 

G - ^ G ç= (G^f ç d?(G) 

Thus Я)5 = Ĝ T ç (G )̂̂ ^ T ç б^(Я) and (G )̂̂ ^ т is an L-ring that contains Hß. Thus 
(G^f T = (9(H) and so (G )̂̂ ^ = (9(G). 
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Proposition 5.2. {G^Y = {G^Y^ ^ G^, but we need not have equality. Thus the 
operators SP and L need not commute. 

Proof. If С e P{{G^Y then С n G^ = Cy e P{G^) so as in Lemma 4.1 Cy = a'' 
for some a e Cy. Thus 

С = Су1л = a"ji = (a")** = a** 

and hence {G^J == a** e «* = С e «* and so (Ĝ )̂** is an SP-ring. 
We now give an example to show that (G^)^^ need not equal G^. Let D = Z\x] 

be the ring of polynomials with integral coefficients and let V = Tl^Li /),-. Then V 
is a ring with identity e = (l , 1, . . . ) . Let 

G =^{VEV 
H = [veV 

the constant term in each Vi is the same} , 
the Vi have only a finite number of distinct constant turns} 

It is reasonably clear that: 
1) G is laterally complete but not a P-ring, 
and 
2) H is an SP-rlng that is not laterally complete and since H 3 ^T=i ^h ^^ = 

Thus it suffices to show that 
3) H = Ĝ P = G^ 

Now G is large in the SP-ring H and ее G. Suppose that G я К я H, where К 
is a P-ring and let '(*) be the annihilator operator in К(Я). Let У be a subset of 
{1, 2, ...} and define 5 G G by 

\х if iE Y, 
\0 otherwise 

Then К = s" © s\ Я = 5** © s*, 5** n К = s" and 5* n X = 5'. Now e ^ 
= a + Ь in 5'' © s' and this is also the decomposition of e in Я. Thus a e X and a 
is the characteristic function of У. But these characteristic functions together with G 
clearly generate Я and hence К = H, Therefore Я = G .̂ 

Proposition 5.3. T/ze complete ring Q{G) of left (or right) quotients of G is an 
O-ring and G ^ G^ ^ Q{G). 

Proof. G is left large in Q{G) and hence 6(G) is semiprime. Now as we have seen 
Q{Gf is a ring of left quotients of Q{G) SO Ô ( G ) = Q{Gf. 

Tlieorem 5.4. / / a is an isomorphism of Gj onto G2, where the Gi are semiprime 
rings, then there exists a unique extension of a to an isomorphism of G^ onto G^, 
where X = P, SP, L or 0. 

Proof. The proof of Theorem 2.7 in [5] establishes that a can be extended to an 
isomorphism of G^ onto Gf. 
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For the uniqueness is suffice to show that an automorphism a of G^ that induces 
the identity on G is the identity, where G is a semiprime ring. Now a induces the 
identity of P{G) and hence on P(G^) and by the above we may assume that X = 0. 
Thus we may assume that cc is an automorphism of (P(G) that induces the identity on G. 
Consider le (P{C) with l^ = ( - C ' + y—) and suppose that (/a)^ = (—С + x—) 
where С + x ф С + у. Then 

(g — I)<^ and (0 — 0, С -{- y - x, 0 - 0) are disjoint in G.^, 
and 

{{g - 1) (x)^ and {O - 0, С + y - x, 0 - 0) are not . 

Thus it follows that a does not induce the identity on P((P(G)), a contradiction. 

Proposition 5.5. If G is a semiprime ring, a is an automorphism of G^ and X = 
= P, SP, L or 0 then 

(i) G^a = (Ga)^ and so if Goc = G then G^a = G^, and 
(ii) if Goc <^ G then G^a Ç G^. 

Corollary. / / a is an endomorphism of G^ that induces an automorphism on G 
then a is an automorphism of G^. 

The p r o o f is entirely similar to the proof of Proposition 2.8 in [5] and so we 
omit it. 

Proposition 5.6. / / G is a regular ring then so are G ,̂ G^̂  and G^. 

Proof. Since homomorphic images and products of regular rings are regular, 
each G^ used in the construction of (9(G) is regular and hence G^ n (P(G) is regular. 
Now CHAMBLESS [3] has shown that G^ and G^̂  are (isomorphic to) direct limits of 
certain of the G<̂  and hence they too are regular. 

