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VARIETIES OF ABELIAN QUASIGROUPS

JarosLAV JEZEK and ToMAS KEPkA, Praha

(Received August 5, 1975)

Abelian quasigroups were studied by many authors, but the universal-algebraic
approach to their study was a fallow. Only few results of this kind can be cited, e.g.
[4] and [5]. This paper represents an attempt of systematic study concerning varieties
of abelian quasigroups. It would be very pleasant (for us) to find a complete descrip-
tion of the lattice of varieties. Although the lattice is countable, the task seems to be
(at least for us) very difficult. However, we succeeded in describing several special
sublattices, in finding all minimal subvarieties and in characterizing subvarieties
with some prescribed properties. The authors were delighted that several branches
of classical algebra proved to be useful in this non-associative case.

1. UNIVERSAL-ALGEBRAIC BACKGROUND

Although the aim of this paper is to study quasigroups, the methods employed
will involve various other algebraic structures and thus we start with a survey of
necessary facts from universal algebra.

Let o be a class of algebras A(f;, f5, ...) of a given similarity type 4. We denote
by A* the type obtained from 4 by adding a new nullary operation symbol. The class
of all algebras A(f, f2, ..., h) of the type 4* such that A(fy,fs,...)e & (here h
is the new nullary operation, i.e. an arbitrary element of A4) will be denoted by X#"*
and the algebras from 2 * will be called pointed J¢ -algebras. Evidently, if A(fo, f2 -
..., h)e A*, then the algebras A(fy,fs, ..., h) and A(fy, f> .-.) have the same
congruence lattices and thus if one of them is simple or subdirectly irreducible, then
the other has the same property. However, A(f;, f5, ...) has more subalgebras than
A(f15 S25 -5 h).

Let o, be a class of algebras of type 4, and ', a class of algebras of type 4,.
A one-to-one mapping ¢ of X', onto X, is called an equivalence between %,
and X, if the following two conditions are satisfied:
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(i) If A€ A", then the algebras A and &(A) have the same underlying sets.
(i) If A, Be Ay, then a mapping of 4 into B is a homomorphism of 4 into B iff it
is a homomorphism of ¢(A) into &(B).

If such an equivalence exists, the classes 'y and ", are called equivalent.

Varieties are equationally definable classes of algebras. If ¥ is a variety, then Z(¥" )
denotes the lattice of its subvarieties.

Let 7”7 be a variety. Let us call a subvariety & of ¥* reducible if A4~ = #* for
a subvariety # of ¥, ie. if A(f1,f, ..., h)e A implies A(fy,fs, ..., k)€ A for
all ke A.

The proofs of the following five lemmas are easy and some of them can be found

in [9].

1.1. Lemma. Let X" be a class of algebras of a given type. Then A* is a variety
iff A is a variety.

1.2. Lemma. If ¥ is a variety, then the lattice 2(“//) is isomorphic to the lattice
of reducible subvarieties of ¥°*. '

1.3. Lemma. Let ¥~ be a variety, A(f, f2, ..., h) € ¥ * and X = A. Then A(f,, [, - ..
..., h) is free in ¥'*, with free basis X, iff the algebra A(fy, f>,...) is free in ¥,
with free basis X U {h}.

1.4. Lemma. Let a class A of algebras be equivalent to a variety. Then is
a variety iff it is closed with respect to subalgebras.

1.5. Lemma. Let ¢ be an equivalence between two varieties V" and ¥,.

(i) If A, Be ¥, then A is a subalgebra of B iff &(A) is a subalgebra of &(B).
(i) If Ae ¥"y and X S A is a subset, then X is closed in A iff it is closed in &(A).
(iii) If Ae 7", and X < A, then X generates A iff it generates ¢(A).
(iv) If Ae 7"y and r is an equivalence on A, then r is a congruence of A iff it is
a congruence of &(A).
(v) If Ae "y and (B))y is a family of algebras from ¥, then A = XB; iff
o(4) = Xe(4,).
(vi) If A is a free ¥",-algebra with free basis X, then &(A) is a free ¥ ,-algebra
with free basis X.
(vii) A class A < ¥y is a variety iff the class {e(A); A€ A} is a variety.
(vil)) L(¥",) = L(V,).
A variety 7 is called a Schreier variety if every subalgebra of any 7 -free algebra
is ¥ -free.
A variety 7" is called extensive ([6]) if every algebra from 7 can be embedded into
an algebra from ¥~ which has a one-element subalgebra. A variety 7~ is extensive
iff every two algebras from ¥~ have a common extension in ¥".
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A variety 7~ is said to have the strong amalgamation property if the following
holds for any triple 4, B, Ce ¥": if A is a subalgebra of both B and C and 4 =
= B n C, then there exists an algebra D € ¥~ such that both B and C are subalgebras
of D. An equivalent formulation: for any triple 4, B, C € ¥~ and any pair of injective
homomorphisms f: A - B, g : A — C there exists an algebra D e ¥" and two in-
jective homomorphisms h : B — D, k: C - D such that hof = kog and h(B) n
A K(C) = h(1(4))

Quasigroups are algebras Q(-, ~, \) with three binary operations satisfying
the following four identies:

(xy)7y=x, xx(xp)=y, (x7y)y=x, x(x\y)=y.

