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I. INTRODUCTION

In providing a setting for this paper, one notes that much recent work has been
concerned with the study of the semigroups of endomorphisms of algebraic structures.
For example, we cite the work of CLIFFORD and MILLER [1] in which the union and
symmetry preserving endomorphisms of the semigroup of binary relations on a set
are characterized. In [4], MAXsoON considers the lattice of all subsets of a set X and
characterizes the lattice endomorphisms which preserve arbitrary unions and also
fix the empty set. Further, SCHEIN [5] studies the semigroups of endomorphisms of
several algebraic structures. Related also to the study of endomorphism semigroups
is the recent work of FRIED and SICHLER [2] and GRATZER and SICHLER [3] in which
the problem of representing an arbitrary monoid as a monoid of endomorphisms of
a specified algebraic structure is considered.

In this paper, we consider the problem of characterizing all lattice endomorphisms
of the lattice of subsets of a set X. In Section II, we find that information about these
lattice endomorphisms can be obtained by restricting one’s attention to those lattice
endomorphisms which also fix the empty set, 0. In Section III, we study the endo-
morphisms which fix §. We show that these endomorphisms have a decomposition
into a complete part and a defective part. When the defective part has a finite image
the endomorphisms are completely characterized. In the final section, we present
some examples, one of which illustrates the construction given in our major theorem.

II. PRELIMINARIES

In this section, we introduce the terminology and notations to be used in the paper.
We also present some general results which are of independent interest.
For any set X, let 2¥ = (2%, U, N, ’, 0, X denote the Boolean algebra of subsets
of X. Let End 2% denote the semigroup of lattice endomorphisms of 2%, i.e.,
End 2¥ = {f:2* - 2¥|f(4 U B) = f(4) v f(B), f(An B) =
= f(A) n f(B), A, Be2*},
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and let End, 2 denote the subsemigroup of End 2* consisting of those lattice endo-
morphisms of 2* fixing 0. It is well known that End, 2* is the semigroup of ring
endomorphisms of 2¥ when 2% is considered as a ring in which the ring operations
are symmetric difference and intersection.

Recall, for semigroups R and S, that R is a retract of S if there exist semigroup
morphisms f: R — S and ¢ : S — R such that gf = 1;.

Consider now the set 2¥ x Endg 2*. We define a product ® on this set as follows:

(4,/)® (B, g) = (4 U f(B).fg), for (A, f),(B,g) in 2% x End,2*.

It is easily verified that 2* x End, 2%, under the operation ®, is a semigroup with
identity (0, 1x), and we denote this semigroup by 2* ® End, 2*.

We are now ready for our first general result.

Theorem 1. End 2% is a retract of 2* ® End, 2%.

Proof. Choose f in End 2* and let Z, denote f(0). Define g : 2¥ — 2¥ by g (4) =
=f(A) — Z; = f(4) 0 Z};, Ae2*. Tt is easily verified that g is a lattice endomor-
phism of 2% with g,(0) = 0 and so g, is in Endg 2*. Since Z, < f(A), for every
A € X, we also have f(4) = g(4) v Z,.

If further, h e End 2% then f h(A) = f(g,(4) v Z,) = f(9,(4)) v f(2Z,) =
=9, 9i(4) © 9(2,) v Z;and so f h(0) = g, 94(0) v 9 {Z,) V Z; = g,(0) L 9(Z) L
UZ;=g/Z,) v Z,. Hence Z;, = g/(Z,) v Z; and thus g,,(4) = g, gu(A). If we
define F : End 2* —» 2¥ @ Endy 2% by F:f > (Z,, g;) then (Z;,9,) ® (Z,, g,) =
=(Z, v g/{Z,), g,9,) and so F(fh) = F(f) @ f(h). This shows that F is a semigroup
homomorphism.

Now consider the function G : 2* ® End, 2*¥ — End 2*defined by G(4, f) = f, where
J(Y) = f(Y) U 4, for every Y = X. Clearly fis in End 2*. Also G(4, f) ® G(B, g) =
= fg where 7 5(Y) = f(g(Y) v B) = f(g(Y)) v f(B) = fg(Y) u 4 U f(B) U Aand
G6((4,f) ® (B, 9)) = G(4 v f(B), fg) = fg, where Jg(Y) = fg(Y) U f(B) U 4.
Hence G is a semigroup homomorphism.

