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BOOLEAN MATRICES
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(Received August 25, 1975)

Let B, be the semigroup of all binary relations on a finite set X with card X <
= ,X ' = n represented as matrices over the Boolean algebra {0, 1}. Suppose in the
following n > 1.

A circulant is a Boolean matrix of the form

ag  ay Ay ... Ay,
4= A,_{ Ay Ay ... Ap_,
a; a4 as ao
Denote
010...0
001 0
P=| .........
000...1
100...0

and let E be the unit matrix of order n. Any circulant can be written in the form
) A =aE + a,P + a,P* + ... + a,_,P"", a;€{0,1}.

Hereby P" = E. For convenience we also define P° = E.

The set of all circulants of order n forms (under multiplication) a semigroup C,
with |C,| = 2" (including the zero circulant Z).

The semigroup C, contains the cyclic group G, = {E, P, P?,..., P""'} and we
have G, = C, < B,. ’

If 4 = (a;) and B = (b;;) are Boolean matrices € B,, we denote by A n B the
matrix D = (d;;) with d;; = min (a;;, b;;). Clearly if k % I (mod n) we have P*n
A P' = Z. This implies that any element € C, has a unique representation in the
form (1).
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The study of C, has been iniciated in [1], where it is proved that C, is a maximal
abelian subsemigroup of B,. 3

Denote by I, the n x n Boolean matrix all elements of which are one’s.

In [2] and [4] necessary and sufficient conditions are given in order that some
power of an element € C, is equal to I,. In [1] a formula for the number of elements
€ C, having this property is given. In the present paper this formula will appear as
a special case of more general considerations.

In [3] we have proved the following results. Let d be any divisor of n, n = dt.
Then

(2) E(d) = E + Pd + PZd 4.+ P(,-”d

is an idempotent € C, and any idempotent € C, is obtained in this manner. Also the
maximal subgroup of C,, which contains E as the unit element, is the cyclic group
{E@,P.E@, .. P! E¥} of order t.

Note for further purposes that in this notation E® = E and E® =1I,.

The problem treated in this paper can be formulated for any finite semigroup S.
" If aesS, then the sequence {a, a?, a>, ...} contains one and only one idempotent,
say e,. We shall say that a belongs to the idempotent e,. Denote by K(e,) the set of
all elements € S belonging to the idempotent e,. If {e,, e, ..., e,} is the set of all
idempotents € S, then S can be written as a union of disjoint sets: S = K(e,,)u
U K(eg) U ... UK(e,). If S is commutative, each K(e,) is a semigroup [the maximal
subsemigroup of S containing the unique idempotent e, ].

In the general case we can hardly expect to get some information concerning the
cardinality of the sets K(e,). There are very few known non-trivial classes of semi-
groups where the cardinality of the sets K(e,) is known.

It is a remarkable feature of the semigroup C, that in this case we are able

i) to give a reasonable description of all elements belonging to a given idem-
potent E@),
i) to give a smooth formula for the number |K(E®@)|.

A

Lemma 1. If Be C,, then B and B.P' (0 £1 =< n — 1) belong to the same
idempotent € C,.

Proof. If B" = E’, where E’ is an idempotent, then (BP')'" = B P =
=E .E=E.
If A, B are elements € B,, we shall write A < Biff An B = A.

Lemma 2. Let

(3) B=E+P'+P2+. . +Pr, 1£j,<j,<..<j <

IA

B
|

—
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Then there is an integer h, 1 < h < n — 1, such that B" is an idempotent € C,.
Proof. The obvious “inequality” B < B? implies
B<B*<B’<..<B"'<B<

Since j, = 1, the first row (and hence all rows) of B contains at least two non-zero
elements. B? is either B or it contains at least three non-zero elements in all rows.
Repeating this argument we obtain: There is an integer h < n — 1 such that B* =
= B"*!, Now B" = B"*! = ... = B? implies that B" is an idempotent.

Corollary 2. For any A € C,, A" is an idempotent.

Proof. If A is a permutation matrix or 4 = Z the Corollary is trivially true.
Otherwise write A = P'. B, where B is of the form (3). We then have 4" = P"B" =
= E . B" = B" and by the proof of Lemma 2 B" is an idempotent € C,.

Lemma 3. Let d be a divisor of n, d & n, and n = dt. If an element B of the
form (3) belongs to the idempotent E¥ = E 4+ P* + P* + ... + P~V then
j1 =j,=...=j;, =0 (mod d).