The class of all quasigroups is thus a variety. It is equivalent to the class of all grou-
poids with unique division, which is not a variety.

2. AUXILIARY RESULTS CONCERNING RINGS AND MODULES

By a ring we mean an associative ring with unit. An ideal is always a two-sided
ideal. Let R be a ring. The set of all ideals of R is a complete modular lattice with
respect to inclusion; it will be denoted by #(R). Further, by an R-module we mean
always a unital left R-module. The class of all R-modules will be denoted by R.Z.
Every ring R (and every its left ideal, as well) can be considered an R-module. Let
MeRM,let N = M be a submodule and S = M a subset. Then the set (N : S) =
= {reR; rS = N} is a left ideal of R. Throughout this paper, the symbol Z will
be used for the ring of integers. Finally, all the results concerning rings and modules
which we shall use can be found in [11], [12] and [3].

2.1. Lemma. Let R be a left noetherian ring and let I = R be a non-zero left
ideal which is a free R-module. Then I is as a module isomorphic to R.

Proof. The assertion follows from the fact that R contains no infinite direct
sums of left ideals. g

2.2. Lemma. Let R be a commutative noetherian ring such that I x R is a free
module for every ideal I of R. Then R is a principal ideal domain.

Proof. First we show that R is directly indecomposable. Indeed, let e€ R be
a non-trivial idempotent and M = Re x R. Then M is a free module and M/eM =~
~ R(1 — e). On the other hand, if M ~ R x R x ..., then M/eM ~ R(1 — e) x
x R(1 — e) x ..., a contradiction, since R(1 — e) is noetherian. Thus M is iso-
morphic to R, again a contradiction, since R contains no infinite direct sums of ideals.
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Further, it is obvious that R is hereditary. However, every hereditary commutative
noetherian ring is a direct sum of dedekind domains. Consequently, R is a dedekind
domain. Finally, let A be an arbitrary finitely generated torsion-free R-module.
Then A is projective, it is isomorphic to a finite direct sum of ideals and we see that
A x F is a free module for finitely generated free module F. Clearly, A x F is
finitely genetated and A possesses a finite free resolution, namely 0 - F - 4 X
x F — A — 0. According to [3, VIL § 4, Corollary 3], R is a unique factorization
domain. Thus R is a principal ideal domain. g

2.3. Lemma. Let R be a commutative ring, let K be an ideal with (0 :K)=0
(in R) and I an ideal such that I x R|K is isomorphic to F x R[K for a free
module F. Then I is isomorphic to F.

Proof. Let M be a module and N = {x € M; Kx = 0}. Then N is a submodule
of M and we can put M; = M|N. Now we have I ~ (I x R|K), ~ (F x R|K), ~
~F. g

Let R be a ring. A module M is called cocyclic if it is isomorphic to a submodule
of an injective hull of a simple module.

2.4. Lemma. The following conditions are equivalent for a module M:

(i) M is cocyclic;
(i) M contains an essential simple submodule;
(iti) M is subdirectly irreducible.

Proof. Easy. 4

2.5. Lemma. Given a ring R, there is up to isomorphism only a set of sub-
directly irreducible R-modules.

Proof. Apply 2.4. 4

2.6. Lemma. Let R be a commutative noetherian domain such that the lattice
#(R) is distributive. Then R is a Dedekind domain.

Proof. This is a well known result (see [3]). o

2.7. Lemma. Let K be a commutative field which is (as a ring) finitely generated.
Then K is finite.

Proof. It follows from Noether normalization lemma (Theorem X.6 of [12])
and from Cohen-Seidenberg theorem (Proposition I1X.9 of [12]) that K is an algebraic
extension of its prime subfied P. If P is finite, then K is finite, too, since K is an
algebraic extension of a finite degree over P. Suppose that P is the field of rational
numbers. By the theorem on primitive elements (Theorem VIL14 of [12]) there
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exists an element e € K such that the ring K is generated by P U {e}. Since e is
algebraic over P, there exists an irreducible polynomial ¢ with rational coefficients
such that e is its root; moreover, we may suppose

Ox)=x"+r,_x" '+ . +rx+r

where 7,_y, ..., 7o € P. As is well-known, K is isomorphic to the field P[x]/¢ P[x]
where ¢ P[x] is the ideal generated by ¢. Let fy/@ P[x], ..., f/@ P[x] be a finite
generating set of the ring P[x]/@ P[x]. Denote by M the (finite) set of all numbers
appearing as coefficients in one of the polynomials f, ..., f,,, @. Since evidently the
ring P is not finitely generated, there exists a rational number g not belonging to the
subring R of P generated by M. Since /¢ P[x] e P[x]/@ P[x], we have

q="F(fi,...fm) + 0g

for a polynomial F in m indeterminates with integral coefficients and a polynomial

g=ax"+..+a,
with coefficients a; € P. Put

F(fys oo fm) = o+ cx + ;X% + ...

