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0. This somewhat picaresque article contains various results concerning cardinals
of families of sets and functions. In section 1 we define two cardinals as the least
cardinals of two such families, and prove inequalities between them and similar
cardinals. A connection with the problem of uncountable sets with Hausdorff
measure zero is discussed. This section uses several results of ROTHBERGER [7, 8, 9].
In section 2 we construct an ultrafilter with these cardinals. In section 3 it is shown
that it is consistent with set-theory that strict inequality holds between two of the
cardinals.

N denotes the set of natural numbers, and P(N) the set of its subsets. *N is the set
of functions from N to N. If a, be P(N) we say a =* bif a — b is finite. If f, g e "N
we say f <* g if {n: f(n) = g(n)} is finite.

1. We define x to be the least cardinal of a family F = P(N) so that the intersection
of finitely many members of F is infinite, and for no infinite a € P(N) is a =* b for
all beF.

We define 1 to be the least cardinal of a family F < ¥N which is unbounded
under <*.

N, < %, 4 < 2. Rothberger proved [7] that 1 = x. Both cardinals have many
equivalent definitions. In the terminology of [3], » = N, is equivalent to the existence
of Q-limits, and A = N, is equivalent to the existence of (£, w*)-gaps. Martin’s
Axiom, in particular the Continuum Hypothesis, implies that » = 1 = 2%°,

Two infinite subsets a, b of N are called almost-disjoint if @ N b is finite. A maximal
almost-disjoint family is an infinite subset F of P(N) so that if a, be F, a and b are
almost-disjoint, and if ¢ is any infinite subset of N, ¢ N a is infinite for some a € F.

Theorem 1. Any maximal almost-disjoint family has cardinality at least A.

Proof. Suppose F is an almost-disjoint family of cardinality 4 < A. Let F =
= {a, 1@ < p}. We can remove at most finitely many members from each a, to
ensure that {a, : n < } is disjoint. For each & = w, let f, € *N be defined by f,(n) =
= m, where the greatest element of a, N a, is the m'™ element of a,. As u < 4,
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there is fe N so that f* > f, for all & > w. Define b = {the f(n)" element o
a,:ne o). Then b is infinite, and b N a, is finite for all n. If « = w f(n) > fi(n)
for all but finitely many n’s, and so b N a, is finite. Hence F is not a maximal almost
disjoint family.

Theorem 2. No non-principal ultrafilter q over N is generated by less than A sets.

Proof. Suppose F = P(N) generates a non principal filter, and lF I = pn < A For
each a € P(N) define f,e€ N by f,(n) = the n"® member of a. As pu < A, there is
fe™N so that f* > f, for all a e F. For each n € w we define finite sets b,, c, as
follows: by = {i: i < f(1)}. If we have defined b; for j < n,let |b, U ... U b,| =m
and let r = max {b; U... U b,}. Then let ¢, = {i:r <i < f(m + 1)} if this is
non-empty, and ¢, = {r + 1} otherwise. If we have defined c; for j < n, let m =
=le;u...ug| and let r=max{c,; u...U¢,}. Then let by, = {itr <i <
< f(m + 1)} if this is non-empty, and b,,; = {r + 1} otherwise.

Let b=Ub, and ¢ = U, Then b u ¢ = w. But if b is in the filter generated

nx1 n21

by F, there is a € F so that a < b. Certainly f,(n) = fy(n) for all n. By the construc-
tion of b, for infinitely many m’s the m + 1'* member of b occurs after f(m + 1).
Hence f,(m + 1) = f(m + 1) > f(m + 1) for such an m. This contradicts f, <* f.
So b is not in the filter, and by a similar argument c is not either. Hence F cannot
generate an ultrafilter.

Now we turn to properties of sets of reals. If A = R, we say A has property C if
whenever {a,} is a sequence of positive reals there are intervals I,, each of length a,,,
so that A < UI,. A set A is concentrated if there is a countable set D so that whenev-
er G is an open set containing D, A — G is countable.

It is easy to show that a concentrated set has property C. A has property C iff
u*(A) = 0 for every Hausdorff h-measure, [6]. An uncountable set with property C
was first constructed, using the.Continuum Hypothesis, by BesicovitcH [1]. Roth-
berger showed, [8], that there is a concentrated set iff A = X;. Also he proved, [9],
that every set of cardinality less than » has property C. So in particular if Martin’s
Axiom and 2%° > N, are true there are no concentrated sets but there‘are uncountable
sets with property C. The only situation in which we might be unable to construct
an uncountable set with property Cisif x = Ny, 2 > N,. But we shall show in section
3 that this is consistent with set-theory.