Since G F(f) = G(Z;, g;) = f and f(Y) = g(Y) U Z; = f(Y) for every Y < X,
GF = lg,q2x. Thus End 2% is a retract of 2* @ End, 2*.

We note that End 2¥ can never be isomorphic to 2* ® Endy 2*¥ when X + 0.
In fact F(f) = (Z,, g,) implies g (4) 0 Z; = (f(4) — Z;) n Z; = 0. Therefore the
image of F contains only those elements (B, e) for which e(A) N B =0, for all
AcX.

From this theorem we see that End 2* can be embedded in 2*¥ ® End, 2*. Con-
sequently, to obtain more information concerning End 2%, we restrict our attention

to lattice endomorphisms which fix 0.
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Recall that if (L, v, A) is a lattice then a lattice endomorphism of Lis join com-

plete if f(V a;) = V f(a;) whenever V a; exists in L. In the next lemma we show
iel icl iel

that when the lattice is 2%, a join complete lattice endomorphism has a simpler

characterization.

Lemma 1. If f is a lattice endomorphism of 2%, then f is join complete if and
only if, for every A = X, f(4) = U f(x).
xeA

Proof. From the definition of join complete endomorphism we have f( U 4;) =
= UI f(4;), for any index set I, and this clearly implies f(4) = UAf (x). For l‘:ge con-
ver:e, consider a collection {Ai ! A, e X,i eI}. Let U A; =B EXEX. Thenf( U A,.) =
= f(B) = f( L{;x) = L{}f(x), by assumption. If x isleijn B, then x is in 4, folrEIsomej
in I and so ; (Gx) c fzilj) c U f(4;). Therefore, UBf(x) = U1 f(45). As every lattice
- endomorphism preserves o:der we always havzE Uf (4 ,-)leg f( U 4;) and thus f
is join complete. - -

For a ring endomorphism of 2%, we only need to consider f(X), when checking
for join completeness of f.

Lemma 2. If f € Endg 2%, f is join complete if and only if f(X) = U f(x).
xeX

Proof. The necessity of the condition is obvious. Suppose f(X) = U f(x). Then
for every A contained in X, xeX

F4) = X 0 4) = 14) 050 = S(4) A [U S © U S0 =
= U A LU © (A LU ST
Since x is in X — A implies f(4) N f(x) < f(4) n (X — 4) = f(0) = 0, we get
f(4) = f(4) n [xgif(x)] =st£f(x) as xUAf(x) < f(A). Hence f is join complete.

To illustrate the utility of the above lemma, we present the following example.
Consider a set X and {x;, X,} < X. Then the map f from 2* into 2* defined by

0 if x,¢A4 and x,¢4,
x; if x;€ed and x,¢4,

x, if x;¢A and x,€4d,

1(4) =
{xy,x,} if x, and x,e4
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is a complete ring endomorphism of 2%. In fact, by definition f(@) = 0 and by
checking cases f(4 U B) = f(4) u f(B) and f(A n B) = f(4) n f(B). Since f(X) =

= {x;,x,} = L{(f(x) we see that f is a complete ring endomorphism.

III. MAIN RESULTS

The objective of this section is to obtain a representation theorem for the ring
endomorphisms of 2¥. Our objective is reached through a sequence of lemmas cul-
minating in our main result, theorem 2.