Question. / / G /5 regular then is G^ regular! 

HuiJSMANS [7] shows that many of the theorems about commutative regular rings 
hold for hyperarchimedean lattice-ordered groups and conversely. In particular, 
each principal ideal of such a ring R is a summand. Therefore R = R^ and so 
R^ = R^, Now the principal /-ideals of a hyperarchimedean /-group Ä are summands 
and so Л is a P-group. However Ä^ need not be hyperarchimedean. For if Ä is the 
cardinal sum of a countable number of copies of the group of reals then A^ = A^ 
is the cardinal product which is not hyperarchimedean. So the analogy between 
commutative regular rings and hyperarchimedean /-groups is far from complete. 

Suppose that G is a Boolean ring. Then the partial order that we have introduced 
is the natural lattice ordering of G. For x ^ y iS xy = x A y = y = y^. Also 
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X ^ xy, and X ^ z and y ^ z imply xy ^ z. Since G is regular G == G^ and so 
G^ = G^ Clearly G^ ^ (!?(G) is Boolean and hence so is G^^ 

1) The map a -^^ a" is an isomorphism G into P[G). 

This is well known and easy to prove. 

2) P{G) = {Gyf = (Gyf. 

Proof. Consider С e P(G) and pick 0 ^ g e С Then gy = g'' ^ C" ^ С and hence 
gyC = gy n С ^ gy e Gy. Then Gy is large in P(G) and Gy is a P-ring. Therefore 
since P{G) is an L-ring P{G) ^ (Gy)̂ ^ = (Gy)°. But if {a^ | >i e A} is a maximal dis­
joint subset of С then С = U^I- Therefore P ( G ) is the L-hull of Gy. 

3) P ( G ) is the Dedekind-MacNeille completion of Gy iff G has an identity. 

Proof. We have shown that each element in P{G) is the join of disjoint elements 
from Gy. Thus if С e P{G) then С = \Jal = {Oa^ and so С = П^1- But G = 
" ci\ © al and so since e = (e + a^) + <:/я we have ОД = (^ + Ö^)". Therefore 

4) P{G) = (P(G) fl«J t/z/s is also the complete ring of quotient of G. 

Proof. We know P{G) ^ G^ ^ (9(G) and (see [11]) P ( G ) is its own ring of quo­
tients. Thus (9[G) is the complete ring of quotient of G. 

Remark . The fact that P(G) is the ring of quotients of G is established in [11]. 
Now let a be the natural isomorphism of G into 6 (̂G). 

G-^P{G) 

0{G) 

it follows from Theorem 5.4 that there is a unique extension Q of ^"^a to an iso­
morphism of P{G) onto ^ ( G ) . 

For К e P{G) let {oc;^ \ Àe A} be a maximal disjoint subset of К and pick a parti­
tion ^ of P{G) that contains the a^. Now К =^ Ual and so Q must map take this 
onto Уа^а. Therefore Kq is the element in (9{G) with ^-th component 

(_C' + /(C)-) 

where /(C) = a^ if С = a^ and /(C) = 0 if С is not one of the a^ 

5) Thus we have factored the natural embedding a of G into 0[G) through P{G) 
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Suppose that G is a commutative semiprime ring Abian [1] calls an element 
О ф a e G a hyperatom if for each element x e G 

X ^ a implies x = 0 or a , 
and 

X Ф 0 implies axs = a for some s e G , 

G is hyperatomic if for each 0 Ф g e G there is a hyperatom a ^ g. Abian shows 
that G is (isomorphic to) a direct product of fields iff G is hyperatomic and laterally 
complete. 

Proposition 5.8. Let G be a commutative semiprime ring. Then G^ is a product 
of fields ijf G is hyperatomic. 

Proof. ( ^ ) Using Abian's results we may assume that SF^ ^ G с üF,-, where 
the Fi are fields. Now clearly ЦР^)^ = UFi and hence G^ = ЛЕ^. 

(->). We are given that G ^ G^ = UFf. Since G is large in G^, for each i there is 
an element of the form (O—0, a,., 0—0) e G, where 0 Ф â  e F^. Let Pi be the projec­
tion of G onto the /-th coordinate. Then 

G Ç ПР^ Ç UFi 

and since ПР^ is an L-ring it follows that ПР^ = TIF^. Thus there is an element of 
the form (— af ^ —) in G and hence (0 — 0, 1, 0 — 0) G G. In particular Fi ^ G 
and so UFi с G. Thus G is hyperatomic. 