2. The structure of the space SN is connected with these cardinals.

An ultrafilter ¢ € BN — N is called a p-p-point if whenever F < g, |F | < u,
there is a € q so that a =* b for all b € F. ¥;-p-points are just called p-points, and
their existence was proved in [10] assuming the Continuum Hypothesis. In [2],
BootH proved the existence of 2%°-p-points, assuming Martin’s Axiom. In fact,
» = 2% is sufficient for this. And to construct p-points we need only assume A = 2%°,
We show a bit more than this.
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Theorem 3. Assume A = 28 > X|. Then there is a p-point q € BN — N which is
not an N,-p-point.

Proof. Let {a,: o < w,} be a sequence of sets so that o > f implies a, <* a,
but az ¢* a,. We will construct a p-point g so that a, € g for all « < w, but for
noaegqisac*a,for all a.

Enumerate *N as {f; : ; < B < 2™}. For ¢ to be a p-point it is obviously suf-
ficient that for every fe™N there is a set a € g so that f restricted to a is either
constant or finite-to-one. '

Suppose we have added d, for every y < f, and d, = a, for y < oy, and f, is
either constant or finite-to-one on d, for y = w;. Let lﬁl = u, and let {e, :y < p}
consist of all the finite intersections of the d,. Our induction assumption is that for
every y there is @ < w,, with e, — a, infinite.

First we try to make f; constant on dj:

Case 1. For some n € o, for all y there is «, so that (e, f; '[n]) — a, is infinite.
Then we let d, = f; '[n].

Case 2. Not case 1. Now we try to make f} finite-to-one on dj.

Claim. For all y < B there is a, < w,; so that f, takes infinitely many values
on e, — a,,.

Proof. Suppose the claim fails at y. So f; takes only finitely many values on each
e, — a,. Let A, = {n: f7'[n] n (e, — a,) is infinite}. Then A, is finite for all «,
and as a > f implies a, =* ay, A, is increasing with a.

So for some o, A, must remain fixed for a = «,. Case 1 did not hold. So for all

n € o, there is y, so that for all «, (e,,n f; '[n]) — a, is finite. Let e =  e,,. Then
. ”EAao

(enf; *[n]) — a, is finite for all « and all n e A4,,. Hence (ene,) — a, is finite for
all o, contradicting the induction assumption for e N e,. This proves the claim.

For every y < f we define g, as follows:
g,(n) = m if the m™ member of f; [n] is in e, — @, g,(n) = 0 if
6= a,)nfi'[n] = 9.
Then g,(n) > 0 for infinitely many n’s, by the claim. u < 4 = 2% 50 let g € "N be
such that g* > g, for all y. Define d, to contain the first g(n) members of fi '[n]
for every n. Then obviously f; restricted to d is finite-to-one.

Fix y. Then there are infinitely many n’s such that 0 < g,(n) < g(n), and then the
g,(n)™ member of f; '[n] will be in (d;N e,) — a,,. So (e,ndy) — a,, is infinite
for every y. So the induction assumption remains true at f.

After completing this induction up to 2% we have a p-point that is not an X,-p-point.
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Remark. This construction is essentially the same as that in [11], where a Ramsey

ultrafilter which is not an N,-p-point was constructed, using Martin’s Axiom
and 2% > N,.

3. Though Martin’s Axiom implies x = A = 2%°, it is consistent that A be any
regular cardinal between N, and 2, [4]. Here we give a sketch proof that it is con-
sistent that 4 = X, = 2% and » = N,. We need another result of Rothberger, 97,
that if u < » then 2* = 2%°. The construction is similar to other independence proofs,
so instead of giving it in detail we shall just refer the reader to [5], especially section
22, where the consistency of Martin’s Axiom and 2™ > N, is proved.

We start with a ground model 9t in which 2% = N, and 2™ = N,. For each
a < N, we construct a complete Boolean algebra B, and let MM, = M[B,]. If « is
a limit ordinal B, is the direct limit of B, f < . If « = B + 1 then B, is constructed
so that 9, contains a function f, which is *> all functions in ;. Let N = My,.
All the Boolean algebras concerned obey the countable chain condition, and so
cardinals are preserved. Hence in M, 2™ = N, and 2% = N,. So » = N,. But if
A "N and |4] < X,, 4 = M, for some « < N,. Hence f,,; *> f for all fe A.
This proves that 1 = X,,.
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