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HANA PETZELTOVA and PAVLA VRBOVA, Praha 

(Received October 13, 1975) 

1. Introduction. In a recent series of investigations [4] — [8], V. Ptak has developed 
a new theory of iterative existence proofs, the so called method of nondiscrete mathe­
matical induction. The method is based on a simple abstract theorem about complete 
metric spaces, the induction theorem, and consists in reducing the problem to a system 
of functional inequalities to be satisfied by a certain function, called the rate of con­
vergence. 

In the present remark we apply this method to small divisors problems obtaining 
thereby an improvement of conditions and a considerable simphfication of proofs. 
Problems of this type have been investigated previously by V. I. ARNOLD [1], J. 
MOSER [3], I. N. BLINOV [2] and E. ZEHNDER [9], [10]. The authors owe a debt of 
gratitude to V. PTAK and E. ZEHNDER for the permission to use unpublished manu­
scripts [7], [10]. 

Let / be a mapping defined on a subset D of a Banach space Y with values in 
a normed space Z. Suppose that и e D and that the Fréchet derivative f{u) exists. 
It is natural to approximate the solution of/(x) = 0 by the element н — {f'(u))~^ f{u) 
provided /'{u) has a bounded inverse. In appHcations, this is not always the case so 
that it is necessary to replace (fXu))"^ by an approximate right inverse which maps, 
in general, the space Z into a larger space У =э Y. 

2. Preliminaries. We repeat here, for the reader's convenience, the essential facts 
about the method of nondiscrete induction (see [7]). 

Definitions. Let Tbe an interval of the form T = {t; 0 < t < ÎQ] for a positive ô-
A rate of convergence on Tis a function со defined on Г which maps Tinto itself and 

(j{t) = X ^"(0 < ^ 
n = 0 



(here œ" == со о со"" ̂  со̂  is the identity function). As usual, given a metric space 
(E, d), a subset M of E and a positive number r, we denote U(M, r) = {x e £ ; 
d(x, M) < r}. If we are given, for small t, a set Л(^) c= £, we define the limit Л(0) 
of the family Л(-) as 

(̂0) = П ( и ^(0)" • 

Now we may state the induction theorem. 

2.1. Theorem. Leti^E, d) be a complete metric space, let œ be a rate of convergence 
on T = (0, ^o)- ^or each t e T let Z{t) be a subset of £. Suppose that 

W(t) с U(Pf(co(f)), t) 
for each t e T. Then 

W{t) с и(Ж(0), (т(/)) 
for each t e T. 

Sometimes, it is more convenient to use the induction theorem in the following 
equivalent form. 

2.2. Theorem. Let (£, d) be a complete metric space, let œ be a positive function 
which maps T = (0, to) into itself and such that Hm co"(/) = 0 for each t e T. Let z 

00 

be a positive function defined on T such that сг̂ (г) = X! (''' ° ^̂ ") (0 ^ ^ f^^ each 

t еТ. For each t еТ let W{t) be a subset of E. Suppose that 

W{t) cz lJ{W{co{t)), T{t)) 
for each t e T. Then 

W{t) cz U(Pf(0), G,{t)) . 

This modification is obtained by setting Z(t) = W{T~^(t)) and applying the induc­
tion theorem to the family Z(-) and the rate of convergence cb = ТоСОот"^ under 
the assumption that the inverse т~^ exists and is defined on an interval T^ = (0, t^) 
for a positive t^, 

3.1. The main theorem. For each number cr, 0 ^ a ^ 1, we are given a Banach 
space {Y„, | [̂ ) and a normed space (Z^, [ [̂ ) with the following properties', 

r 7,, 1Э 7,, Z,, => Z, and \\.'^\ I for a' й o', 
2° each Y^ is equipped with another norm || ||̂  such that || ||^' ^ || ||̂  for a' ^ a 

« « ^ i I . ^ I I I I . -
Let R be a positive number and set 

R„ =^ {ue 7„ \u\, < R} , K= {ue 7,, ||м||, < R} 

so that R„ с R^. 
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Let f be a mapping defined on RQ with values in ZQ such that f maps each R^ 
into Z„. Suppose that the following conditions are satisfied: 

3° / /'5 continuous as a mapping from [R^, | |^) into (ZQ, | |O) for each a e [0, 1]; 