Remark . Otis Kenny has shown this Abian's results can be extended to non-
commutation reduced rings. Thus if P is a reduced ring then R^ is a product of divi­
sion rings iff R is hyperatomic. 

6. SEMIPRIME RINGS R FOR WHICH P(R) IS ATOMIC 

In the next few proofs we will use the fact that if a, b e A an ideal of R then a 1. b 
iff a and b are disjoint in A. Thus a ^ b in Aiïï a ^ b in R. For if arb Ф 0 for some 
r e R then arbsarb ф 0 for some s e R and since rbsar e Л we have a Ab ф 0. 

Theorem 6.1. For an ideal A 4" 0 in a semiprime ring R the following are 
equivalent. 

a) A is a prime ring. f) A" is an ideal that is maximal 
b) a' = A' for each 0 ф a G Л. w. r. t. being a prime ring. 
c) A' is a prime ideal. g) A'' is a prime ring. 
d) A' is a minimal prime ideal. h) A" is an atom in P(P). 
e) Л" /5 the largest ideal containing i) A' is maximal in P(P). 

A that is a prime ring. 
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Remarks , (a) If R is reduced then "prime ring" becomes "integral domain" 
and a minimal prime ring is completely prime [2]). Thus Ä' is completely prime. 

(b) If Л = <s> is principal then Ä' = s' and A" = 5". We shall call s basic provided 
the above conditions are satisfied. In particular, if 5 and t are basic then by (h), 
S r\ t = и or 5 = ^ . 

Corollary I. / / R is reduced, then 0 4= s e R is basio iff Rs is an integral domain. 

Proof. (->) Rs £ <s> which is an integral domain. 

( ^ ) Suppose (by way of contradiction) that 0 ф x, yes" and xy = 0. Then 
Then xsys = 0. Now xs = 0 implies x e s' n s" = 0 and so xs Ф 0 Ф j^s and 
xsys = 0. Then Rs is not an integral domain, a contradiction. 

Corollary XL If С e P(R) and A is an ideal in R and a prime ring then С ^ A 
or С пА = 0. 

Proof. IfO^aeCnA then A' == a' ^ С so A Я A" я С" = С. 

P r o o f of the theorem, (a -^ b). Consider a, b e A with a ф 0. If xea' then 
xRa = 0 so xsbRa = 0 for all s e R. Thus since Л is a prime ring and xsb, a e A 
we have xsb = 0 for all s G Я and so x e A', Thus a' ^ A' and since a e A, a' ^ A'. 

(b -> c). If (c) is false then there exists x, y G R\A' such that xRy £ A'. Thus 
for 0 Ф a e Л we have xtaRysa = 0 for all s, t e R. If xta ф 0 for some t then 
ysa 6 (xta)' — A' so ysa e A' n A = 0 for all 5 e i^ and so 3; e a' = A\ a contradic­
tion. If xta = 0 for all t e R then xe a' = A\ г, contradiction. 

(c -> d). We know that A' is the intersection of minimal prime ideals. 
(d -> e). If 0 = ayb e A" then a,b e R\A' and since RJA' is a prime ring axb ф A' 

for some x e R. Then aRb Ф 0 and so aA"b ф 0 and hence A" is a prime ring. Sup­
pose that В is an ideal of R and a prime ring that contains A\ We use the fact that (a) 
implies (b). If 0 Ф a e Л the A' = A"' = a' = B' and hence A" = B" ^ B, 

(Q -^ b -^ g). Clear. 
(g -» h). Suppose that 0 Ф В ç Л" and В e P{G). Then since В is an ideal in the 

prime ring A'\ В is also a prime ring. Then for 0 Ф Ь G Б we have В' = b' = A'" = 
= A' and hence В = B" = A". 

(h -> i). The map X -> X 4 s an antiautomorphism of P{G). 
(i -^ a). Suppose (by way of contradiction) 0 Ф 0, Ь e ^ and a Lb. Then a' 3 A' 

and since Ь e a' \ ^ ' we have a' з A' which contradicts the maximality of A'. 
A subset 5 of a semiprime ring Ä is a bas/5 if 
(a) S is a maximal disjoint set, 

and 
(b) each 5 e S is basic. 

