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ASYMPTOTIC PROPERTIES OF DERIVATIVES OF CENTRAL
DISPERSIONS OF THE k-TH KIND FOR THE DIFFERENTIAL
EQUATION )" = ¢(t) y

SVATOSLAV STANEK, Olomouc
(Received November 7, 1975)

The distribution of zeros of solutions and the distribution of zeros of the first
derivative of solutions of the differential equation (q) : y” = ¢(t) y may be successful-
ly studied through central dispersions of the 1st, 2nd, 3rd and 4th kinds of (q).
Sufficient conditions on p, g in order that the limits (f — o0) of differences of central
dispersions of all four kinds for the differential equations (p) : " = p(t) y and (q)
be equal to zero, were given in [9]. In [2], [3] and [8] sufficient conditions on p
and g were shown that the limits (t > o0) of derivatives of the differences of the
central dispersions of the 1st kind for the differential equations (p) and (q) be equal
to zero. These results are proved here under weaker assumptions and even for
central dispersions of all four kinds of (p) and (q). The derivative of the basic disper-
sions of (q) may be utilized in investigating the asymptotic behaviour of solutions

of (q) (see [1], [6] and [7]).
1. BASIC PROPERTIES

In what follows we shall be concerned with linear differential equations of the
second order of the form

(a) Y =aq(t)y, qeC;, I=(a, ).

Besides the assumption g € C; we shall impose further assumptions on the function g
if necessary. However, we shall alvays assume the equation (q) to be oscillatory
for t - o, that is to say, every nontrivial solution of (q) possesses infinitely many
zeros in any interval of the form (to, oo), to € I. The trivial solution is excluded from
our considerations.

The fundamental concepts in this paper are those of the central dispersions of the
first, second, third and fourth kinds of (q) Though their definitions and properties
have been presented in [4], we list such properties that will needed in the sequel.

Let n be a positive integer, x €I and y a solution of (q) such that y(x) = 0. If
@u(x) (¢-,(x)) is the n-th zero lying to the right (left) of the point x, then ¢,(¢_,)
is called the central dispersion of the Ist kind with the index n (—n) of (q).
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Let n be a positive integer, g(t) < 0 for tel; x el. Let y,, y, be solutions of (q)
such that y,(x) = 0, 33() = 0. 1F Yy(x) (W—(x)) [1:5) (1-o(2)). 0,(x) (@_,(x)]
is the n-th zero y5 [y}, »,] lying to the right (left) of the point x, then ¥,( _,,) [1(x - )
o,(o_,)] is called the central dispersion of the 2nd [3rd, 4th] kind with the index n
(=n) of (q).

According to the assumption, (q) is oscillatory for t — oo and thus the functions
P> Wns An» @, are defined on I for every positive integer n. The functions ¢_,, ¥ _,,
% —n @_, are generally defined on an interval (a,, c0) < I, where a, depends on the
positive integer n and on the kind of the central dispersion. Particularly, 1°(°I) will
denote the domain of the function x-,(w_,). Instead of ¢y, ¥y, x;, ®w, we often
write @, ¥, ¥,  only. It holds:

a) If for a positive integer n, f") denotes the n-th iteration of the function f, then
(1) Pn = (p[n] s l//n = !/’["] s JIn = Yo (P["_l], w, = Wo l//[’ﬁll .

b)If ge C%, then ¢, e Ct*3. If moreover q(t) < 0 for t e, then all the remaining
central dispersions belong to Ck*1.

c) Let q(f) < 0 for tel. Then
(2) oW =Y, Do) =@, Do)y =1, O_jo)fey =O_;-
d) Let ¢(r) < 0 for tel. Then

(o - 4(t) _a® a(s) oy a(t)
O Ty YO e T
o a(t) _ o dq(t-y) _aft-)
0= - Mo g - 2o,

where t_3, t_y, t, t,, t5, t, are appropriate numbers, t_5 < y_,(f) < t_y <t <
<ty <x(t) <ts < o(t),t <t, <aft) <ty <y(t).

e) Let g(t) < Ofor t €I and let u be a solution of (q). Then

u? o (p(t) for u(t) £ 0,

u*(t)

0O e () =
- o(1) f (=0,

o) Wy o
PR M U

q(1) . u*(1) for u'(t)=0,
qo z//(t) u?, l//(t)

) o'(1) =

y(n) =
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SR Sy 0]
X,(t) - q- X(t) uz(t)

&0

for u(t) 0,

_ - X(t). o X(t) for u(t) =0,
~ —q(t) - %’%z)ﬂ for u'(r) +0,

o'(t) = ,
—q(t) - 1—;;—.%(0 for w'(t)=0,

B 1 _ u'? o y_4(t)
q o x-(1) u*(r)

- ! . u(1) or u(t)=0.
gox-1(t) u?ox_y(1) f (=0

for u(t) 0,
(-at) =

The proofs of the following two lemmas are in [5] p. 387.