Lemma 3. Let f be a ring endomorphism of 2* and define e; : 2* - 2* by e (A4) =
= f(A) — D/(X) for all A contained in X, where D(X) = f(X) — U f(x). Then e,
is a complete ring endomorphism of 2%. xeX

Proof. Since e/(A4) = f(A) n [D/(X)]' and since f is a ring endomorphism
of 2%, e, is a ring endomorphism of 2%. Also
efX) = f(X) 0 (DAX)) = f(X) 0 [f(X) 0 (xg(f(x))']' =
=109 [ 0 (U690 = U6

Also for .every x in X, ef(x) = f(x) 0 [(f(X)) uxg(f(x)] = f(x). Hence e/(X) =

= ef(x) and so by Lemma 2, e, is complete.

xeX

Lemma 4. If f is a ring endomorphism of 2¥ and D is the map defined by D (A) =
= f(A) — U f(x), then D, is a ring endomorphism of 2%, and the kernel of D,
xeA .

contains all finite subsets of X.
Proof. We first note that f(4) N D(X) = f(4)n[f(X) ——xlif(x)] =f(4)nf(X) n
ALUSWT = fA) A LU U U 6] = 74) 0 [US@Y AL U ST

But x e X — A implies f(x) n f(4) < f((X — A) n A) = f(0) = 0. Hence f(4) N
N DAX) = f(A) n[US(x)] = f(4) — [Uf(x)] = Dy(A) and so it is clear that D,
xeX xeX

is a ring endomorphism of 2*. Since f(4) = U f(x) for every finite set, the kernel
xeX

of D, contains all finite sets.

If f is a ring endomorphism of 2%, we call the complete ring endomorphism e,
of Lemma 3 the complete part of f and the ring endomorphism D, of Lemma 4 the
defective part of f.

Lemma 5. Let f be a ring endomorphism of 2*. If e; and D are the complete and
defective parts of f, respectively, then f(A) = e;(A) U D (A) for every A <= X.
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Proof. From the proof of Lemma 3, we get e (x) = f(x) for every x € X and
since e, is complete, e (4) = U f(x). So D,(4) = [(A) — e, (4). Also e 4) =
€A

= UJ(x) € f(4) and 0 D,(4)  e,(4) = £(4).

If f and g are two ring endomorphism of 2%, the map f U g defined by (f U g) (4) =
= f(A4) U g(A) is not necessarily a ring endomorphism of 2. However, by repeated
uses of the distributive laws, we obtain sufficient conditions for f U g to be a ring
endomorphism of 2%.

Lemma 6. If e and D are ring endomorphism of 2% with e(X) n D(X) = 0, then
f =eu D is also a ring endomorphism of 2%.

n
Generalizing the above lemma, we get U f; is a ring endomorphism of 2% whenever

i=1

each f; is a ring endomorphism of 2* and (U f{X)) n f{X) = 0, for every j with
i)
1 < j < n. But then f(X) n f{X) = @ forevery i & j. Conversely if f(X) n f{(X) =
= @ forevery i # j, then (U f(X)) n f{(X) = 0. Hence U f; is a ring endomorphism
i*) i=1

of 2% if each f; is a ring endomorphism of 2¥ and f(X) N f{X) = 0 whenever i * j.

We say a ring endomorphism f of 2% is m-valued if the image of f contains exactly m
elements. Since the image of f must be a Boolean ring, then as is well known, if this
image of f is finite, it contains 2" elements for some positive integer n. With these
preliminaries, we get the next lemma.

Lemma 7. Let D be a 2" valued ring endomorphism of 2X. Then D = \J D,
i=1

where each D;, 1 <i < n, is a two valued ring endomorphism of 2% and Di(X) Ia)
N D,-(X) = 0, whenever i = j. Also ker D; + ker D; whenever i =+ j.

Conversely, given a collection {Di| 1 <i < n} of two valued ring endomor-

phiSlTlS of 2 N such that their non-zero values are pairwise disjoint, and their
p
n

kernels are distinct, then D = \J D; is a 2" valued ring endomorphism of 2%.
i=1

Proof. Since D is a 2" valued ring endomorphism, the image of D is isomorphic
t0 Z,®...®Z, (n copies). But Z, ® ... @ Z, is a n-dimensional vector space
over Z, with {e;| e; = (0,...,1, 0,...,0), 1 in the i-th position} as a basis. Let F
be the isomorphism between the image of D and Z, @ ... ® Z, and let F(e;) = 4,
i=1,..,n Then for i & j, e;e; = 0 implies A; N A; = 0. Hence each element in
the image of D can be expressed as the union of elements from the disjoint collection
{4;]i=1,..,n}. Thus if Aeimage of D then A = (¢, n A;) U (o N 4,) U
U ... U (a, n An) where o; = A; or 0. Let D; = n;D, denote the i-th projection of D.
Then D(X) = A; and D; is a two valued ring endomorphism of 2%. Also D(X) n
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N D(X) =A;,n4;=0. Since we can always find an element (xxl N Al) u.
U (o r\A)u LUy nd) o (e, r\A)w1tha_(Dandrx—A1n2x
ker D; + ker D; for i # j.
For the converse, since the nonzero values are pairwise disjoint, D(X) n D{(X) =