4° for each и e\J R^ there exists a mapping f'{u) \\j Y^ ^\J Z^ such that, for 
0<flr (T>0 flr>0 

each G' < G, и eR„ implies f\u) Y„ a Z^., and 

\f{u + . ) - /(u) - /'(«) H.- ^ ^l<y - ^') • H ' 

whenever и and и Л- v belong to R^; 

5° if и e jR ,̂ there exists v e C\ Y„' such that, for each G' < G, 
a'<a 

(1) \r{u) V - f{u)l й K,{a - a') \f{u)\l, \v\„. g K,{a - a') |/(м)|„ , 

||ü||,. й Щст - с') \f{u% 

where Ki (i = 1, 2, 3, 4) are positive nonincreasing functions defined on the 
interval (0, 1], inf K4 > 0. 

Let К be any function defined on (0, 1] such that К ^ max {K^KI + K2, K^). 
Suppose that there exist positive increasing functions со, (p and g defined on [0, 1] 
such that (p ^ 1, 0), g < 1 and 

(2) {Koa){r)-'{KoOCo œ) (r) й g{r)-' {g о œ) (г) 

for each r e (0, t), 0 < t S ^ {here a = 2~^{(p — cp о œ)). Then there exists и e ^^(o) 
such that f{u) = 0, whenever 0 ^ TQ < f, UQ e <̂p(ro)> 

(3) f; (of о CO") (r) (iC^ о a о œ-) (г) (К о a о œ")(r)-' < R - \\uo\U„^ 
п = 0 

for Г ^ Го 

and 

(4) | / K ) U ) g ^ ( r o ) ( X o a ) ( r o ) - ^ 

Proof. We set, for a fixed Wo^^ç>(ro). "^{r) = {и e R^^.y, |/(w)|^(,) ^ 5(r), 
Wo||<p(ro) ~ ^(У)} ^^^ 0 < r < t and suitable positive increasing 

functions S, к defined on (0, t) and such that hm S(r) = 0. 

Now let и e W(r). According to 5° there exists v e f) Y^ such that, for each 
<T<(p(r) 

a < (p{r), 

(5) \Пи) V - f{u% S K,{cp{r) - G) \f{u)\l,ry, 

H , й Щср{г) ~ G) \f{u)l,,,, \\vl й K,{cp{r) - G) \f(u%,,,, 



Set now и' = и — V. Given a, т such that cr < т < (p(r), we have the following 
estimate 

^ " | | "oL( ro ) ~- i^^' " ^hWcr ^ ^ ~ i " o L ( r o ) - h ~~ " o | | a " b\o à 

= ^ - ii"o|L(ro) - li^ - WoiL(r) " ||î^i|r ^ 

è k(r) ~ K^{cp{r) - T) \f{u%^r) ^ K^) - K^Wir) - T) S(r) . 

Assume for a moment that ^(r) — K^(^(p(^r) — т) 5'(r) is positive. Then и e R„ and 

\f{u% й W ) - f{u) + f'{u) v\, + | / ' ( M ) V - f{u% ^ 

й к,{г - a) \v\^ + | / ' (M) V - / (u) | , ^ 

й K,{T - (т)(Хз(,р(г) - t))^ 1/(«)|^,,) + K,{<p(r) - T) \f{u)\l,,, й 

ft is natural to take т so that т — cr = (/)(r) — т. Then 

| / (« ' ) | . ^ (K.Kl + K,) {2-4cp{r) - a)) Sirf . 

Clearly, it is desirable to find functions со, к and S so that, for a = (cp о со) (г) and 
a = 2~\cp{r) - {(poCo)(r)), 

(6) k{r) - (X4 о a) (r) S{r) ^{koco) (r) 

and 

(7) {{K,Kl + K,) о a) (r) S(r)^ ^ (S о ш) (r) . 

The inequahty (7) is equivalent to 

(8) {{K,Kl + K2) о a) (r) 5 ( / f (S о ш) (r)-^ ^ 1 . 