The following properties of a basis 5 = {5^ | Я e Л} are clear. 

I. / / T is an automorphism of G the Sx is a basis. * 
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и. [si I А G л} is the set of all ideals of R that all maximal with respect to being 
prime rings. 

III. В = Hsl is the basic ideal. В is independent of the choice of S and invariant 
under all automorphism of R. 

IV. A basis for R contains one and only one (non-zero) element from each s'^. 

Theorem 6.2. For a semiprime ring R the following are equivalent: 
1) R has a basis. 
2) If 0 + g e R then gRs ф 0 for some basic element s. 
3) P(jR) 15 atomic. 
4) 0 = П ^ ' ' annihilator ideals that are also prime ideals. 
5) X' = 0 where X is the set join of all the ideals of R that are also prime rings. 

Proof, (l -> 2). This follows from the fact that a basis for R is a maximal disjoint 
set. 

(2 -> 3) If 0 Ф ^ G Б e P{G) then О'Ф grs for some basic element s and some r e R. 
In particular grs E <5> and so it is basic. Therefore В ^ (grs)" an atom. 

(3 -^ 4) If 0 Ф 0̂  G Я then g" ^ A an atom in P(R). Thus A' is a prime ideal and 
if g G A' then A ^ g" Я: A"' = A', a contradiction. 

(4 -> 5) Let {Ся I Я G л} be a set of annihilator ideals that are also prime ideals 
and such that Ç\Cx = 0. By Theorem 6.1 each C\ is a prime ring and so Z 3 C. 
Then 

X' ^ {{jcy = nc = 0. 

(5 -> 1) Let {Лд I Я G Л} be the set of all ideals of G that are maximal with respect 
to being prime rings. Then 

Х = ЮА,^ЪА,. 

For each ke A pick 0 Ф a^ G A ^ . Then [a^ | Я G Л} is a disjoint set of basic elements. 
If xeR and xRa^, = 0 for all 1 then x G a^ = Л^ so x G ( U ^ A ) ' = X' = 0. Therefore 
[a^ I Я G Л} is a maximal disjoint set and hence a basis. 

Remark . Since P{G) is a Boolean algebra it is atomic iff each proper annihilator 
ideal is contained in a maximal annihilator ideal. Also, of course, JR has a finite 
basis iff P(G) is finite. 

Lemma 6.3. / / R is a semiprime ring and 0 Ф s G С an ideal of R then s is basic 
in С iff s is basic in R. 

P r o o f (-^). If s is not basic in R then there exists 0 ^ x, y e <s> ^ С such that 
xRy = 0. Since С is semiprime xc^x Ф 0 Ф ус2У for Ci, C2 G С. Now xc^x, ус2У G 
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G <5>c, the ideal of С generated by s, and xcixRyc2y = 0. Then xCiX<5>i ус2У = 0 
but this contradicts the fact that <s>^ is a prime ring. 

( ^ ) . If s is not basic in С then there exist 0 Ф x, j e <5)^ such that x<s>c у = 0 
and since <5>̂ . is an ideal in the semiprime ring C, xCy = 0 and similarly xRy = 0 
but the means that <s> is not a prime ring, a contradiction. 

Corollary. For a semiprime ring R following are equivalent: 

a) R has a basis. 
b) <a> /?a5 a basis for each 0 ^ a e R. 
c) £ac/z proper ideal of R has a basis. 

Proof, (c -> b & c) Consider 0 ф с e С an ideal. Then cRs ф 0 for some basic 
element s of i^. 0 ф crs is basic in R and belongs to С so it is basic in C. 

crsCcrs Ф 0 since С is semiprime . 

Therefore cCcrs ф 0 so С has a basis. 
(b -^ a) If 0 Ф a e jR then a^a} 5 Ф 0 for some basic element s in <«). Thus 

aRs Ф 0 and 5 is basic in R. 
(c -> a) Consider 0 ф g e R. If (Ö^) is a prime ring then g is basic and gRg ф 0. 

If <^) is not a prime ring the there exist 0 ф a, b e <^дУ such that aRb = 0. Thus 
0 Ф a'' n (дУ С (ö')- Pick О Ф с e С = a" n <öf> then ö̂ î c Ф 0; otherwise с e 
e g' r\ g" = 0. Thus yRs ф 0 where s is basic in С and hence in JR. 