= 0, whenever i + j. Hence D = U D; is a ring endomorphism of 2%. The fact that
i=1

each D, is two valued implies that the kernel of D;, say, M, is a maximal ideal of 2%.
Since we can always find an element in M, not in M; whenever i # j, D is 2"-valued.

In [4] Maxson obtains a representation theorem for complete ring endomorphisms
by showing that there is an anti-isomorphism E between the semigroup P T(X) of
partial transformations on X and the semigroup Endgy 2% of complete ring endo-
morphisms of X. In fact for « € P T(X), E(«) = f where f(A) = a~'(4), Ae2%.

In the next theorem, we get an extension of this result by obtaining a ring endo-
morphism of 2¥ with finite valued defective part.

Theorem 2. Let ¢ be a partial transformation on X with domain of o = 4(0).
Let D;, i =1,2,...,m with m £ |X - A(Q)| be a collection of two valued ring
endomorphisms of 2% such that

1) 4(¢) N D(X) = 0, for every i,
2) D,-(X) N Dj(X) =0, for i * j,
3) A < X is finite implies D(A) = 0 for every i.
Then g = E(¢) U (U D;) is a ring endomorphism of 2%, with finite valued defective
i=1

part. Conversely, every ring endomorphism of 2X with finite valued defective part
can be found in this way.

Proof. We note that ¢ € P T(X) implies E(e) is a complete ring endomorphism
of 2¥. By definition of E, (E(¢))(X) = ¢~ *(X) = 4(¢)- From condition (2) and

Lemma 7, U D; is a ring endomorphism of 2*. By (1) and Lemma 7, we get g =

= E(o) v (U D) is a ring endomorphlsm of 2X. We claim that the complete part
of g, i.e. e, is E(Q) and the defective part of g, i.e. D, is u D,. Since U Dx) =
for every x in X, g(x) = (E(0) () and so D,(X) = o(X) - U (@) (X)

= (E(@) (X)) v ((U D) (X)) ~ (E(e)) (X) = (UD)(X) as (o) (X)ﬂ D{(X) =

for all i. From the proof of Lemma 4, we have DH(A) = g(A) 0 D,(X). But g(A) n
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N D,(X) = g(A) n( i\i)lDi(X)), from above, and so D,(4) = (E(e) (4) Ui§1Di(A)) N
~( (")1 Dx) = Q D/(A)as D{(4) < Dy(X), Di(X) n DX) = 0 for i # jand (E(2)).
.(4) n D(X) = 0. Hence D (A) = .(:JID,-(A) or D, = E}lpi.

By Lemma 3, e, (A4) = g(A) — D,(X) = (E()) (4), and so e, = E(g). Also the
cardinality of the image of D, is 2™ as each D; is two valued.

For the converse let f be a ring endomorphism of 2* with finite valued defective
part. From Lemma 5, f = e, U D andsince e, is complete e, = E(¢) for some partial
transformation ¢ of X. By hypothesis D, is finite valued, say 2™ valued and so by

Lemma 7, D, = U D;. Also e/(X) = (E(¢)) (X) = ¢~ *(X) = 4(¢) and from defini-
i=1 m

tions of e, and D, A(e) n Dy(X) = 0. Hence 4(¢) nU D(X) =0 and thus,
i=1

4(0) " D(X) =0 for every i. From Lemma 7, D(X) D/(X) =0, whenever
i & j. Since D, is the defective part of f, the kernel of D contains all finite sets, and

since the kernel of D, = N ker D;, D{A) = 0 for every finite set A. Since D (X) =
i=1

=f(X) — ef(X) =€ X — efX) =X — 4(e) we get |[D(X)| = |X — 4(o)]. Also
D/(X) = Dy(X) U ... U D,(X) implies lDf(X)| = m and therefore m < |X — 4(o)|.