Lemma 1. Let y; be a solution of (q), y,(t) + 0 for t on an interval I,,1,€l;
to € I,. Then the function y,

y,(t) := yl(t)jt )%ES_)’ tel,

to

is a solution of (q) on I, and the solutions y,, y, onI, are linearly independent.

Lemma 2. Let yy, y, be linearly independent solutions of (q), 1y, — y1ys = 1.
Then the general solution of the nonhomogeneous equation

y' =q(t)y + h(t), qeC}, heCy
is given by the formula (to €I)
)= e 1@ + ¢330 + [ D205 = 2 70116 s,
where ¢y, ¢, are arbitrary constants.

Lemma 3. Let p(t) < q(t) for t €I and let x € I. Further, let u, v be solutions of (p)
and (q) respectively, such that u(x) = v(x) =0, u'(x) = v'(x) > 0. Then there
exist b, ¢, b < x < ¢ such that u(t) + 0 on (b, x) U (x, ) and

0<u(t) <ut) for te(x,c), 0> u(f)>uv(t) for te(bx).
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Proof. The first part of the statement of this Lemma (that is, the inequality
0 < u(t) < u(t) for te(x, c)) has been proved in [10] p. 136. The second part can
be proved similarly.

Lemma 4. Let (p), (q) be oscillatory for t — oo equations, p(t) < q(t) < 0 for
tel. Let ¢, ¥, 1, o (¢, ¥, 7, ®) be the basic dispersions of the 1st, 2nd, 3rd, 4th
kinds of (a) ((p)), and y—,, w_; (F-1, ®—,) the central dispersions of the 3rd and
4th kinds with the index —1 of (q) ((p)), respectively. Then

() > @(t), () >¥(t), »t)> 1), olt)>a), tel,
x-1() < 7-.(t), tel®,
w_y(t) < d_(1), te’l.

The proof is given in [9].

2. ASYMPTOTIC PROPERTIES OF THE FIRST DERIVATIVE
OF THE CENTRAL DISPERSIONS OF THE k-TH KIND

In this and the next paragraphs we shall deal with equations (p), (q) under the
following assumptions:
(i) there exist numbers m, M, 0 < m < M such that
(5) -M24(t)s —-m, tel,
(ii) it holds
©) tim (o) — a(9) = 0,
(iii) the first derivative of ¢ is bounded on I.

Before presenting the main result of this paragraph, we shall introduce the notation:

Let v be an integer. Then @, Y, x> @, (@, ¥\, 7, @,) denote the central dis-
persions of the 1st, 2nd, 3rd, 4th kinds with the index v of (q) ((p)), respectively. For
every constant ¢, |s| < m, @5, Y5, x5, @i denote the central dispersions of the 1st, 2nd,
3rd, 4th kinds with the index v of (q + €), respectively. Finally, I(*) will stand for
the domain of the function x°(w®;) and I°(°I) for the domain of the function
X—l(w— 1)- )

The main result of this paragraph may be expressed by the following

Theorem 1. Let the functions p, q satisfy the assumptions (i), (ii) and (iii). This
implies '

g tim (o(0) — 3()) =0,
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® tim (4(9) — ()Y =0,
©) lim () — 20 =
(10) lim (a(t) - (1)) = 0.

Remark. The fact (7) was proved in [2] under the assumption that g(f) is a con-
stant (<0) and in [3] where the assumption (i) is replaced by a weaker assumption
0> —m 2 g(t), tel, but instead of (iii) a stronger assumption lim g’(f) = 0 is
used. e

Before proving Theorem 1 we will show and prove a number of lemmas that will
be of need therein. From now on we shall understand the functions p, g to satisfy
the assumptions (i), (i) and (iii) which, however, will explicitly be referred to in the
assumptions of the theorems only.

Lemma 5. The following inequalities hold:

T

RS T s is L s - s
sz‘“’(’)""zjm’ tel,
ﬁﬂ—t—x () _zjm—, tel®,
Zng 22\’;’” .t

The proof is given in [9].
Lemma 6. For t € I° N I* we have the estimates
M + T
lo(t) = o (0)| < JEI(_J%D r—,
(m— |£|) Jm

wm~ww»§Hggg$yzj%,
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Further, it holds
lim (o(r) — ¢(1)) = 0. lim (¥(1) — ¥(1)) = 0.
lim (4(r) — 7(0) =0, lim (o(1) — &(1)) = 0,
lim (2-1(1) = 7-4(1)) = 0.

Proof. The lemma is presented as Theorem 1 and Theorem 2 in [9] except for
lim (x-1(f) — #-1()) = 0, the proof of which proceeds analogously to those of the
t— o0
equalities in Theorem 1 in [9].

Lemma 7. Let xel, 8‘ < min (m, zm[2M \/M), x + 3 €. Let v be a solution
of (@), v(x + 9) =0, vo x(x + 9) = 1. Then

lv(t)l <1, te[x+ 39, x(x)+ 9].