Since 5(г)(5ош)(г)~^ > 1 it follows that S should be majorized by l/((KiK3 + 
+ ^2) о ^)- ^s the inequahty (6) is obviously satisfied for k{r) = ^jij^A- ° ^ ° ^") ('') • 
. (S о CD") (Г) if the series converges, it is convenient to set S[r) = g{r) (K о ос) (г)~^ 
for a positive g, g < 1. If g satisfies (2) then (8) is fulfilled. Moreover, if g satisfies 
also (3) then k{r) < R - \\uo\\^(roy 

It follows from (5) that 

(8Д) W(r) c: и(Ж(ш(г)), S{r) (K3 о a) (r)) 

in the space (F(^.^)(,), | |(̂ oca)(r)) and, obviously, in the space (Ус,(о), | Цо)) as well. 
If |/(wo)|<p(ro) — 9(^0) ( ^ ° ^) {^o)~^ ^hen the set Ж(го) as well as W{0) is nonempty. 

Since lim (S о ш") (r) = О for each r ^ Го it follows from 3"" that each и e W{Ö) 
И-> 00 

satisfies f(u) = 0. The proof is complete. «« 



3.2. Remark. We can also estimate the distance between the initial point UQ E ^̂ ,(̂ 0) 
we are starting with and a solution. Assume that (3) and (4) are fulfilled. Then there 
exists a solution of Дм) = 0 in the space F̂ ô) satisfying 

(9) \u - t/oUo) è \f{uo)Uro) 9Ы~' ( ^ ° ^) (''o) f (^3 о a о CO") (го) . 
n = 0 

. (Зош' ' ) (го)(Коасю")(го)-» 
and 

(10) II« - «o|L(o, й |/(«o)|.(.„) K'-o)"^ ( ^ о a) (ro) . 
00 

. X (^4 о « о m") (го) (з о со") (го) (К о а о ш") (го)" ^ . 
п = 0 

Proof. The reasoning in the preceding proof remains valid if g is replaced by any 
function of the form v . Ö', 0 < v ^ 1. Denote S' = vS and 

WXr) = {ueR^,,,. Ши^ й SXr), \\ul,,, <R- \\uol,,^, - k{r)} . 

Then the inclusion (8,1) has the form Pf'(r) cz и(Ж'(^(г)), S^r) (K3 о a) (r)) in the 
space (7^(0), | Uo)) and, in virtue of (5), Ж'(г) c= U(^'(a>(r)), S^r) (K^ о a) (r)) in 
the space (1^,(0), || ||^(o))-

Suppose that UQ e Ж(го) and take v so that |/(wo)|<p(ro) = ^ '^(''o)- Then г̂ ^ e W\ro) as 
well. It follows from the induction theorem that there exists и e R(p(o) satisfying (9), 
(10)and/(w) = 0. 

4. Remarks and applications. The above theorem generalizes the results of [2] 
and [9]. First, we shall show how to find functions со, cp and g under certain growth 
conditions on the functions Ki. 

4.1. Lemma. Suppose that К from Theorem 2.1 is a decreasing continuous 
function defined on the interval (0, 1) such that hm K{f) = 00. Suppose further 

r-*0 + 

that there exist numbers l < a ^ 2 , 0 < ^ < 1 , fo, w > 0 and a positive decreasing 
continuous function h defined on the interval (0, 1) such that lim h{r) = 00, 

(11) /i(r^)/ï(r)-^ ^ Ы^^"^^ 

(12) {K~' о h) {r") й d{K-' о h) (r) 

for each r e (О, 1). 
Then the functions 

œ{r) = r', 

a(r) =K-\h{r)), 
00 

cp(r) = (Jo + 2 ^ (a о œ") (г) with a fixed GQ e [0, 1), 
n = 0 

g{r) = b-'r 
satisfy (2) for small r. 



Proof. If co(r) = r", we are to find cp, a = 2~^{(p — (p о со) and g so that (2) be 
satisfied. 

It is natural to take a = K~^ о /г for a positive decreasing function h such that 
lim h(r) = 00. As h satisfies (11) we have 

a(r^) = {K-' о h) (r^) й d{K-' oh){r) = d. a(r) 
and 

00 00 

(13) I . (a о Ш«) (r) = i : (K-^ о й) ( О ^ (1 - d)'' (K '^ о /,) (r) . 
n = 0 и = 0 

With respect to the equahty oc = 2~^{(p ~ cp о o)) one possible choice of cp is to set 
00 

(p(r) = (To + 2 ^ (a о ö>") (г) for some CTQ, 0 ^ do < 1. Because of continuity of a 
и = 0 

and with respect to lim /i(r) = GO there exists Го such that ф ^ 1 for r ^ TQ. 

The condition (2) of Theorem 3.1 turns out to be 

h{r^)h{r)--' ug{r'')g{r)-' 
for small r. 

