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Czechoslovak Mathematical Journal, 28 (103) 1978, Praha 

THE RANK OF EXTREME POSITIVE OPERATORS 
ON POLYHEDRAL CONES 

MIROSLAV FIEDLER and VLASTIMIL PTAK, Praha 
(Received November 17, 1975) 

In a recent paper on diagonals of convex sets [1] the authors have obtained 
a number of results describing the properties of this notion. It turned out that there 
is an intimate connection between diagonals of a polyhedral cone and linear depen­
dence relations between the extreme rays of the cone. 

One of the main results stated that an indecomposable polyhedral cone (of di­
mension n greater than one) has at least two diagonals; if it has exactly two diagonals 
then it is generated by w + 1 extreme vectors which satisfy exactly one relation of 
linear dependence. Such cones are called minimal. 

In the present paper we intend to describe completely the extreme rays of the 
cone P{Ci, С2) of all operators A such that AC^ a С2 in the case that both C^ 
and С2 are minimal cones. 

The main result (Thm. (2,6)) says — roughly speaking — that the rank of such an 
extreme operator may assume any of the possible values within the natural boundaries 
with the exception of rank two. 

1. Preliminaries. We shall use the notation and terminology of the paper [1]. In 
particular, Н о т [E, F) will denote the set of all linear operators of the linear space E 
into the linear space F. 

We shall need the following technical result. 

(1Д) Suppose we are given two spaces E^^^ and E^^'^ and two sets of vectors 

p{l,l),...,p{Uv,)eE^'\ p{2,l),...,p{2,v^)€E^'K 

Denote by R^ the linear space of all column vectors r of length v^ with coordinates 
r^ = (r(l , l) , ..., r(l , Vi)) such that 

tr{l,j)p{lj) = 0, 
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Let JR2 have a similar meaning with respect to the space £^̂ ^ and the set of vectors 

p{2,l),...,p{2,V2). 
Denote by D(i/̂ ) the hnear space of all V2 by v^ matrices В such that BR^^ a R2. 

For each В e 0{ф), there exists an operator ф[В) e Horn {E^^\ E^^^) such that 

ф{В)р{Ц) = ^.Ь!,р{2Л)-

The mapping »/̂  is a linear mapping of D{il/) onto Horn {E^^\ E^^^), Its kernel consists 
of all 1̂2 by t̂ i matrices all columns of which belong to ^2-

Suppose now we have chosen bases in E^^^ and £^^^ and that the vectors p(l, i) 
and p(2, j) are represented in these bases as column vectors respectively, of lengths n^ 
and «2- Denote by P^ the n^ by Vi matrix 

P,={p{l,l),p{l,2),...,p{l,v,)), 

and similarly, by P2 the П2 by V2 matrix 

P2 = {p{2,l),p{2al.,.,pi2,V2)). 

If В e и{ф) is given and if \I/{B) is represented in these bases by the matrix 
M(i/^(B)), we have 

(*) MP, = P2B . 

Conversely, if M is an П2 by n, matrix for which there exists a V2 by v, matrix В 
satisfying (*), then В e D{il/) and |/^(Б) is the operator whose matrix in the given 
bases is M. 

Denote by C, and С2 the convex cones generated respectively by the sets of vectors 
p(l, Ï) and p{2,f). Then Те P{Ci, C2) if and only if T = xl/[B)for some nonnegative 
Be D{\l/), 

Proof. May be left to the reader. 

2. Results. We shall be dealing with minimal cones generated by relations of 
a particularly simple type. Set 

N, = {!, . .„Hi + I } , ^ 2 = {1,...,П2 + 1} 

and consider two decompositions 

iVi = ^1 u Б1 , N2 = Ä2U B2 

such that each of the four sets Ä,, B,, A2, ^2 contains at least two elements. 
Assume that the vectors р(1, Ï), i eN,, satisfy exactly one (up to a factor) linear 

relation 
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Similarly, assume that the vectors p{2, /), / e N2^ satisfy exactly one (up to a factor) 
linear relation 

(2,1) Proposition, (i) Let A be a matrix of type /?2 + i by n^ + \. Then A e D(^) 
if and only if there exists a number À{A) such that 

Z «/<T - Z ^ia = ^i^) for ieA2. 
asA\ aeBi 

= -À{A) for ieB2. 