Proof. First we have 0 < v(t) <1 on [x + 9, ¢(x + 9)]. Let us assume first
that 9 > 0. Then from the inequalities ¢(x + 9) > o(x) = x(x) + n/2 M >
> 2(x) + 9 we get [u(t)] < 1 on [x + 9, x(x) + 9]. Let 9 < 0. From (3) and (5)
we have (¢ is an appropriate number) ¢(x) — ¢(x + 9) = —9. ¢'(¢) £ —YM[m) <
< m/2 (/M. Making use of Lemma 5 we obtain ¢(x) — o(x + 9) < w o x(x) —
— 1(x) = o(x) — x(x) whence it follows ¢(x + 9) > x(x) > x(x) + 9, hence
[x + 9, x(x) + 9] =[x + 9, o(x + 9)] and Lemma 7 is proved.

Lemma 8. Let x €1°, l.9| < min (m, nm[2M /M), x + 9 €I°. Let v be a solution
of (@), v(x + 8) =0, vox_4(x + §) = —1. Then

[o(t)] <1, telx-s(x)+ 9, x+ 9] nI.

Proof. If x € § is in the domain of ¢_j, then on [¢_,(x + 9), x + 9] we have
|o(f)] £ 1. If x + 9 is not in the domain of ¢_,, then |o(t)] < 1 on (a, x + 9].
Hence, without any loss of generality ¢ _; may be assumed to be defined in x + 3.
It is sufficient for the proof of the lemma to prove ¢_(x + 9) < x_,(x) + 9.
Let 9 > 0. Then from (3) and (5) we have (£ is an appropriate number) ¢ _,(x + 9) —
— ¢_1(x) = ¢-1(6) § < Y(M[m) < /2 /M and therefrom making use of (2) and
Lemma 5 ¢_;(x +9) — ¢_(x) < 1-1(x) — @_y o x—4(x) = x-1(x) = @-41(x).
Hence ¢_y(x + 9) < x-4(x) < x-4(x) + 8. Let now' § < 0. Then ¢_,(x + 9) <
< @-a(x) S g-a(x) = 72 M < (%) + 8.

Lemma 9. Let xel, x = +1, 0 <7t <1//M, x — tel. Let v be a solution
of (q), v(x) = %, v'(x) = 0. Then for t€ [x — 1, x + 1]

[o()] <2, |v()| <2yM.
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Proof. The function v satisfies the equality

(11) o) = % + J' [ qu(z) o) dz] ds.

Let us put K = max |v(f)| and let #€ [x — 7, x + ]. From (11) and (5) we have

[x—t,x+1]
then
[o(f)] £ 1+ MK 3(t — x)> <1+ MK32® <1+ 1K

and thus also K < 1 + 1K and therefrom K < 2. From (11) we get
t
V() = J 4(z) of2) dz
x

so that |v'(f)] £ 2Mt < 2 /M.

Lemma 10. _
©) lim (4(1) — 7(1))" = 0.
(12) lm (z2-,(1) = Z-1(0) = 0.

Proof. Throughout the proof of Lemma 10 the number ¢ will satisfy 0 < ¢ < m.

a) First of all we prove (9). We define functions k, k, k,, k_, on I in terms of
solutions of (p), (q), (q + €), (q — €) in the following way: Let t (¢ I) be an arbitrary
but fixed number. Then we associate functions u, #, u,, u_, uniquely with the number
t. These functions u, i, u,, u_, are solutions of (q), (p), (q + €), (q — €), respectively,
and satisfy the conditions u(f) = @#(f) = ut) =u_t) =0, uox(t) = iio f(t) =
=u,07(t) = u_, o 77%(t) = 1. The values of the functions k, Kk, k,, k_, at t are
now defined by the formulas k(1) = (1), k(1) = (1), kJ(t) = ui(t), k_(1) = u”_(t).
We have k,(f) < k(t) < k_t), tel, which follows from the inequalities x(t) >
> x(t) > x“(t) and may be deduced from Lemmas 3 and 4. Using the same type of
reasoning we have k,(f) < k(f) < k_,(t) for te (b, ) = I where |g() — p(t)! <e.
We now prove that lim (k,(t) — k_,(t)) = 0 uniformly on I. The assumption (6)

el0

then immediately gives ;

(13) lim (k(t) — k(1)) = 0.
t— 00

From Lemma 3 and from (5) we get

(14) Jm S k() £ M, J(m +e) S k_(t) £ JM +¢),
J(m —e) S k() < J(M —¢), tel.