Proof. It follows from Lemma 2 that there is an integer h < n — 1 such that
B". B = B" and B" is an idempotent. Since B" = E?, we have

[E+ P+ P¥ 4 ... 4 POVN[E 4 Pt 4 PP 4 .+ PN =
=[E+ P!+ P 4 ... 4 peT1],
This implies that the sets of integers

={0,d,2d,...,(t — 1) d}
and

k
Va=ViV[Ulnii+dji+ 24, i+ (1 = 1) d}]

are (mod n) identical. In particular, {ji, j,, ..., j,} € ¥, i.e. j, = 0 (mod d) for any
I =1,2,..., k. This proves our Lemma.

Corollary 3. Any element € C, which belongs to the idempotent E@ g +« p s
necessarily of the form

(4) A= P’(E + Puld + Puzd + ..+ Pukd)’

I1fu, <u,<...<uy =st—-1,
with suitably chosen uy, ..., uy, and 0 <1 < n — 1.

506



Not all possible choices of uy, u,, ..., u,, give elements belonging to E@. This is
now clarified by the following theorem.

Theorem 1. Let 1 = dt, d + n. An element
A=PE+P“+P*+ 4+ P 1gu <uy<..<wu=<1-1
belongs to the idempotent E iff g.c.d. (uy, uy, ..., u,, 1) = 1.

Remark. This is a generalization of the result of [4], where the case d = 1 has
been treated.

Proof. By Lemma 1 A4 belongs to E® iff B=E + P"% + P*4 4 4+ p*¢
belongs to E@.

Write for simplicity P’ = Q and note that Q' n @/ = Z if i % j (mod ) so that
the representation of B in the form of a sum of powers of Q

B=E+ Q"+ Q" +..+ Q"
is uniquely determined.
It follows by Lemma 2 that B belongs to E@ iff B"~! = E® or (what is the same)

N
iff Y B'= E@Yforany N = n — 1. Hence B belongs to E® iff we have .

I=n—-1

N
(%) l}:(E+Q"‘+...+Q""‘=E+Q+Q2+...+Q"‘.

=n-1
[We use this formulation in order to avoid unnecessary restrictions concerning the
choice of the integers x,; needed below.]

Evaluate the left hand side of (5) as “polynomials in Q@ by multiplying term by
term the products (E + Q" + ... + Q")". Using the idempotency of addition
(ie. Q' + Q' = Q') and Q' = E, the left hand side of (5) becomes finally a sum of
distinct powers of Q. Now (5) holds iff the left hand side of (5) contains as a summand
every power @, j = 1,2,...,t — 1. Hence (5) holds iff to any integer j = 1,2, ...
..., t — 1 there exist non-negative integers X, j, X, - .., X; such that

(6) XpUy + XpUy + ...+ Xy =j (modt).

Hereby x,; + x,; + ... + x;; < N, where N is arbitrarily large.
Now the congruence

XyUy + XaqUy + oo + X =1 (mod )
has a solution x%;, X3, ..., Xy iff g.c.d. (uy, Uy, ..., 4, t) = 1. On the other hand if
this condition is satisfied, then (6) has a solution for any je {2,3,...,t — 1}. It is

sufficient to put X,; = jX31, X2; = JX31, --.» X4 = jXpy. This proves Theorem 1.
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B

We now proceed to the problem to find the number of elements belonging to the
idempotent E@. Instead of K(E”) we shall write simply K®.

Suppose again d < n, hence t > 1. By Corollary 3 any element € K is a sum of
properly chosen elements of one of these d — 1 sets:

TO ={Q’Q2"'-,QI=E}1
T, ={PQ,PQ?..,PQ =P},

Ty-, = {P'71Q, P1Q% . PUTIQ = PN

[We emphasise that any sum considered here and below consists of summands
contained in one and only one “row”.] With respect to the unicity of the representa-
tion of any 4 € C, in the form (1) the various possible sums in each T, (i = 0, 1, ...
e d — 1) are different one from the other.

Since we may exclude the zero matrix Z and ¢ > 1, each of the sums which have
to be in K contains at least two summands. For each of the d classes Ty, Ty, ..., Ty_,
we can construct 2° — 1 — ¢ different sums (each containing at least two summands).
This gives together d(2° — 1 — ¢) different ¢lements € C,.