It is convenient to have g commuting with œ in the sense of superposition, so we 
set g{r) = b~^r^ for some positive b, w. 

4.2. Lemma. Suppose that the assumptions of 4.1 are satisfied and replace the 
inequality (12) by 

(12') {K-' о h) (r") - d{K-' о h) (r) 

for each r e(0, l). 
Let сге(0, 1] and UQ e R ^ be given. Denote by q^ the solution of the equation 

If 
(14) qi/(«-i)- > (/,-1 „^^)(-^(1 _ j)/4) 

and 

then there exists и e Я^ц such that f(u) = 0. 
00 

Proof. Given a e (O, 1], we set (p{r) = (7/2 + 2 ^ (a о ш") (г) = (7/2 + 
00 и = 0 

+ 2Y,{K~^ oh) {г"") = a/2 + 2(1 - dy^ {K'^ о h) (г) according to (12'). For 
n = 0 

r„ = (/г~* oK)(cr(l - d)JA) we have (p(r„) = a. 
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As К^ й К, the inequality (3) will be satisfied if Y,(9 о ш") (r^) = Ь " ̂  ̂  '''''' < 
и = 0 /1 = 0 

00 

<R— \\UQ\\^. The last series is majorized by the geometric series r'^^Y,^." < 
n = 0 

< b{R - ЦмоЦсг) for r^ < min ((1 - q) b{R - \\uo\\a), q^^^^-'Y^""- In order to ensure 
the best estimate for r^ we shall suppose that qa is taken so that (1 — q^) • 
• KR - ||«o||<,) = ql""'''. 

Finally, the initial condition (4) has the form 

= ((й-Ч/:)(<т(1 - а)14)Г{ЬК{а{1 - d)/4))- ' . 

4,3. Corollary. (Theorem 1 of [9].) Consider the same situation as in Theorem 3.1 
with K,(r) = K,r-\ K^{r) = К^г-^'+Ч Хз(г) = K^r-\ K^{r) = ^зГ-^'^« for 
r e ( 0 , 1 ] , Ki,K2,K3, (x,ß,y being positive numbers. Denote ^ = max(a + 2y, 

У + ß)-
Then there exists a constant с depending on Ki, oc, ß, у such that, whenever 

for some UQ E R ^ and some 0 < Ö- ^ 1, then there exists и e У^ц such that 

1° / («) = 0, 

2° \u - uoln й с-1|/(мо)|Л1 + 2(/? - | |«o| | ,) '^" ' U{R- \\uo\l)(^'-\ 

У \\u - u,li2 й с-Ч/(мо)|Л1 + ^(R - i l "o | | . ) ) ' ^" ' ' ' U{R- ЦмоЦ.)«^'"^'"-

Proof. Set K{r) = Mr'' where M = max{K3,KiKl + К Д then K~\r) = 

Given a e (0, 1] and UQ 6 Ra, we are to find, according to 4.1 and 4.2, 1 < a ^ 2, 
0 < d < l , f o > 0 , w > 0 and a function h satisfying 

h{r'')h{r)-' ubr""^"-^^ 
and 

(M'^h{r^^))-"' = d{M''h{r))-'l' 

for small r, or equivalently, 

(17) d-' = /)(r'") h{ry^ й fer""*«-^'. 

Further, the function h should satisfy 
{h-'oK){a{l~d)l4)<ql'''-'''". 

Since the function ^У^""^^ increases in the interval (l , 2] the best choice, with respect 
to the initial condition, is a = 2; then ^2 = b{R — ||wo||<r)(l + b{R — \\ио\\<г))~^' 
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Going back to the inequahty (17) we see that h{r^)h(r)~'^ is to be abounded 
function, so we set d = 2~^^^, Ь = 2, w = 1, h{r) = —N^ log г for 0 < r < 1 with N^ 
such that 

r , = (/2-^ о К) (а{1 - J)/4) = exp {-N;'Ma-\\ » d)-' 4') = цЧг 

for arbitrary fixed 0 < ц < \. 
Finally, set с to satisfy cK{o{l ~ ^)/4) ~ G~^. According to what has been said 

above and according to 4.2 it follows that the following implication holds: whenever 

| / ("o)| . < c^ 1 + 2{R ~ \\uo\l) 

for some UQ e R^ then there exists an element и e R„i2 with/(i/) = 0. 
The proof of the first part is complete. 
Using the inequahties (9) and (10) of Remark 3.2, the relations r„ = {h~^ oK) . 