(ii) Given Te P^C^, C2) there exists exactly one A ^0 with ф{А) = T which 
satisfies the following postulate: for each a there exists a j e A^ such that aj^ = 0. 
The corresponding Я(Л) will be denoted by p{T). 

(iii) According to (ii), there exists a one-to-one correspondence between operators 
in P{Ci, C2) and П1 -\- 1 by П2 -^ 1 matrices which satisfy the conditions sub (i). 
The matrix corresponding in this way to the operator Twill be called the canonical 
form of T 

Proof. According to (1,1) the inclusion A e 0(ф) is equivalent to the inclusion 
JBRI С R2, in other words, 

Br, = Щ Г2 

where r, and Г2 are respectively the column vectors with coordinates r̂ ,- = 1 for 
/ e yli, r^i == ~ 1 for / G By, r2j = 1 for j E A2, r2j = — 1 for j e B2. This proves (i). 

Now consider an A e P{Cy, C2); there exist, for each aeN,, nonnegative 
numbers âi„ such that 

Tp{\,a) = ^äj„p{2,j) + Yäj^p{2,j). 
JGAZ jeBz 

For each a eiV^, denote by (Ĵ  the minimum of all âj^. For each a e N, and each 
7 6 A2, set 

for j e B2, set 

Clearly, all aj„ 'are nonnegative and, for each a e Nj , at least one aj^, j e A2, is zero. 
Since 

Z p ( l , a ) - V p ( l , , ) = o , 

it follows that 

aeAi jeA2 (reAi jeBi xeBi jeAi xeBi jeBz 
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Rearranging this sum, we obtain 

E ( E «>. - Z «yO p(2,7) + E ( Z oj. - Z «л) K2, ;•) = 0 • 
jeAi (T^Ai TeBi J^Bi aeA\ xeB^ 

Since there exists only one relation for the p{2j), the relation just obtained must 
be a multiple of the relation 

ZK2,./)-ZK2,i) = o-
JeAi jeB2 

Hence there exists a number Я such that 

This proves the conditions sub (i). 
Suppose now that a}^, (j G N2, er eiVi)and Г satisfy the conditions sub (i). Let a 

be fixed. Then 

X (a,„ - a}.) p{2j) + X (a,„ - a'j„) p{2,j) = 0 . 
JeAz jeBz 

Consequently, there exists an rj^ such that 

aj„ ~ a'j^ = ц^ for each j e A2 , aj„ - a}^ = -rj^ for each J e JB2 . 

By (ii), there exist indices /c(cr) and /(o-) such that 

Since a;,(^)^ ^ 0, it follows that rj^ ^ 0. Since a^^^y^ ^ 0, we have rj^ ^ 0. This 
proves the uniqueness of the numbers a^ .̂ Uniqueness of Я follows from that of a,-̂ . 

To complete the proof, we shall apply Theorem (1,1) to the matrix В = (a^j). 
It is easy to verify that the relation BR^ с R2 is fulfilled. 

(2,2) Let A, B, C e P ( C i , C2) and suppose that A = В + С Suppose that for 
some Ï e N i 

jeN2 

with nonnegative a(j), 

M>. 0 = Z ßO) pi^J) > с p{i, i) = X y{j) P{2j). 
J€N2 JeNi 

Suppose further that there exist indices ke A2 and j e B2 such that a(/c) = (x(j) = 0. 
Then ix{s) = ß{s) + y{s)for all s e N2. 

Proof. Denote by г the vector г = (r(l), ..., r^n^)) with r(i) = —1 for i e A2 
and r(i) = 1 for / e ^ 2 . If we denote by oc,ß,y the vectors a = (^(1), •••, ociji^)), 
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ß ==..., y = ... it follows from the relation Л = В + С that 

ß + у = ос + ^r 

for some ^; in particular, taking the j*-th coordinate, we obtain 

0 й ßO) + y{j) = ^ . 