1V. EXAMPLES AND REMARKS

In this section, we present two examples. The first example illustrates the con-
struction of an endomorphism f in End, 2* with finite valued defective part while
the second example gives a ring endomorphism of 2% in which the defective part is
not finite valued.

Example A. Let X be the set of positive integers and let « be the partial trans-
formation which maps all odd integers onto the integer 1. Then the map e : 2¥ — 2%
defined by e(4) = a~*(4), A < X is a complete ring endomorphism.

Let M, and M, be two distinct maximal ideals containing all finite subsets of X
and let Y be an infinite subset of the even integers not containing 2.

Define D,, D, :2¥ - 2% by

D, (4) = 0 if AeM,
! Y if A¢M,

and

? (2} if A¢M,.
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Since Dy(X) N Dy(X) =0, D = D, U D, is a four valued ring endomorphism
of 2%, Since e(X) =« }(X) = {n|n is an odd integer}, e(X) N Dy(X) = ¢(X) N
N Dy(X) = 0. Hence f = eu D, U D, is a ring endomorphism of 2* with four
valued defective part. A similar procedure can be used to construct a ring endo-
morphism of 2% with 2" valued defective part for any positive integer n.

In the next example, we use the following theorem of Sikorski.

Theorem 3 [6]. Let V be a subalgebra of a Boolean algebra U. Every homo-
morphism hy of V into a complete algebra W can be extended to a Boolean alge-
bra homomorphism h of U into W (and hence a ring homomorphism).

Example B. Let U be 2* where X is some infinite set containing the integers, and
let W be 2", Y any infinite subset of X. Let ¥, = F(X), the finite cofinite Boolean
algebra on X. Let ¥, = (F(X) U (3)), the subalgebra of 2% generated by F(X) and
the multiples of 3. Let ¥, = (V,_; u (2n + 1)). All of the above subalgebras are
distinct. Define h, : V, — 2¥ by

Q. if A is finite
ho(A) = . . .

Y if A is cofinite,
and h,:V, - 2¥ by ‘

h((2n + 1) = {y}, ve€Y—={yY2re0 Vuo1}, and b, |y, _, =h,_y.

From the proof of Sikorski’s theorem all of these maps are Boolean ring endo-
morphisms extending h,. Note that the cardinality of the image of h, is greater than
that of h,_,.

Let Z = U V,. Clearly Z is a subalgebra of 2*. Define g : Z — 2" by g(4) = h,(4)
n=1

for A € V,. The map g is well defined, for if A€V, and V,, V, = V,, say, then h,,
restricted to V, is h, and so h,(A) = h,(A). Further g is easily seen to be a Boolean
algebra homomorphism. Also the image of g contains {y, I n is any positive integer}
and thus is infinite. Using Sikorski’s theorem again, there exists an extension g of g
from 2% into 2¥. This 7 is the desired ring endomorphism of 2*. First we note that the
image of g is infinite and g restricted to Z takes all finite sets to . Hence e; the
complete part of g is the zero map and § = D;. Thus the defective part of g is infinite
valued. .

The above example suggests another way of looking at the defective part D, of
a ring endomorphism f of 2*. Since D, maps all finite sets onto §, the restriction of D,
to F(X) is a two valued map. In fact, if 4 is any cofinite set and D/(X) = Y, then
D(A) = DX — A’) = DX) — D/(A’) = D/(X). Conversely starting with a two
valued ring homomorphism f of F(X) into 2%, which takes all finite sets to 0, we
obtain an extension f of f and f is a ring endomorphism of 2*. Further f(x) = 0
for every x € X implies ey is the zero map and f = Dj. Hence we get the following
result.
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Theorem 4. D, is the defective part of a ring endomorphism of 2% if and only
if D, restricted to F(X) is a two valued ring homomorphism determined by the
maximal ideal {A| A = X is finite}.
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