Proposition 6.4. Suppose that R is a semiprime ring and a large left subring of S, 
â) If К = {/ĉ  I Я e /1} is a basis for R then it is also a basis for S. 
b) If S has a basis then so does R. 

Proof, (a) If 0 Ф 5 G -S and s 1 k^, for all À then pick xe R such that 0 ^ xs e R. 
Then xs ± /сд for all Я but this contradicts the fact that К is a maximal disjoint subset 
of R. Thus К is also a maximal disjoint subset of S. Now kl is an atom in P(R) and 
so {klY"^ = /<:** is an atom in P{S). Thus each /ĉ  is basic in S and so К is a basic 
for S. 

(b) Suppose that К = {/ĉ  | Я G Л} is a basis for S. For each Я pick an element 
a^e R such that 0 ф a;̂ ^̂  ^ ^- Now («я^я)** = <̂̂** so а^^я is basic in S and since 
(^Лх)" = (<^А я̂)** п 1̂  we have that (̂ f̂ /c )̂'' an atom in P(JR) and so A^^A is basic 
in J .̂ Since {a^/c^ | Я G Л} is a basis for S it is a maximal disjoint subset of S hence 
of R. Then {a^k;;^ | Я G Л} is a basis for JR. 

Let S = (s^ I Я G л} be a basis for the semiprime ring R. Then each Rjs'^, is a prime 
ring and П^я = 0- Thus 

g _ - (—5; + 6f—) 

is an isomorphism of R into К = JJRJs';,. * 
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Theorem 6.5. К = {Raf and if S is finite К = (Я(т)^ In particular P{R) is atomic 
iff R^ is a product of prime rings. 

Proof. Consider 0 Ф x = (—s[ 4- X;^—)еК with say s'^ + x^ Ф 5 .̂ Then 0 Ф 
Ф a ^ s^gx^ for some g e R and since a e (ПяФа ^я) "̂  ^̂ i we have 

«d - (0 - 0, s; + fl, 0 - 0) = {{s,g) a) x . 

Thus Ra is left large in К and so Ясг ^ {R(^Y ^ i^- We next show that s'^ + x^ = 
= (0 - 0, 5; + x„ 0 - 0) E (/^(j)^ and hence (i^d)^ ^ li^/s;. 

Let * (# ) be the annihilator operators in {RaY (K), 

{Ray == 5; + s^ * * e 5; + st = M **© {s^ay , 

Xo,cr = с + J 

but this is also the decomposition of x^a in 

К - s; + 5, # # e 5; + s, # ^ /^/5; e Пяф, Rjs', 

Therefore С = 5̂  + x^ (^cr)^. 
Now clearly К is the lateral completion I^RJs^ and hence of (i^cr)^. Therefore 

X = {Raf. If S is finite then К = HRJs'^ and so {Aaf = X. 
Finally if R я R^ = TIT^ where the T̂  are prime rings then R^ has a basis and 

so by Proposition 6.4 /^ has a basis. Thus P(JR) is atomic. 

Remark . If Я is reduced then each ŝ  is completely prime [2] and so the Rjs'^, are 
integral domains. 

Corollary. / / jR is a semiprime F-ring with a basis [s;^ l'À e A] then X = ŝ  © 5̂  
for each ÀeA and hence there is a natural isomorphism т such that Es^ Я RT Я 
^ Usl ^ K. In particular Hs'^ is the 0-hull of RT and hence R is a 0-ring iff 
Rx = Us'l 

We say that a disjoint subset {5^ | Я e A] is bounded by x e R if xRs^ Ф 0 for 
each le A. 

Theorem 6,6. If R is a semiprime ring that satisfies ( F ) each bounded disjoint 
subset of R is finite, then R has a basis. 

Proof. It suffices to show that ifO^geR then gRs Ф 0 for some basic element 5. 
If g is basic then let 5 = ^. Suppose that g is not basic and hence <^> is not a prime 
ring. Then there exist (non-zero) disjoint elements g^ and 0̂2 ^^ ^ОУ- Now gRgi Ф 0; 
otherwise ^1 G g' n ^g} = 0. Thus if ^̂ i is basic we are done. If not there exist disjoint 
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elements дц and д^2 in <^i>. Note that gn^Ql and gl n g'^ = 0 so дц -L gi-
We proceed in the way 

9. 