For the /c-th coordinate we obtain 

0 ^ ß{k) + y{k) = - ê = -ßO) + УО) S О . 
Thus ^ = 0. The rest is obvious. 

Now we are able to formulate the main result of this section, a complete description 
of all extreme rays of P(Ci, C2). 

(2,3) Theorem. Let E^^^ and E^^^ be two linear spaces of dimensions n^ and П2 
respectively. Let C^ and С2 be minimal cones in E^^^ and E^^^ respectively. Suppose 
that Ci is generated by the vectors 

p{\,i),...,p{\,n, + 1 ) 

and that C2 is generated by 
р{2,1),...,р{2,П2 + 1) . 

Let us introduce the following abbreviations 

JV, = {1 ,2 , . . . , « , + 1} for / = 1,2. 

Consider two decompositions 
N1 = Ai u Bi, / = 1,2 

such that each of the four sets A^, A2, B^, B2 has at least two elements and the 
vectors p satisfy the following two relations 

EKu-)-ZKu-) = o. 
je Ai jeBi 

1° For each triple i e A^, j e B^, s eN2 there exists an operator T such that 

Tp{Ui) = p(2,s), Tp{lj) = p{2,s), 

Tp{l, fc) = 0 for all /c e ATi , / Ф fe Ф j . 

Such operators will be called operators of type 1. The operator described above 
will be denoted by T^tj. 

2° For each pair of decompositions 

Ä2 = ö Ä2j , ^2 = и B2J 
JeA, JsBi 
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such that at least two of the sets A2J «^ ^^'^ ^^ ^^ ^^^^^ ̂ ^o of the sets Bzj ^^^ ^^"" 
void there exists an operator Tsatisfying the following postulates: 

Tp{iJ)= I P{2J) for iE A,, 
jeA2 i 

Tp{hi)= I P[2J) for /Gß, . 
jeB2 i 

Such operators will be called operators of type 2. 

3° for each pair of decompositions 

A2 = U A2J . B2 = \J B2J 
jeBi je At 

such that at least two of the sets A2J as well as at least two of the sets B2J are nonvoid 
there exists an operator T satisfying the following postulates: 

Tp{\,i)= Zpi2,j) for ieA,, 
JeBzi 

Tp{hi)= ЕК2.Л) for ieB,. 
JeA2 i 

Such operators will be called operators of type 3. 
Then We Horn {E^^\ E^^^) is an extreme element of P(Ci, C2) if and only if it 

is a positive multiple of an operator of one of the three types described above. 

Proof. The fact that the postulates above define operators and that these operators 
are distinct in an immediate consequence of the preceding theorem since the matrices 
defining the operators are given in the canonical form. 

We prove first that operators of type 1, 2 and 3 are all extreme. To this purpose, 
we shall prove the following proposition : 

Let В = (^bif^) be an Пх + 1 by П2 + 1 matrix with nonnegative entries. Suppose 
that A is a matrix in canonical form such that ф{А) is one of the operators of the 
three types described in the theorem. Suppose that В ^ A. Suppose that В e D{il/), 
Br^ = ^Г2 where the column vectors r^, Г2 are defined by r^ = (гц), r^i = I if 
I e ^ 1 , rxi= - 1 if i G ß i , Г2 = {r2i), Г21 = 1 if ie A2, Г2/ = - 1 if i G B2. Then 
В = OJA for some œ ^ 0. 

