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A GENERALIZATION OF A THEOREM OF BOOLEAN
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CHONG-YUN CHAO%), Pittsburgh, and SHMUEL WINOGRAD, New York

(Received July 21, 1975)

The purpose of this note is to prove a theorem concerning Boolean relation matrices
which is a generalization of a theorem in [2] and [1]. Let B = {0, 1} with the usual
Boolean addition and multiplication. The matrices which we consider here are n x n
(Boolean relation) matrices over B with the usual matrix addition and multiplication.
A n x n matrix A is said to be primitive if there is a positive integer k such that
A* = J where J is the n x n matrix with every entry being 1. Let A = (a;;) and
C = (cij) be two n x n matrices over B, we shall write A < C if a;; = 1 implies -
¢;; = 1. Let P be the following n X n permutation matrix:

[0 0 0 ... 0 17
1 00 00
010 00

000 ... 10

then P" is the identity matrix I, and any n X n circulant (Boolean relation) matrix
over B is in the form

(2 aol + a,P + a,P* + ... + a,_P""'.

Omitting those a;’s which are zeros, and defining P® = I, the circulant matrix can
be written as

(3 P + P2 + ... + P*
where 0 < iy < i, <... < i, <n — 1. The following was proved in [2] and [1]:
Theorem. The circulant Boolean relation matrix (3) is primitive if and only if
ged. (iy — iy, iy — iy, i3 — gy eeny i — iy, m) = 1.
*) This work was done while the author was a visitor at the IBM Watson Research Center.
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1t is well known that the n x n circulants are closely related to the polynomial
x" — 1, e.g., the algebra of n x n circulants over a field F is isomorphic to the
algebra, F[x]/¢x" — 1, of polynomials modulo x" — 1 over F. The companion
matrix for the polynomial x" — 1 is P. It leads us to define

000 ... 0 by T
100 ... 0 b,
010 0 b,
@ -
000 ... 1 b_,|
as the (Boolean relation) companion matrix for the polynomial f(x) = x" —
—b,—yx"" ' — b,_,x""? — ... — byx — by, where b;€ {0, 1} fori =0,1,...,n — 1.
We will assume from now on that b; € {0, 1} for i = 0, 1, ..., n — 1. Omitting those

by’s which are 0, we will write x" = g(x) = x’* + x’> + ... + x’*, where 0 <
<ji1 <Jj, <...<j.=n—1,instead of f(x) = 0.
~ We will consider (Boolean relation) matrices of the form

(5) A=4a,C° + a,C" +a,C* +... + a,_,C*!

where a;€B, i =0,1,...,n — 1, and 4 # I. Omitting those a;’s which are 0, we
have

(6) A=C"+C*+ ... +C*

Il

where 0 <i; <i, <...<ip=n—1, and i, > 0.

Theorem. Let C be as in (4) and A as in (6). Then A is primitive if and only if

1) j; =0, and

2) ged. (iy — iy, iy — iy, oony i = iy, Jisjas oo do 1) = L.

The first condition of the theorem is obvious, for if j; > 0 (i.e., by = 0), then all
the entries in the first row of C* are O for all I > 0. So we will assume j; = 0.

In order to prove the rest of the theorem we need the following lemmas.

Lemma 1. Let C be as in (4), then
C"=g(C)=C"+ C* + ...+ C".

Proof. Consider the polynomial f(x) = x" — x’* — x/* — ... — x*, over the
reals R, and let C be its companion matrix. Then, by Cayley-Hamilton’s theorem,
we have

(7) C'=C+C2+ .. +0C".
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Let x be the map from the set of all non-negative numbers R* into B defined by

() = 0 if x=0,
)= if x=+0,

then x can be extended to a map from the set of all n x n matrices M,(R*) over R*
to the set M,(B) of all n x n matrices over B. Moreover, if U, Ve M,(R*) then

2wUV) = 2U)x(V) and (U + V) = x(U) + »(V).

t t t
Consequently, C" = (1(C))' = x(C") = ¥, C7* = Y (x(C))’* = ¥, C’* = g(C).
i=1 i=1 i=1
Lemma 2. Let A be as in (6). Then A is primitive if and only if there is a positive
integer m such that A™ = C? for allq =0,1,...,n — 1.
Proof. If A is primitive then there exist m such that 4™ = J = C? for all ¢ =
=0,1,...,n — 1. Conversely, if A™ = C? for all ¢ =0,1,...,n — 1, then, since

n—1
C 2 P, it follows that A™ 2 Y P! = J.
i=0
Lemma 3. Let A be as in (6) with iy =0, a = g.cd. (iy, iy, ..., i;‘, JisJas oo n)
and
Jo=C0 4+ C"+ C¥ 4 ... 4 C7 Ve,

Then there exists a positive integer mq, such that A™ = J, = for all m = m,,.

Proof. Since A = C* + C* 4 ... 4+ C'™* where 0 = h<ihb<..<ip=n-1
and i, > 0, A = I and A" = I for all positive integers I.

Let I be any positive integer and A' = C" + C* + ... + C'» where 0 = I, <
<1, <... <, Since each [, is in the form

M=

t
oy + . Spjp + vn
2 =2

a

for some integers r,, sz and v, each [, is divisible by a for ¢ = 1, 2, ..., p. Con-
sequently, J, = C'forq = 1,2, ..., p, and J, = A’ for any positive integer .

Since a is the g.c.d., there exist integers r,, r, ..., 1, and sy, s3, ..., s, and v such
that '

[\/]w

a =
a

t
Tl + ). Sgig — vn,
2 =2

ie.,
k t
(8) Y reg=a — Y szjp + vn
a=2 p=2

where v is positive, and where, without loss of generality, we can assume that each
of r, and s; is non-negative, for otherwise, we can replace each r, by r, + w,n,

554



k t
each sz by 55 + wyn, and v by v + z Wy, +p22w;,j,,. Also, we may assume that

a=2
t
v=) 55+ v
=2
t
where v'n 2 ) szj,, for if not, in (8), after we replace r, by r, + wn and v by
B=2 .
t

t
v + wi,, we choose w so that v + wi, = ) s; + v and v'n 2 ) s,
B=2 B=2

k
Let hy = ). r,. Then, by using (8) and Lemma 1, we have

a=2
k k t
Y ra T reia — X spip
A =472 27?2 =ct.Cc PP o=
t t t t
v'n— Ezs,gjp E sg v'n— EZng,g gzsﬂjﬁ
=c'.c 72 g4yt zc.c P72 PP =

=C".C"=C".(g(C)”" = C*.

Hence, A" > C° Since A' = I for all positive integer I, A" = I + C° Now we can
choose m, = hq . (nfa), and we have A™ = A" ¥ > (I + C*)™* > J,. Hence,
A™ = J, for all m = m,,.

Now the proof of our Theorem: We consider the cases of k = 1 and k > 1.
For the case of k > 1, A can be written as

) A=CHCh 4 CPTR 4 4 CTH),

Let a = g.cd. (iy—iy, i—iy, ..., ix—iy, j1> J2s -+ Ji» 1) Then, by Lemma 3, we have
A™= C"™J, for sufficiently large m. By Lemma 2, 4 is primitive if and only if a = 1.

For the case k = 1. Let a = g.cd. (iy — iy, Jy, Jos oo 1) = gCd. (jysjos -
.« Ji» n). Then, by Lemma 1, we have A" = C*" = (g(C))". So 4 is primitive if and
only if 4" is primitive, i.e., if and only if g(C) is primitive. But, by Lemma 3,
(9(C)y™ = J,, and g(C) is primitive if and only if a = 1.
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