9iiz 

Fig. Î 

Since g bounds the disjoint set g2, g 12^ g 112^ ••• this process must halt. 

Corollary I. jR has a basis of n-elements iffR contains n disjoint element but not 
n + 1 such elements. 

Proof. (-»). If a^, a2 , . . . , «и + 1 are disjoint then we can find basic elements 
s , , . . . , s„+i and elements g^, ,,., g„ + ^e R such that a^giS^, ,.., a„+i g„ + t s„ + ^ are 
disjoint and basic, a contradiction. 

(<-). JR satisfies (F) and so has a basis that contains at most n-elements. Also we 
are given a disjoint set a j , ..., a„ so for a suitable choice of basic elements 5̂  we have 

aigis^,,,.,a„gis„ 

are basic and disjoint. So R has a basis of n-elements. 

Corollary IL jR has a finite basis iff each disjoint subset ofR is finite. 

Proof. (-») If a I, a2, . . . is a disjoint subset of JR then for suitable choices of Sj 
and g^. 

^igiSu a2g2S2, • . . 

is a set of disjoint basic elements. Thus a j , «2 , . . . must be finite. 
(<-). Since jR satisfies (F) it has a basis which must be finite. 

Corollary IIL The following are equivalent. 

1) R satisfies (F). 
2) Each (^дУ has a finite basis. 

Proof. (1 -^ 2) Let a i , ^ 2 , . . . be a disjoint subset of <б?>. Then gRa-, Ф 0 for all / 
and hence the set is finite. Thus by the last Corollary <ö̂ > has a finite basis. 
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(2 -^ 1) Suppose 5j, S2, ... is a disjoint subset of JR and gRsi ф 0 for all i and a fixed 
g e R. Then gr^s^, g^i^i^ . . . is a disjoint subset in (^дУ and so must be finite. Thus 
the set Si, ^2, ..., is finite 

Corollary IV. For a ring R the following are equivalent. 

1) R is semiprime and satisfies ( F ) . 
2) R is a subdirect sum of prime rings. 

Proof. (1 -> 2) Let (5^ I Я e A] be a basis for R and consider Q ̂  g e R. Then 
gRs^ = 0 for all but a finite number of the 5;̂  and so ^̂  G ŝ  for all but a finite number 
of X. Now each s\ is a prime ideal and 

g -^ (—-si + g~~) 

is an isomorphism of R onto a subdirect sum of ^Rjs';^. 
(2 -> 1) Consider A — ЕЛ^ where A^ are prime rings. Then clearly A satisfies ( F ) . 

If i^ is a subdirect sum of ЪА^ then R is semiprime and each bounded disjoint subset 
is finite. 

Remark . If R is reduced then each Rjs^ is an integral domain so R is a subdirect 
sum of integral domains. 

Theorem 6.7. A semiprime ring R satisfies ( F ) iff R^ is a direct sum of prime rings. 

Proof. (->) By the last Corollary R Ç 11Ai when the Ai are prime rings and since 
Ai n R Ф 0 for each i it follows that R is left large in XAi. Therefore R ^ R^ ^ ЕЛ^, 
but as in the proof of Theorem 6.5 it follows that R^ 3 ЕЛ ̂ . 

(<-) Clearly R^ satisfies ( F ) and hence so does JR. 

Corollary. A semiprime ring is a direct sum of prime rings iff it is a P-ring that 
satisfies (F). 

Proposition 6.8. Suppose that R is a semiprime ring and let 

X = {xe R\X bounds at most a finite number of disjoint elements}. 

Then X is an ideal that satisfies (F) and if T is an ideal that satisfies (F) then 
T Я: X. Let {A;^ \ÀE A] be the set of all ideals of R that are maximal w.r.t being 
prime rings. Then ЕЛ;̂  ^ X Ç (^^я)" (^^d ЕЛ;̂  is the basic ideal of X. 

Proof. Consider x.yeX and suppose that (x ± y)Rai ф 0 for some infinite 
disjoint set a^, 2̂» ••• • Then an infinite number of the xRa^ Ф 0 or an infinite 
number of the yRai ф 0 a contradiction. Thus (X, + ) is a group. 

If ryRai Ф 0 then yRai Ф 0 so r y e X are similarly yreX. Thus X is an ideal 
that satisfies (F). 
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Now suppose (by way of contradiction) that xeX = (ZA;^y. Thus y = xz Ф 0 
for some z e {LA^)' and since R ^ {^A^" @ {^A^)' it follows that уА^ = 0 for all A. 
Then <v> is not prime and hence there exist j ' j , у2 e <>'> such that y^ 1 у2- Thus 
we have 

>i. 