Let x €I and let u, v be solutions of (q), u(x) = 0, uo x(x) = 1, v(x) = —1/k(x),

650



v'(x) = 0. Obviously k(x) = u’(x) and the Wronskian w = uv’ — u'v = 1. The
function u is increasing on I, = [x, x(x)] and here 0 < u(f) < 1. Since v'(x) = 0,
u(x) = —1[k(x), v" o z(x) = 1, v is an increasing function on I, and for all ¢ (e I,)
where v(f) < 0 we have by (14) |o(t)| £ 1/k(x) < 1/{/m. Let us admit the existence '
of a number t (e1,) with v(tr) = 0. From 1 = u(7) v'(r) — v(z) u'(zr) = u(r) v'()
we then obtain v'(t) = 1/u(r). Now let us put on I, = [z, x(x)] &(t) := u(t) .
. [+ds[u®(s). Following Lemma 1, # is a solution of (q) on I,. On account of #(t) = 0,
v'(t) = 1/u(r) we get v(t) = (), t€I,. We utilize the last equality to estimate the
absolute value of v on I,. y(t) := (k(x)[\/M)sin (t — x) /M, x €I is a solution of
the equation y” = —My, y(x) = 0, y'(x) = k(x) and therefore by Lemma 3 y(1) <
< u(t) for te(x,b) where y(f) #+ 0. Since by Lemma 5 7 — x = o(x) — x =
> n/2 \/M it is necessarily u(t) = k(x)/\/M and on account of (14), u(t) = \/(m/M).
We have y(x) — t < z(x) — x £ n/2/m and u(t) = u(x) = /(m/M) for tel,,
Iu(t)| < 1for tel, and therefore

t o ds M M
ot) = u(t)Luz S s I e,

With respect to

1 _ 1 _ M

k(x) — m — 2mm
we obtain

™

(15) |o()] = Py tel, .

Let uy, be solutions of (q + €), us,(x) = 0, u’y(x) = k. (x). From Lemma 2 we
have 4

wlt) = 1y u(t) — ¢ f ") [u(t) o(s) — us) of1)] ds
u(t) = Lu_[t) — el, J‘tu_8 s) [u(?) v(s) — u(s)v(t)] ds, tel
with I, = k(x)[k(x) (<1), I, = k(x)[k_,(x) (<1). From the inequalities 0 < u(f) <

SLO0=u()=1, tel, 0=5u_[(t) <1, tely (=[x, %x)] =1,), Lemma 5,
(14) and (15) we get

|udt) = 14 u(t)] < gmni\;m (t—x) = s;r:nz , tel,,
lu(t) = Ly u_(1)| < el man(t-—x) < \/(ﬂ_) v CRDE
<e =M \/M tel;.

2m? J(m + ¢)’
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Hence
M _ n*M \/M
e o —1l<e® s o Yx)—L| fe — TN,
e 2(x) = | = “om? [uox™() — bl = ¢ 2m? J(m + ¢)

We now see that u,(t) = [f.., (q(s) + &) u(s)ds, u'(t) = [}, a(s) u(s) ds and thus
the properties of the solutions u, u,, the inequality x%(x) — x < n/2\/(m — &) and
Lemma 5 imply

(16) (0] = (M = 2) (x(x) - 1) = 2"—\(/(]‘%‘_—8)8) te [x ()],
[w(n)] = M(u(x) — 1) < 273/;1 , tel,.

By the mean value theorem there exist numbers &, &,, &; € (x(x), x°(x)), &2 € (x (%),
x(x)) such that by virtue of (16) and Lemma 6 we have

Iue o 1(X) = U0 x(x)| = |“é(€1)l : lxs(x) - X(")' se 4(m —ﬂ:)(fi’f/(;(fr), —¢)) ’
o)~ e 9] = e ) = ] 5 0 P

So we have proved

(17) U= 1y < g o x5(x) = o x(x)| + |teox(x) = 1] <

IIA

< gfj M M-e¢ ,
=2 (m2 " 2m— ) J(m(m —e»)
L—1 S|uox(x)—uo x'e(x)l + |u o x”(x) — lll <

SeEM( L M)

2m (m—s)+m\/(m+8)
The formulas I; = k(x)[k(x), I, = k(x)[k_(x) together with (14) and (17) imply
0 < ko) = ) = (ks) — K= + (KC) = k) = ko) (1 — 1) +
nZM\/(M+s)( L JM )+

2m 2(m —¢) m/(m + ¢

0 v )

Therefore lim (k,(t) — k_,(t)) = 0 uniformly on I and (13) is thus proved.
el0

+k(x)(1-1)<e

+ &
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From (4) and from the properties of the functions k, k we obtain

(18) 20 - 7) = - KO KO

qod) " P
It holds further (n is an appropriate number)

(1) k(1) _ k(1) . q o x(t) — K*(1) . p o (1) ’

Po(t) qox() poi(t)-q0x(t)
(19) k(1) q o x(t) = k() p o 7(t) = k() [q - (1) — po H(H)] +
+ g0 (1) [R2(t) = K*(0)] + k() [q o x(1) — a - H()],
(20) qox(t) = g0 7(t) = a'(m) (x(t) — (1))