. {o{l — d)l4) < ^2 ^i^d ciC(cr(l — ^)/4) = cr~ ,̂ we can estimate the distance between 
a solution и and the initial point UQ e Y^ satisfying (16) as follows 

I" - "o|./2 й \/Ы1 г;' h(r^)f^K,M-\K~' о h) (riy-^ ri" й 
n = 0 

й \fiuot '-;^ Jir.)K,M^'t{K-' о /г)(г„)^- гТ й 
и = 0 

00 

й \f{uo% г;' h{r„)(К-' с h) (О^-^ X гГ è 
п = О 

сю 

й |/(«о)|. г; 'м» - У' h{r:)y''Y.jA"2 -
= \f{u,%M'-"'K{a{l - d)llf'{l - q,)-' й 

^ | / ( « о ) И ( Ч 1 - d)l4) о'-^{1 + 2{R - \\uol)) = 

= \f{uo)lc-\l+2{R- ||uoi,))<T-'' 

and, using the substitution 7 4- j ^ for y, 

\\u - Uol,2 й c-4f{uo%{l + 2{R - | |MO| | . ) )<T- ' - ' ' U{R- ||uo|i.) a*-^-''. 

Remark . We intend now to estimate the rate of convergence œ associated by the 
induction theorem with the above mentioned process. According to (8,1) the 
function T of 2.2 has the form 

т{г) = {K, о oc){r) g{r){K о ^){r)-' . 

In our case g{r) = 2 " ^ , K^{r) = K^r'^ K{r) = Mr'^ and a = {K'^ о h){r) -
= M^/^/г(г)-^/^ - M^/''(-iV, log r ) -^ / ' so that 



We have, for л = т \r), 

= 2Kз"'M^/^2>•/^-VH(5)^->'/^ 

We intend to show that there exists, for each a e (0, 1], a constant Q^ such that 

for r G ( 0 , r j . 
Obviously, it suffices to show that h[s) ^ Б^( —log r) for suitable positive B„ and 

r E (0, r^], or equivalently, that there exists a constant C„ such that т~-^(г) = s ^ r '̂" 
for г ^ r^. Since т(г) ^ iC^r in (0, r J it suffices to take Q so that т{Л) ^ X^r '̂̂  ^ 
^ г = T(S) for r ^ r^. 

We shall turn now our attention to the paper [2]. It is not difficult to prove that 
the main theorem of the above mentioned paper is a discrete case of our Theorem 3.1. 
More interesting is the illustrative example in which the author proves the existence 
of solutions of a nonlinear differential equation with odd quasi-periodic coefficients. 
In this case there exists an exact right inverse, however, its growth is of exponential 
type. 

Consider the Banach space E^ of all compositions x = f о q where/is a 27T-periodic 
n 

scalar function of n complex variables, bounded for |lm z| ^ Ö- ([z| = ^ |zi|) and 
1 = 1 

holomorfic inside, and q is an n-tuple (^i, ..., q„), qj = iaj + cOjt (coj are Hnearly 
independent real algebraic numbers of degree v and |a| < a, a = (a^, ..., a„)), 
equipped with the norm |x|^ = sup 1/(̂ )1 • 

| I m z | ^(T 

It follows that / (z) = S//c^'^'''^ fo^ l^^^l < ^ ^"^ \fk\ ^ sup | /(z) | e'^^^"". On 
k I Imz I ^ a 

the other hand, any sequence (/^) such that |/^| ^ Me"''"''^ defines a holomorphic 
function / for |lm z\ < a and sup |/(z,)| ^ (4/(Ö- - a'))" M for each 0 < a' < a 

| Imz |^f f ' 
(see [1], p. 168). 

Let F„ be the subspace of E^ consisting of all functions x ~Jо qeE^ such that 
i: 6 £^ as well (x = d( /o q) {t)jdt) with the norm ||x||^ = \x\„ + |x|^. 