Fig. 2 

And hence x bounds the disjoint elements J2? J12? • • -, ^ contradiction. Note that \f R 
has a basis then E^l^ ^ X ^ {^A^)" = R and lA;^ is the basis ideal of i?. 

7. THE RING ^(G) OF ALL /7-ENDOMORPHJSMS OF A SEMÎPRIME RING G 

Throughout let G be a semiprime ring. 

If G is reduced then a ^ b iff ab = b^ so each ring endomorphism of G preserves 
order. In general a ^ b iff agb = bgb for all g E G, so if a is a ring endomorphism 
of G and Ga is semiprime then aa ^ bß in Got but perhaps not in G. Now 

a + b ^ b iff a l b . 

Thus if a is an endomorphism of the group (G, + ) then a preserves order iff a preserves 
disjointness. 

Definition. A p-endomorphism of G is an endomorphism a of (G, + ) such that 
for a, b G G 

a ± b implies aot 1 b 

or equivalently 

С e P(G) implies Ca Ç C . 
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Proposition 7.1. The set ^(G) of all p-endomorphisms of G is a ring of order 
preserving endomorphism of (G, +) . 

Proof. Consider a, ß e .^(G), a, b e G and С e P{G). If a 1 b then aa 1 ß and 
hence aa ± ba. Thus a preserves order. Next Ca ^ С and so Caß Я Cß ^ С and 
hence aß e ^(G). If aGb = 0 then a{a ± ß) Gb = {aa ± aß) Gb ç aaGb ± aßGb = 
= 0. Thus a ± be P(G). 

Note that each right mukipücation of G is a p-endomorphism 

X -^ xg for all x e G and a fixed g ^ С . 

Now we may assume that G ^ ПГ^ where the Ti are prime rings. If a e ^(G), a ^ b 
and b^ Ф 0 then (aa); = (ba);. For a — b\b and hence aa — ba L b. Thus if bj ф 0 
the (aa ~ ba); = 0. 

Lemma 7.2. / / G /5 a/t L-ring, {a^ \ae A} is a disjoint subset of G and a e ^ ( G ) 
then 

(V« J T = V(fl,a) 

Proof. Since cr preserve order (ya^)a ^ â cr for each a and hence (уа^)(т ^ 
^ \/{a^a). Also by the above 

( a j ; Ф 0 implies {{\/a^ a)^ = {a^a)^ = {У{а^(т))^ . 

Now {\/a^) a + X = У{а^а) for x e G and we shall show that x = 0. If ( a j ; ф 0 
the Xi = 0 so X -L a^ for all a. Thus Да^ + x "^ a^ for all a and so V^a + ^ ^ V^a-
But this means that \/a^ 1 x and hence (V^«) o- ± x. Thus it follows that x = 0. 

Remarks . The proof only uses the existence of V^a and \/(а^(т). Note that we have 
shown that if x ± a^ for all a the x I. \/a^. Thus if {a^ | a e Л} Ç. C e P(G) and V<̂ a 
exists then V^a ^ ^- Therefore С is closed with respect to joins of disjoint elements. 

Corollary. / / {a^ \ a E A} is a disjoint subset of an L-ring G then for each g e G 

Proof. This follows from the fact that x -> x̂ f is a p-endomorphism of G. 
Actually one can prove a stronger result. If {a^ | a G Л} is a subset of a semiprime 

ring G and \/a^ exists then \/{a^g) exists and equals (\/a^ g. Whether or not the cor­
responding result holds for any p-endomorphism of G is an open questions. 

Theorem 13. Let G be a semiprime ring and let X = P, SP, L or 0. 
1) A p-endomorphism a of G has a unique extension to a p-endomorphism a^ 

of G^, 
2) / / a is 1 — 1 so is a^. If a is onto then so is o^ for X = P, SP or 0. 
3) / / a is a p-endomorphism of G^ such that Ga Я G then G^a £ G^. 
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The p r o o f is almost identical with the proof of Theorem 4.4 in [5] and so we 
omit it. 