According to the assumption (iii), ¢’ is bounded on I and therefore in virtue of (5),
(6), (13), (14) and of Lemma 6 the equality (9) follows from (18), (19) and (20).

b) Let us pass to the proof of the equality (12). Let I* be equal to the intersection
of the domains of the functions y°,, _,. We define functions f,f, f,, f_, on I’
by means of solutions of (q), (p), (q + €), (q — €) in this way: Let ¢ (¢ I°) be an
arbitrary but fixed number. Then we associate functions u, &, u,, u_, uniquely with
the number 1. These functions are solutions of (q), (p), (q + €), (q — &), respectively,
and satisfy the conditions u(t) = i(t) = u,(t) = u_(t) = 0,u o y_,(t) = Go F_4(t) =
=u,0x () = u_, 0 x_5(t) = —1. The values of the functions f,f,f,, -, at t
are now defined by the formulas f(f) = u'(t), f(t) = @(1), f.(t) = uft), f_(t) =
= u’" (f). We have f,(t) < f(t) < f_.(t), t e I* which follows from the inequalities
2=1() < x-1(f) < xZ5(?), t € I* which can be obtained from Lemmas 3 and 4. By
a similar reasoning we have f(f) < f(t) < f-{(t) for te(b, 0) =I such that
la(t) — p(t)] < & In the sequel we shall prove that hm (ft) = f-t)) = O uni-
formly on I. Then (6) immediately implies

(1) lim () ~ J(0) = 0.
From Lemma 3 and from (5) we get

(2)  JmSAOS M. Jm+0) 5105 S+ o),
Jm—e) Sf() S JM —¢), tel.

Let xeI*, u,v be solutions of (q), u(x) =0, uoy_s(x) = —1, v(x) = —1/f(x),
v'(x) = 0. Obviously u'(x) = f(x) and the Wronskian w = uv’ — vu’ = 1. The
function u is increasing on I; = [x_4(x), x] and thus we have —1 < u(t) < 0 on
this interval. Since v'(x) = 0, v(x) = —1/f(x), v' o x—4(x) = —1, v is necessarily
a decreasing function on I, and for all t €I, where 1(f) < 0, we have with respect
to (22) |uo(t)| = 1/f(x) £ 1//m. Let us admit the existence of a number t €I, such
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that v(r) = 0. The equalities 1 = u(z) v'(r) — u'(7) v(r) = u(x) v'(x) yield v'(7) =
= 1/u(t). We define the function & on I, = [x_,(x), ] by the relation #(f):=
:=u(t) {; ds/u*(s). By Lemma 1 § is a solution of (q) on I,. Since () = 0, #'(t) = 1/u(<)
it is v(t) = ©(1), t € I,. Analogously to part a) of the proof, the last equality will be
utilized to estimate the absolute value v on I,. y(t) := (f(x)/\/M)sin (t — x) /M,
t el is a solution of y” = — My, y(x) = 0, y'(x) = f(x). Thus according to Lemma 3
0 > y(t) = u(1) for all t € (c, x), where y(t) # 0. Since by Lemma 5 x — t = x —
— w_,(x) 2 n/2 /M we have |u(t)| = f(x)//M and making use of (22) we get
|u(z)| = +/(m/M). Hence

0] 5 )] [ 055 M= 520 v,
and
G
f(x) = ym T 2mym
then yields
(23) lo()| < zn’:]‘jm tel, .

Let uy, be solutions of (q + &), us,(x) = 0, u(x) = f1,(x). From Lemma 2 we
have

ut) = ks u(t) — ¢ J “ui(s) [u(t) ofs) — u(s) o(t] ds, tel,

u(t) = ks u_(t) — ek, J u_ () [u(t) o(s) — u(s) (0] ds, tel,

where k; = f,(x)[f(x) (<1), k, = f(x)[f-(x) (<1). With respect to the inequalities
0=uft)yz -1, 02u()= —1 for tel,, 02u_[ )= —1 for tely
(= [xZi(x), x] =I,) and to Lemma 5, (22), (23) we get

M

(t—x)§s72—r;nT, tel,,

Mm (‘ -x)Se \/(%;) mnym (x — xZ5(x) <

< __M tel,.
2m2\/(m+e)

|ul(t) — kyu(t) < e mnM

u(t) — ky u_(1)| < ¢k, mn

A

Herefrom
M \/M

“omt J(m +¢)

M
Iuc°x—1(x) + kll = 672:? H l(x) + kZI =
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It holds u(t) = f&y_ i (a(s) + &) u(s) ds, u'(t) = [}_,c» 4(s) u(s) ds and consequently
from the properties of the functions u, u, and from Lemma 5 and the inequality
x — 7%4(x) £ /2 /(m — &) we have

(24) (M — )

2J(m ~ o)

