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Czechoslovak Mathematical Journal, 27 (102) 1977, Praha

CORRECTION TO OUR PAPER: PERIODIC SOLUTIONS
TO ABSTRACT DIFFERENTIAL EQUATIONS*)

IvAN STRASKRABA, OT10 VEJVODA, Praha
(Received March 4, 1977)

V. LoVICAR brought our attention to the fact that in Lemma 1.2.1 of our paper [1]
the assertion %(A) is closed is not valid unless another assumption, namely e.g.
assumption

(1) inf ]a,,(/l)] =a5>0,
AieANAy i,j=1

where A4, = {A€(A); a;{(2) = 0,1, j = 1, 2}, is added. He suggested a more general
version of the lemma and also a simpler proof. Further he pointed out that the
assumption 4 = {A,,} ~ 1 may be omitted. Let us introduce the correct proof of the
closedness of %2(A) under the new assumptions.

We suppose that all the assumptions of Lemma 1.2.1 are satisfied except for A4 =

= {4,}»-1 and that (1) holds. Let P be as 1n the proof of Lemma 1.2.1 and denote

by Q the orthogonal projection onto ./V( Z AU) = n ./V(AU) c #(D)and R =
= P — Q. First, we see that Z( Z A J) 1s closed ThlS can be deduced from (1)
ij=1

similarly as 2(D) = ﬂ(D) was deduced from (1.2.5) of [1]. Second, by elementary
calculation, for [fy,f,] e Z(A) we get A,,f, — Aofs, — Ay f1 + A1if> € A(D)
and hence the same is true for [ f1, f,] € #(A) = #(A*)*. Now, let [f1, f2] L A(A*).
Show that [fy, f,] € #(A). The solution of the equation A(x,, x;) = [(I — P)fy,
(I = P) f,] reads

i = J' d()* dE(2) (ApaI — P)f, — Aus(I — P)f)»
y, = J (1) dE(A) (= Apy(I = P)fy + Ay(I - P)J)-

*) Czechoslovak Mathematical Journal, 23 (98) 1973, 635— 669.
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So we have [(I — P)f,, (I — P)f,] € #(A*)* and hence [Pf,, Pf,] € #'(A*)*. The
letter together with 4;;P = A;;R imply

(2) Ay Rfy — ARf, = — Ay Rf; + A 1Rf, = 0.

2
Since Rf;, Rf, € /(Y. A%)* we can define

ihj=1

T f (AN au(l) (i,:z—-zlaij(l)z)_l dE(}“) Rfy +

+

J‘ (AN4 a21(l) (i: aij(l)z)_l dE(’l) Rf,

i,j=1

Z = f a0 (S ay(W)~t dE() R, +
a(A)\4; ih,j=1

¥ f as(@) (3 (i)t dEG) Y,
(A4

i,j=1
and by (2) clearly obtain A(zy, z,) = [Rfy, Rf;]- As [Rf,, Rf,] € /(A*¥)" it is
2
[Qf1, Of,] € /' (A*)* too. But on the other hand Qf;, Qf, € N A(4;;) which
ij=1

implies [Qfy, Qf,] € #'(A*). Hence Qf, = Qf, = 0. Setting x; = y; + z;, j = 1,2
we get A(xy, X;) = [f1, /2]

Our omission in Lemma 1.2.1 necessitates some further changes in the text.

In the proof of Lemma 3.2.1 there is to set ¥ = —w ™ 'Pog, + [ d(4)~* dE(%)
(42191, — Ay19,)- The third formula in (4.2.2) and the fourth formula in (4.3.2)
and Gy(¢) (u) on page 663 change to

Vs = 3 sh~t e — By) f “ e Pz, u(c)) de +
o

+ 2(D[A(P))~! f Cemt@ts@=0 gy (t—d0)[4+7 — (2 + BA)]/* =

*sin fo[4 + y — (¢ + BA)*]">* (I — P) F(z, u(r)) dt

and to

b2 = = [ 2 Porte, ) de + 2Laenln (]

J‘ " sin (r = 30) (4 + y)'/% * sin (A4 + y)'/? » A — P,) F(z, u(z)) dt

]
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and to

Gie)(u) =us +¢ j: i PoF(t, uy(7)) dt — 26[A°D| A (P)] ™! *

4 ¢
*J‘ sin (7 — 40) (4 + y)'/? *sin J0(4 + y)'/? * A — P,) F(x, uy(1)) d7
0

respectively.
References

[1]1 I Straskraba, O. Vejvoda: Periodic solutions to abstract differential equations. Czech. Math.
J., 23 (98) 1973, 635—669.

Authors’ address: 115 67 Praha 1, Zitna 25, CSSR (Matematicky ustav CSAV).

513



		webmaster@dml.cz
	2020-07-03T01:02:57+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