Theorem 7.4. Suppose that G is a semiprime ring and consider the system 
(G^, + , S) for X = P, SP or 0. Then there exists a unique multiplication on G^ 
so that 

a) G^ is a semiprime ring. 
b) G is a subring of G^, and 
c) this multiplication on G^ induces the given partial order g . 

Proof. Note that a -L Ь iff a + fo ^ Ь so we have the concept of disjointness 
in (G'^, + , S)' We first verify the result for X = 0. Suppose that о is a multiplication 
of (P(G) that satisfies a), b) and c). We wish to show that this is the natural multi­
pHcation in 6^(G). The right multiplication of the elements in G by a fixed g e G 
is a ]}-endomorphism of G and hence it has a unique extension to a p-endomorphism 
of 0{G). Therefore 

X о g = xg for all x e (D(G) . 

Thus (—(x о g)^'—) = (—(хдУ^—). In particular if Xr̂  Ф 0 ф ä̂ ,̂  then 

(x о g}^ = (xg)^ = Xr^g^ . 

Suppose that x.^ = (0 - 0, С + f, 0 - 0) where С + t Ф С ^ С + g. Then 

g^g = (O — 0, С + g, 0 — 0) + (the other 'ff-components of g) = a^^ + b,^ . 

Now let a and b be the element in (9(G) with ^-th component ac^ and b,^. In particular, 
if b<^ = 0 then Ы b = Q. Now b and x are disjoint so x о Ь = 0. Thus x о a = 
= X о (a + b) and hence 

(x о a}^ = (x о (a + b% = (x о g).é = {xg)^ = 

= (0 ~ 0, С + tg, 0 - 0) - x.,a., . 

Now consider x, у e 6(G) with x.̂  ф 0 ф у<^. Then 

x^ = {^C + x(C)—) = \/xc , where Xc = (O - 0, С + x(C), 0 -- 0) , 

y., = {-C + j ; (C>-) = У у с , where Ус == (О - О, С + у{С), О - О) . 

Let Хс{ус) be the element in (9{G) with ^-th coordinate Хс{Ус) and, in particular, 
Xc — 0 iï Xc = 0 (ус = 0 if Vc = O). Then x = V^c and у = Vjc so 

X о >' = (\/Xc) о (V^c) = V(^c о Ус) = УЗссУс = (V^c) (УУС) = ^3^ • 

Therefore о is the natural multipHcation in (D(G). 
An entirely similar proof works for G^ and G^̂  since they are both direct Hmits. 
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8. BAER RINGS 

There are various definitions of Baer rings in the literature. К ist [9] defines a com­
mutative ring i^ to be a Baer ring if for each a e R 

a* = {x e Я I xa = 0} = Re 

for some idempotent e. In particular R = 0* = Re so the ring has an identity. Also 
Kist shows that R is semiprime. For if a^ — 0 then a e a* = Re and hence a = 
= ae = 0, In particular a* = a'. 

(1) / / R is a commutative semiprime ring with 1 then R is a Baer ring iff R 
is a F-ring. 

MEWBORN [12] defines a commutative ring Я to be a Baer r ing if for each subset A 
OÎR 

Л* = {x G i? I xA = 0} =^ Re 

for some idempotent e. 

(2) / / R is a commutative semiprime ring with 1 then R is a Baer ring in the 
sense of Mewborn iffR is an SF-ring. 

KAPLANSKY [8] defines a ring R: to be a Baer r ing if it satisfies two and hence all 
three of the following conditions. 

(a) If У4 is a subset of R then r(A) = (s e jR | ^5 = 0} =^ eR for some idempotent e. 
(b) If Л is a subset of J? then 1(A) = {s e R \ sA = 0} = Re for some idempotent e. 
(c) R has an identity 1. 

Note that Mewborn's definition is the commutative version of Kaplansky's. 

(3) If R is a reduced ring with 1 then R is a Baer ring in the sence of Kaplansky 
iff R is an SF-ring. 

Proof. Since R is reduced r(A) = 1(A) ~ A' and each idempotent is central. 

(4) Let R be a commutative semiprime ring with 1. Then R^ is the Baer extension 
of R constructed by Kist and R^^ is the Baer extension of R constructed 
by Mewborn. 

Finally we note that SPEED [14] has used the direct limit construction of [4] to 
construct R^ and R^^ for a commutative semiprime ring with 1 and also various 
Baer hulls of R that lie between JR^ and R^^. 
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