Proof. Since 0 ^ В ^ A, bik = 0 whenever а,^ = 0. Consider first operators of 
type 1. Thus there exist indices ie Ai,j e B^ and s EN2 such that the only non-zero 
entries of the matrix A = (a^J are agi = a^j = 1. Since Br^ = Cr2 and at most one 
row of В is non-zero, we have ^ = 0. Consequently, b^t ~ b^j = ^rjj ~ 0 which 
implies В = b^iA, 

Now let Л be a canonical matrix of an operator of type 2 corresponding to the 
decompositions 

^2 = и A2J, Б^ = и B2J. 
JeBi jeBi 
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Let / EN2 be ^ given index. It is easy to see that there exists exactly one index k{i) 
such that üi^kd) = 1 and all remaining entries a,-̂  are equal to zero. Indeed, if i e A2 
then k{i) = t if i e Л2,; if / e B2 then /<:(/) = Г if i G 82^ It follows from the relation 
Br I = ^Г2 that bi^^ = i for all i e N2- Consequently, В = (̂ Л. 

In the case of an operator of type 3 we obtain from Br^ = ^Г2 similarly В = —^A. 
The proof of the proposition is complete. 

Now let Tbe an operator of one of the three types described in the theorem and 
let A be the corresponding matrix in the canonical form. Suppose that T = T^ + T2 
where both T^ and T2 belong to P(Ci, С2). Let B^ and В2 be two nonnegative 
matrices defining Tj, and T2 respectively. We observe first that the matrix A, being 
given in the canonical form, has at least two zero entries in each column, one with 
row index in Л2 and one with row index in В2. It follows from Lemma (2,2) that 
A = Bi + B2. Consequently, ^ S B^ ^ A so that B^ = со A according to the 
auxiliary proposition just proved. Hence T^ = œA which proves that A is extreme. 

Denote by ^ the set of all operators of type 1,2 or 3. We have seen that every 
operator Г of .T generates an extreme ray of the cone P{Cx, С2). To prove that every 
extreme ray is a multiple of some operator in ^ , it suffices to prove that every 
element in P(Ci, С2) may be written as a convex combination of elements of ^ . 

First of all, we shall dispose of the following case. 

(a) There exists a nonnegative matrix A such that T = ф{А) and À{À) = 0. Then 
it is easy to see that 

S6N2 ieAi jeBi 2 ^ ^ks 
keAi 

where üp^ are the elements of the matrix A so that the assertion holds. 

We shall use induction with respect to the number h(T) of positive entries in the 
canonical matrix A corresponding to T. If h(T) = 0, we have T = 0 e conv ^ 
trivially. Now let h(T) > 0 and suppose the assertion proved for all operators with 
smaller h. 

Now we shall distinguish three cases. 

1° 1л(Т) = 0; in this case our assertion follows immediately from the preceding 
result (a). 

2° 1л(Т) > 0. Let A be the nonnegative matrix in canonical form such that ф{А) = 
= T whence À{A) = fi{T) > 0. 

We shall distinguish two subcases: 

21° there exists a non-zero entry a^i in A such that either (s, /) e ^2 x Б^ or 
(s, i) e B2 X A^. Let first (s, i) e A2 x Б^. It follows from the definition of Л(А) that 

X a,r > Щ > 0 
re AI 
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so that a^j > 0 for some j e A^. Since h{T ~ min {a^i, a^j) T^ij) < h(T), we have, 
by the induction hypothesis, Г — min (a^;, â y) T̂ ,-̂ -e conv ^ . Consequently, Те 
e conv ^ as well. If (s, i) e B2 x A^,it follows from 

reBi 

that a^j > 0 for some j e B^, Thus h(T — min (a^ ,̂ â y) T̂ ŷ ) < /г(Г) and the induction 
hypothesis applies as well. 

22° Д(Т) > 0 and all non-zero entries a^t of A are in the union of the blocks A2 x 
X Л1 and B2 X B j . 

221° First we dispose of the following simpler case: All non-zero entries of Б2 x B^ 
are concentrated in one column, with index fc, say. According to 3° of Proposition 
(2,1) we have 

a^k = Я(Л) for all s E B2 ' 

We shall denote by A the matrix obtained from A by changing the /c-th column of A 
as follows 

â fc = À(A) for 5 6 ^ 2 , a^j^ = 0 for s e B2 . 