Consider the operator 

P{x)^x + F{x,q{'))+foq 
00 

where F(x, z) = S A W ^^ A ° ^' f^qe E„, x e R^ = {u e F^, ||м||^ < R} and 
k=l 

T}fk о q\a И'' < 00 for |w| ^ jR + e (г > 0). 
The operator P maps each F^ into E^ and has bounded first and second derivatives 

P\u) X = X + —^-L^il-ZZ X , P''(t/) (x, z) = А_ЛЛ^^// xz 



for и e R„, X, z e F„. Note that P'(u) maps each F^ into E^ for ail 0 < a ^ 1. 
The boundedness of P" yields 

\P{u Л- v)~~ P{u) ~ P'(u) v\, й M^\v\l 

whenever w, и -\- v e R„. 
Take и e jR̂ .. We shall show that there exists an exact right inverse to P'{u), i.e. 

we can find, for each x = f о q e E^, an element v e F^' {ajl < o' < a) such that 
P'{u) V = X. 

Indeed, denote a{u, z) = dF(u, z)ldu. Then the function v defined by the formula 

(18) v{t) = exp f - a{u, q{y)) dy\ \ (f о q) (w) exp ( a{u, q{y)) dy\ dw 

satisfies v{t) = —a(u, q{t)) v[t) + {f о q) (t) for each t. 
To prove that veF^, (ajl < a' < o) we shall use Lemma 2 from [2]: 
There exists a constant b(v, n) such that, given a function g о qe E^ with g[z) = 

= Y, gk^'^^'^\ the function h defined by 

Jo ^+0 ï(^j ^ j 

q(t)) 

belongs to JF,. and Щ,. й \g о q^ b(v, n) {a - а'У^^'-'К 
It follows that we have the estimate 

(19) \vl. й exp {2\a{u, q)l fo(v, n) {a - a')-^"^^*) | / o <z|, H^, «) • 

for any function v defined by (18) such that 

(20) ra{u,qiy))dy = 0 
Jo 

and 

(foq) (w) exp ( a{u, q{y)) dyjdw = 0 . 

It follows that 

й {{\a{u% + 1) M(v, nf-^'>-^^^"^ + 1) | / | . ^ M < / - ' ) - | / | , 

where p = v + n. 
The conditions (20) are fulfilled if и is even and 'dWfk о q,f о g odd functions. 
We are led to the following definitions: 
Let Y„ be the Banaeh space consisting of all even functions from F^ and let Z^ be 

the Banaeh space consisting of all odd functions from E^. 
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Then the operator P maps Y^ into Z^ and satisfies 1° —5° of Theorem 3.1 (here 
norms on Y„ coincide). Hence we shall apply Lemmas 4.1 and 4.2 with 

K,(r) - Ml ^ 1 , K^ir) = 0 , K,{r) = K^{r) = M\~' 

for 0 < r ^ 1. 

4.3, Corollary. Let UQER^ be given, 0 < Ö- ^ 1. There exists a positive m 
depending on M2, p and R — Ц̂ оЦ̂  •̂ WC/Î that \P{UQ)\^ < M^^m"^ ^ implies the 

existence of an element и e R^j2 such that P(u) = 0. 

• Proof. SetX(r) = MiM^'"' 'forO < r < l .ThenK 'X^) = (2~4ogM, Mi"^s)-^/^ 
for s > M^MI. Let (7 e (0, 1], UQ G R ^ be given. According to 4.1 it is sufficient to 
find constants w > 0 , b > 0 , 0 < ( i < l , l < a ^ 2 and a function h such that 

/i(r") й br^^'~^^/z(r) 
and 

( 2 - ' logjv,, M;^ h{r'-))-'"' ^ d{2-' logM, M^^ h{r))-''-' 

or equivalently, 

(21) Ml-'''' h{rf~' й Kr"") й Ьг"(^-^> h{r) . 

Since d~^ > 1 we set h{r) = M^r~^ for a positive z. To satisfy (21) it is sufficient to 
take 1 < a < 2, w = z{a - 1) (2 - a)-\ d = a"^/^ and Ь = 1. As (h'^ oK){r) = 
= M2 ^''"^ ' the condition (14) has the form 

/ 2 2 ) j^~2ia-l)(2-a)-Hl-a-^/P)-P4Pa-P ^ ^ l / ( « - l ) 

where ^^ is the solution of the equation 

Since lim ql^^"~^^ > 0 it follows that there exists «o ^ (1? 2) such that the inequahty 
a-^2-

(22) holds for each a e (O, 1]. 
Finally, if 

I ^""^l" ^ bK{a{l - cl)l4) ' -W,^' 

then, according to 4.2, there exists и e R^i2 such that P(u) = 0. 
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