Consider first the set T, = {Q, Q%, ..., Q' = E}. To obtain the sums € T, con-
tained in K we have (by Theorem 1) to exclude those elements Q“' + Q“* + ...
...+ Q" for which g.c.d. (uy, uy, ..., u, t) + 1. Analogously an element P'Q" +
+ P'Q"™ + ... + P'Q™ is to be excluded if g.c.d. (uy, ty, ..., Uy, 1) * 1.

Let t = p}'p% ... P§* be the factorization of ¢ into distinct primes.

Let us begin with the set T,,. Corresponding to the prime p, we have to exclude
first all sums (containing at least two summands) obtained by summing elements
of the set {Q™, 0%, ..., Q"/PVP' = E} — T,. This gives together 2/7* — t[p, — 1
elements. By Theorem 1 we have to exclude also all sums obtained by summing ele-
ments from the sets

{Qpl+v, Q2p1+v, LRRT) Qv} < TO s v'= 1, 2> ces Py T 1

(each sum containing at least two summands). As far we have together p1(2" P
— t[p, — 1) elements which must be excluded from all possible sums obtained by
summing the elements € T,. Since the same holds for the sets T; T, ..., T,_; we have:
Corresponding to the prime p, we have to exclude dp1(2'“’ * — t[p, — 1) elements
which do not belong to K.

Next corresponding to any of the primes p; (i =2,3.., s) we have to exclude
analogously dp,(2”%* — t|p, — 1) elements which do not belong to K.

At this stage we arrived to the number

A = 1= 1) = dTp " = t]pi = 1).
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Now by the principle of inclusion and exclusion we must add the sums excluded
twice, i.e. those elements P{E + Q“ + Q“ + ... + 0"), (I =0,1,...,d — 1) in
which g.c.d. (uy, uy, ..., ) is divisible both by p; and p; (i # j). This gives the
number of elements

d Z Pin(zt/p"p" - t/Pin - 1)

Pi:pj
to be included.

Repeating this argument in the usual manner we finally obtain
[K@| = d@2" —t— 1) — d Yp2"" — t]p, — 1) +
pi

+dY) Pin(zt/m” — t/pip; — 1)+ ..

Pi>pj

e + (=10 pyp, ... ps(2'/"””'"'”’ —i[pipy...ps— 1).

Now the sum of the second terms in all rows together is zero, since —d[t — st +
+G)t— ...+ (1] = —dil — 1 = 0.

Hence we have:

K@ =d@' = 1) = dXp 27" — 1) +d ¥ pip,2""" = 1) — ...
pi

pispj
Denoting by (1) the M6bius function we have the following final result:

Theorem 2. Let be n > 1, d a divisor of n and n = dt. Then the number of ele-
ments € C, belonging to the idempotent E® is given by the formula:

|[K@| =dYiu) (2" - 1).
1743

Remark 1. This result has been proved for ¢ > 1. But it is true also for t = 1.
In this case the formula gives [K™| = n and this is exactly the order of the maximal
subgroup G, = {E, P, ..., P""'} having E = E™ as the unit element.

Remark 2. Theorem 2 is a wide generalization of Theorem 2 of the paper [1].

Remark 3. The formula in Theorem 2 has a form which enables easy computations
for various n and d.

Introduce the following number-theoretical function (defined for all integers
t21):

@) = =31 " = 1)
it
Then ]K(‘”l = n &(t), where t = n/d.
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The first ten values of ®(z) are given by the table

0] K Q)
1 1 6 I 46/6
2 1/2 7 | 12007
3 4/3 8 226/8
4 9/4 9 490/9
5 26/5 10 | 956/10

Example 1. Let n = 18. C,3 contains 6 non-zero idempotents:

E'® = E, E® =E+ P+ P°+ ...+ P,

E® =E+ P°, E® =E + P> + P* + ... 4+ P'¢,

E® —E4+P°4+ P2, EOD=E4+P +P+. . +P7,

We have:
[KO®| = 18 ¢(1) = 18, |K®| = 18 ¢(6) = 138,
KO] =180 = 9. K9] = 150(5) = %0,
IK(G)' = 18 ¢(3) = 24, IK‘”I = 18 ¢(18) = 260 974 .
Example 2. Our small table enables to make some computations even for large n.

Let, e.g., n = 100. The number of elements € C,,, belonging to the idempotent
E®® = E 4+ P + ... + P* is |[K@%| = 100 &(5) = 520.
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