Since the difference A — A has non-zero entries in the /c-th column only and this 
column is a multiple of the relation Г2, the matrix A generates the same operator T. 
At the same time, ^îis nonnegative and Л{А) = 0. It follows from (a) that ТЕ conv ^ . 

222° It remains to deal with the case where at least two columns with indices in B^ 
contain nonzero entries. 

In order to use the induction hypothesis in this case it will be necessary to choose 
an operator of type 2. 

Suppose we have found an operator TQ of type 2 such that SAQ ̂  A for some 
positive e where AQ is the canonical matrix of TQ. Then it is possible to find a positive со 
such that WAQ ^ A and, for TQ = ф{Ао), 

h{T - (oTo) < h{T) . 

By induction hypothesis, we have then T— CÛTQE conv ^ so that T e conv . ^ as 
well. This shows that it will be sufficient to find an operator TQ with the properties 
mentioned above. In other words, we are to find two decompositions: 

and 

^ 2 — и ^2k 
keAi 

keBi 

with the following properties: 

1° each of these decompositions contains at least two nonvoid sets; 
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Т the following two implications hold: 

whenever s e A21, then «s/c Ф 0 ; 

whenever s e ^2^ then 0̂ ^ Ф 0 . 

The rest of this proof is devoted to the construction of these decompositions. 
We shall define the decomposition 

as follows: 
For each ke A^ denote by V^ the set 

and set 

Clearly the sets ^2^ are disjoint. Since À(A) > 0, each row of ^ contains at least 
one non-zero entry. Consequently, (J ^2^ = A2. We shall show now that at least 

keAi 

two sets of decomposition {̂ 2fc} ^^^ nonvoid. To see that it suffices to observe that 
none of the sets V^ can fill the whole set A2, the matrix A being in the canonical form. 
It is obvious from the construction that the decomposition possesses property 2'^. 

To define the decomposition 

^2 = и Bzk . 
keBi 

we shall distinguish two cases: 
Consider first the case that each row of A with row index in B2 contains at most 

one non-zero entry. 
We set then В2k = {^ e В2; a^u + O}. Since À(A) > 0, each row contains at least, 

and thus exactly one non-zero entry. Consequently, the union of the ^2^ is the whole 
of В2 and the ^2^ are disjoint. At the same time, at least two of them are nonvoid 
because the non-zero entries of A in B2 x B^ are not all contained in one column. 

It remains to deal with the case that some row, with row index t e B2 say, contains 
at least two non-zero entries, say a^i ф 0, a^j Ф 0, /, j e B^. We define then for ke B^ 

Ж, = {SEB2; s Ф t, a,, Ф0} 
and set 

В2к= W,\U{K; reB,, r<k}. 

Now we set ^2^ = ^2^ for all кеВ^, different from both / and j . To define B2i 
and Bjj, we shall distinguish two cases: 

If B2i = B2\{t}, we set 

В21 = Вп, B2j = {t}. 
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If B2i Ф ^2 — {t}, hence is properly contained in B2 \ {t}, we set 

B2i = S2iKj{t}, B2j = B2j, 

It follows from this construction that the properties l"" and 2"" are satisfied in this 
case as well. The proof is complete. 

3^ JÂ[T) < 0. In this case, the proof may be effected analogously to that of case 2°; 
one has only to use operators of type 3 instead of operators of type 2. 

The attentive reader may have observed that one can proceed also as follows: 
The number j.i(T) depends on the choice of one subset of the decomposition N^ = 
= Ai yj Bi as Ai and the other as Б^. If we interchange the notation, the number II(T) 
will be changed to —ß{T) and the classes of operators of type 2 and 3 will be inter­
changed, too. Consequently, the validity of the assertion in the case ^f(T) < 0 follows 
from the vahdity of case 2°. 

(2.4) Theorem. Denote by r(7') the dimension of the range of the operator T. 
Then 

1° r{T) = i for each operator of type 1; 

2° if T is an operator of type 2 corresponding to the decompositions {^2j}> 
j 6 Ai and {B2j}, j G B^ then r{T) = K^ + K2 — 1 where K^ is the number of non­
empty sets A2J cind K2 the number of non-empty sets B2J. 