WW§WFLM§£%MUP

ult) S (M = &) (t — 14(x)) < , tely,

By the mean value theorem there exist numbers &;, &5, &; € (x24(x), x-4(x)), &z €
€ (x-1(x), x-1(x)) such that with regard to (24) and Lemma 6, we see that the fol-
lowing estimates hold: )

(M — ¢) ’
=) Jmm — 9)
M

uoy—i(x) = uoxii(x)| = [w(&)] . |x-1(x) — 225(x)| < ¢ m ,

| o % (x) — 0,0 2-1(x)] = |u;(51)| . Ixs_l(x) — (x| S

and therefore

(25) ey = 1] < kg + g0 - 1(x)] + [ue o x=1(x) — o0 x2a(x)| <
(M, M

) (m2 T 2m = &) J(m(m — s)))’

|k, — 1 < ko +uoxZ{(x)| + 4 ox-1(x) —u o 2Z5(x)| =

nZM( 1 JM >

2m \2(m — ¢) * m\/(m + ¢)

A

From the formulas k, = fi(x)/f(x), k, = f(x)[f-(x), (22) and (25) it follows
11:x) = f)] £ 1f3) = F)] + | (%) = -] = f(R) |t = k| +

<e mM (M i
+ foi(x) ll - kzl = > (mz + 2(m — &) /(m(m — 8))) i

anzM\/(M+e)( Lo M )

2m 2(m —¢) m(m+¢)

Thus lim (fi(t) — £_,(t)) = O uniformly on I* and the proof of the equality (21)
el0

is complete.

655



From (4) and the properties of the functions f, f we have

(26) 1oa(t) = 74(1) = — PO ()

qox-i(t)  poi-i(t)

and further (n is an appropriate number)

P20 () THO) g x-a(t) = D) po (D)
poii-i(t)  qox-i(t) Poi-1(t).qox-(t) ’

@7) P gez-1() = SO poZ-a() = S [40 7-4() = po Z-1(0] +
+[720) = 12 (0) a0 2 () + P20 [a 0 2-4(0) = a - 7, (0)]

(28) qox-1(t) = qo7-1(t) = q'(n) (x-1(t) = 7-4(1)) -

According to the assumption (iii) the function ¢ is bounded on I and therefore with
respect to (5), (6), (21), (22) and to Lemma 6 we obtain from (26), (27) and (28) the
equality (12).

Lemma 11. " is bounded on I.

Proof. Foilowing the assumption (iii) [q’(t)| <L, tel, and from (4) it follows
that y has the second derivative on I. Let k be the function defined on I in the same
way as in part a) of the proof of Lemma 10. From the formula x'(t) = —k*(t)/q - x(t)
and (5) it follows then that k has the derivative on I. To prove the statement it is
sufficient to show that this derivative is bounded on I. Let

ol < min (. Sy ).

The boundedness of the function k’ on I immediately follows from

2
M(m+M)+nML\/M , tel, t+ %el,
m 2m?

@9 k() - ke + 9) = o] (2

which we shall prove now.

Let xel and x + 9 €I and let u, z be solutions of (q), u(x) = 0, u o x(x) = 1,
Z2(x +9) =0, zoy(x +9) = 1. Obviously k(x) = u'(x), k(x +9) =2'(x + 9).
For all ¢ + I where te 9 el we define Z by the relation %(t) := z(t + 9). We have
then Z(x) = 0 and it follows

z'(t) = q(t) 2(t) + (a(t + 9) — q(1)) Z(1) .
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From the latter formula and from Lemma 2 we now get (v is a solution of (q), v(x) =

= —1/k(x), v'(x) = 0)
2 = 500~ [ 20 Lo+ 9) = A0 ) )~ w9 0]

Hence

(30) Z o 2(x) = k()zi(+) 9) J j(X)Z(s) [a(s + 9) — a(s)] [u() o(s) — u(s) ()] ds .
Moreover |9] < m|(m + M) /M < nm|[2M /M and therefore by Lemma 7 we
have |Z(1) < 1, tel, (= [, x(x)]). From the latter inequality and the inequality
]u (1)] < 1 holding on I, and from Lemma 5 and (15) we obtain (|g(s + 9) — q(s)| <

< |9 L) .
(31) 2(s) [a(s + 9) — ()] [u(t) ofs) — u(s) o(1)] ds| <

< ZL%(X(JC) - x) = M%'

By the mean value theorem there exists a number # on the interval with the end
points x(x), x(x + 9) — 9 and a number ¢ such that

(32) |1 —Zo x(x)] = ,Z[x(x +9)—-9]-z o‘x(x)l =
= [Z(n)] - [x(x + 9) — 2(x) = 8 = [Z(n)| (x'(&) + D) [9]-
Taking account of (5) and (3) we have
(3)  ux+9) — 1) — 8 = (X(0) + 1)]9] < (1 N %) 9] < 7%4-
and therefore by Lemma 9 [E'(n)l < 2/M. From this inequality and from (32) and

(33) we get
(34) It = 20 2()| < 29| M M.