3° if T is an operator of type 3 corresponding to the decompositions {^2;}? 
j e B^ and {^2^}, j e A^ then r{T) = K^ -\- K2 ~ 1 where K^ is the number of non­
empty sets A2J and K2 the number of non-empty sets B2J, 

Proof. The assertion about the operator of type 1 is obvious. Let Tbe an operator 
of type 2 corresponding to the decompositions {^2j}? J ^ ^ i and {B2j}, j^B^. 
Suppose i G Л1 is such that A2i Ф 0. The vectors Pt with t eN]^\ {/} form a basis 
of the space E^^\ The dimension of the range of Tis equal to the number of hnearly 
independent vectors among the vectors Tp^, teNi\{i}. Denote by Â^ the set of 
all j e A^ such that A2J Ф 0; hence i e A^. Similarly denote by B^ the set of all j e B^ 
such that B2J Ф 0. It is easy to see that the vectors Tpj, j e Â^ ^ B^\ {/} are linearly 
independent and form a basis of the range of T. Thus г(Т) = K^ + K2 — I as 
asserted. 

The proof of 3"" is analogous. 

(2.5) Lemma, Let C^ and C2 be two non-empty sets, let 1 :^ r ^ min (|Ci|, [C2I). 
Then there exists a decomposition C2 = U ^ij ^^^h exactly r nonvoid com­
ponents C2J. ^^^^ 

Proof. May be left to the reader. * 
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(2,6) Theorem. Let C^ and С2 be two minimal cones in the spaces E^^^ and E^'^\ 
respectively. Denote by n^ and П2, respectively the dimensions of C^ and C2. Then 
P(Ci, C2) is a polyhedral cone of dimension ^1^2. The set of all extreme operators 
of P(Ci, С2) is described in Theorem (2,3). Extreme operators have rank either 1 
or greater than 2. If T is an extreme operator then T has rank 1 if and only if T 
is a positive multiple of an operator of type 1. Operators of type 2 have rank greater 
than 2 and each number r, 3 ^ r ^ min (/C|, /̂ 2) + min (/j, /2) ^'^^У be obtained as 
the rank of some extreme operator of type 2. Operators of type 3 have also rank 
greater than 2 and each number r, 3 ^ г ^ min (A:i, /2) + min (/̂ 2, /1) may be 
obtained as the rank of some extreme operator of type 3. Here, ki = |v4J, /̂  == IBL 
i = 1,2. 

Proof. We shall restrict ourselves to the proof that operators of type 2 realise all 
ranks between 3 and d = min (fc ,̂ ^2) + ^^^ (h^ h) ~ 1- Given r such that 3 ^ 
^ r ^ d there exist numbers r^, Г2 such that 2 ^ ẑ^ ^ min (k^, /C2), 2 ^ Г2 ^ 
S min (/1, /2) r == Г1 + Г2 — 1. By Lemma (2,5) there exist decompositions {^2/}? 

j e A^ of A2 and {^гу}' I ^ ^ ь of B2 with exactly r^ and Г2 nonvoid components. It 
follows then from Theorem (2,4) that the corresponding extreme operator has rank r. 

The case of operators of type 3 is analogous. 
In the papers [2], [3] it was proved that if С is an indecomposable cone then the 

identity is an extreme operator of T{C, C), This leads naturally to the conjecture: if 
both СI and С 2 are indecomposable then some of the extreme operators of P(Ci, С 2) 
has rank min (п^, П2) where n^, П2 are dimensions of C^, С2 respectively. Theorem 
(2,6) may be used to disprove this conjecture. Indeed, if we take /cj = 2 and /c2 = \п2 
(for П2 even), the maximal possible rank is 2 + \п2 — 1 = \п2 which will be less 
than min (^j, /I2) if ^\ > "2 > 2. 
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