Using (30) we have
k(x + 9) — k(x) = (Z o x(x) — 1) k(x) + k(x) .

fﬁmww%mMMw~wa,

and from (14), (31) and (34) we come finally to

2
M(m+M)+7rML\/M .
m 2m?

[k(x + 8) — k(x)| < |9] (2
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Lemma 12. 4" ; is bounded on I°.

Proof. According to the assumption (iii) |¢'()] < L, t €1, and from (4) it follows
that y_; has the second derivative on I°. Let f be the function defined in the same
way as in part b) of the proof in Lemma 10. Then from the formula y”,() =
= —f*(1)/q o x—1(t) and from (5) we see that f has the derivative on I° and for the
proof of the statement of the lemma it suffices to show that f’ is bounded on I°.
Let |9] < min (m, m|(m + M) \/M). The boundedness of f* on I° follows from the
inequality

(35) |7(6) = 1(t + 9)| < |9] <2Mm + M, M

ZL\/M>, tel®, t+ 9el°,

which we shall prove. Let x € I°, x + 9 €I° and let u, z be solutions of (q), u(x) = 0,

x-1(x) = =1, z(x + 9) =0, zoy_,(x + 9) = —1. This gives u'(x) = f(x),
z'(x + 9) = f(x + 9). We define a function Z by the relation Z(t) := z(t + ) for
all teI° where t + $eI° We have Z(x) = 0 and

z'(t) = q(t) 2(t) + (a(r + 9) — q(1)) Z(1) .

Herefrom and from Lemma 2 we get (v is a solution of (q), u(x) = —1/f(x), v'(x) = 0)

2(1) = (’;(+) D) - j }(s) [a(s + 9) — a(5)] [u(®) o(5) — u(s) o{e)] s
Hence
(36) Zo x_,(x) = — M + i E(s) [q(s + 9) — q(s)] [u(t) v(s) — u(s) u(t)] ds.

f(x) x-1(x)

Since |9] < m/[(m + M) /M < nm[2M /M, we have by Lemma 8 |%(f)] <1,
tel, (= [x-4(x), x]). Further |u(f)| < 1 on I, and therefore by Lemma 5 and (23)
we obtain (|q(s +9) — q(s)| < LISI)

(37)

[ EOTals + 9) = a1 [) o) — ) (0 0] <
nLM
2m /m

By the mean value theorem there exist a number # in the interval with the end points
x-1(x), x-1(x + 9) — 9 and a number ¢ such that

n LM

(x = x-4(x)) = |9| .

=208 5

L+ 2oy y(x) = lfox_,(x) = Zx-i(x + 9) - 9]| =
= [Z0)] - [r-1(x + 9) = x-1(x) = 8 = [Z)] (1 + 242D [9] -
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With respect to (5) and (3) we get

s+ 9) = 209 =8 5 (@)l = (10l <

by Lemma 9 it is |Z'()| < 2 /M and therefore

m+ M

(38) 1+ Zoyoy(x)|s2YM- 9] .

Using (36) we have
fx+ 9 —f(x) = —(1 + Zox-y(x) f(x) + f(x) .
f(%mmwwMWWPMMM

and (22), (37) and (38) then finally imply

f(x + 9) — f(x)] < 191( m :,M e ’*ML).

2m?
Corollary 1. " is bounded on I.

Proof. From (2) we have w(f) = xZi(t), teI (yZ1 will here and in the sequel
denote the function inverse to the function yx_,). The proof of Corollary 1 now
follows from the formulas

Il(t) —~ X"—l ° X:i(t)

@)= i TR =10)

Lo Zit)’
(5), (3) and Lemma 12.

We now proceed to the proof of Theorem 1. Formula (9) has been proved in
Lemma 10. The remaining formulas will be proved in the order (10), (7) and (8).
From (2) it follows o(t) = xZ1(t), @(t) = 7Z1(t) and therefore

SO = (=10 — 71 1 1 _
(00 = &) = G230 = 0 = o~ oo
— Zl—l °Z:i(t) — 1y °X—1(t)
Yoo xTi() . 7107230

From (3) with respect to (5) and (6) we can deduce that x_; o x21(f) . #-1 o x=1(t)
has lower and upper positive bounds for sufficiently large ¢t. From

Fo1 o F21(8) — A1 0 xZ1(1) =
= (T o 223() = Aog 0 F200) + oy 0 210 = Aoy 0 x210) =
= (For 0 2Z1(1) = 210 721(0) + 224(8) (F21(0) — 221(2)
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where ¢ is an appropriate number, from Lemmas 10 and 12 and from lim (32 (f) —
t— o0

— #Z1(1)) = 0, which can be deduced from Lemma 6 and (6), we get (10).

The equality (7) follows from (5), (6), (2), (3), (9), (10), from Corollary 1 and Lemma
6 and from the following chain of equalities

(0(t) = (1) = (@ox(t) = @ (1)) = K)o x(t) — X(1) & = Z(t) =
= ("o 7(t) — &« () Z(1) + o 7)) (1) — 7)) +
+ 7)) (@ o x(t) — @ o (1)) = (0" o §(t) — & o 7(1)) 7(t) +
+ oo 7(1) (x(t) = 2(1) + 2/ (1) (&) (x(t) — 7(1))
where £ is an appropriate number.

The equality (8) follows from (5), (6), (3), (9), (10), from Lemmas 6 and 11 and from
the chain of equalities

W) = T = (o olt) = 7o d0) = o'(t) £ o (i) — &() 7 o (1) =
= (1 o @(t) = 7' o (1) (1) + ' o &(t) (w(t) — (1)) +
+ o'(t) (¥ o w(t) =2 od(t) = (1 oa(t) — 7 o (I)(t)) @'(1) +
+ 20 (1) (1) — B(0)) + 0'(2) 2'(2) (1) — (1),

where £ is an appropriate number.

"

Corollary 2. For every positive integer n we have:
lim (,(t) — @,(1)) =0, lim (y,(t) — ¥, (1)) =0,
t—= t— o0
lim (x,(t) — 7(1)) =0, lim(w,(t) — @,(t)) =0.
t—= o t—> 0

Proof. As the proofs of all four equalities given in Corollary 2 are much the same,
we will carry out only the first of them, that is, lim (¢,(t) — @,(t)) = 0 by the
t—> o

mathematical induction. The statement for n = 1 follows from Theorem 1. Let
lim (¢,(t) — (1)) =0, k= 1. Then (1) yields @,1(t) = @ o @4(t), Prss(t) =
t— oo

= @ o @ft), tel. Therefore (Fysi(t) — @rsi(t)) = Gut) ¢ o Bult) — oilt) @’ o

o gu(t) = Gi(1) (9 o Bult) — 9 o Bul1) + 0" 0 Bi1) (Bu(t) — @u(1)) + @ilt) (9" = Bilt) —

=0 o pt)) = (1) (¢ o Gult) — @ < Bu(t) + @ o B(1) (B(1) — @uD))" + @i(t) -

@"(n) ($t) — @4l1)), where 7 is an appropriate number. Next we have ¢(t) = w o

o %(t) from (2) and therefore it follows from Lemma 11 and from Corollary 1 that ¢"

is bounded on I. From Corollary of Theorem 1 in [9] (lim (¢4 (t) — @(t)) = 0),
t— 0

from (1), (3), (5), from Theorem 1 and the assumption lim (o(t) — @u(1)) = 0 we
t—= oo

come to lim (@4+1(f) = Pr+1(1)) = 0.

t— o0
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3. ASYMPTOTIC PROPERTIES OF HIGHER DERIVATIVES OF CENTRAL
DISPERSIONS OF THE 1st KIND OF THE DIFFERENTIAL EQUATION y” = q(¢) y

Theorem 2. Let the functions p, q fulfil the assumptions (i), (i), (iii). Then
lim (p(t) — (1)) =0, j=0,1,2,3.
t— o0

Moreover, let n be a positive integer, pe C};, qe Cy, lim (p(t) — q(t))> = 0 for
t— o0

j=0,1,2,...,n, let g have the derivative of the (n + l)st order on I and let g®
be bounded on I for k = 1,2,...,n + 1. Then

lim (¢(t) — ¢(1))? =0, j=0,1,2,..,n+3.
t— 0

Proof. According to Lemma 6 and Theorem 1 we have for j = 0, 1 lim (¢() —
t—

— @(1))) = 0. The proof of the remaining part of the statement of Theorem 2
proceeds analogously to that of Theorem in [8]

Corollary 3. Let the functions p, q fulfil the assumption (i), (ii), (iii). Then
lim (pt) — ¢(t))? =0, j=0,1,2,3, i=123,...
t— oo

Moreover, let n be a positive integer, p e Cj, q € Cy, lim (p(t) — q(£))¥’ = 0 for
t— 0

j=0,1,2,...,n and let q have the derivative of the (n+1)st order on I and q®
be bounded on I for k = 1,2,...,n + 1. Then

lim (of) — g()P =0, j=01,..on+3, i=123...
t—= 0

Proof. For the proof we use Corollary 1 and proceed analogously to the proof of
Corollary of Theorem in [8].

Remark. The statement of Theorem 2 may be deduced from [2] where q(t) =
= constant (<0) is assumed and from [3] where the assumption (i) is replaced by
a weaker assumption 0 = —m > ¢(t), t € I, but instead of (iii) a stronger assumption
lim ¢’(t) = 0 is introduced. The statement of Theorem 2 was also proved in [8]

t— 0

under the additional assumptions that all solutions of (q) are bounded on I and
lim ((t) — (1))’ = 0.
=)
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