We may suppose n > 1, since otherwise K = P and everything is evident. Comparing
the coefficients at x"*% we get 0 = c,4; + a;, so that g, € R. Comparing the coef-
ficients at x"**™! we get 0 = ¢,44—; + Gx—y + @F,—,, 50 that a,_, € R. Comparing
the coefficients at x"** x"*¥~1 . x" we get a;, ay_y, ... ag € R so that g € R[x]

and q = F(f,, .- fw) + @g € R[x], a contradiction with g ¢ R. 4

3. VARIETIES OF POINTED R-MODULES

Let R be a ring. R-modules can be viewed as algebras M(+, rx) with one binary
operation + and a family of unary operations rx (r € R). In this case R/ is a variety.
Pointed R-modules are algebras M(+, rx, h) such that M(+, rx) is an R-module
and h is a nullary operation, i.e. an element of M. The class R.Z* of all pointed
R-modules is a variety, too.

As is well known, the lattice #(R.#) is isomorphic to the dual of the lattice #(R).
If ¥ = RA is a subvariety and I is the corresponding element of #(R), then I =
= )(0: M), Me ¥ and ¥ is just the class of all R-modules M with IM = 0 (i.e.
the class of all R-modules which can be considered R/I-modules). Now we shall de-
scribe the lattice &(R.#*) of varieties of pointed R-modules.

We denote by #'(R) the lattice of all ordered pairs <I, K> such that I € #(R)
and K is a left ideal containing I; the lattice ordering is defined by (I, K> <
< I, K, iffI, =1, and K, < K.

For every {I, K) € #(R) we denote by #(<I, K}) the class of all pointed R-modules
M(+, rx, h) such that IM = 0 and Kk = 0.
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3.1. Lemma. Let {I,K)€e A (R) and ¥ = p(<I,K)). Then ¥ is a subvariety
of RA*. Furthermore, if F is a free R/I-module with a free basis X and M =
= F x R[K, then M(+, rx, 0, 1 + K)) is a free algebra in ¥" and the set {{x, 0);
x € X} is its free basis.

Proof. Easy. g

3.2. Lemma. Let <I, K) € #'(R), ¥" = p(<I, K)) and let M(+, rx, h) be the free
algebra of rank 1 in ¥". Then ¥ is generated by this algebra, I = (0 : M) and
K = (0:h).

Proof. Apply 3.1. 4

If v € L(RA*), we put v(¥") = <I,K), where I = (0 : M) and K = (0 : h),
M(+, rx, h)e ¥

3.3. Lemma. (i) u is a mapping of #'(R) into L(RM¥).
(i) If <I1, K1) = I, Ky then p({Iy, KD>) = w(<s, Ko)).
(iii) v is a mapping of L(RM*) into A'(R).

(iv) If ¥y € ¥, then y(¥"{) < (V).

Proof. Obvious. g

3.4. Proposition. The lattice L(R.M*) is isomorphic to the lattice ' (R). The
mapping v is an isomorphism of L(R.*) onto A’ (R) and p is the inverse iso-
morphism.

Proof. It follows from 3.2 that v(u(<I, K})) = <I, K) for every <I,K) e #(R).
By 3.3 it remains to prove u(v(¥")) = ¥~ for every ¥" € L(RA*). The inclusion
¥ < u(W(¥")) is clear. Let w(¥") = <I, K> and M = R x R. Then M(+, rx, <0, 1))
is a free pointed R-module of rank 1. There is a fully invariant congruence ¢ of M
such that the corresponding factor M/Q is free of rank 1 in 7. Put 4 = {x €R;
{x,0% 0<0,0)} and B = {y € R; <0, 0) ¢ <0, y>}. As one may check easily, 4 is an
ideal, B is a left ideal and A = B (e.g., the endomorphism <{x, y)> 1— <0, x + y)
yields 4 = B). Since 4. M[¢ = 0, B.<0,1)/o = 0Oand M[ge ¥",] =< AandK < B.
On the other hand, it is easy to see that AN = O for every free algebra N from 7~
(and then for every algebra from 7). Thus 4 < I and A4 = I. Similarly, B = K.
Taking 3.1 into account, we see that M/g is a free algebra of rank 1 in u(v(¥")). By
3, uv(¥) = 7. o

3.5. Proposition. Every variety of pointed R-modules has the strong amalga;ha-
tion property.

Proof. Let B = B(+,rx, h), C= C(+,rx, k) and 4 = A(+,rx, 1) be three
pointed R-modules and let ¢ : 4 - B,  : A — C be monomorphisms. Put D=
= B x C|E where E = {{¢p(a), —y(a)y; a e A}. The mapping ¢ defined by ¢(b) =
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=<b,0) + E is a monomorphism of the pointed R-module B into the pointed
R-module D(+, rx, <h, 0 + E) Similarly, n : C —» D is a monomorphism, where
n(c) = €0, ¢y + E. Clearly, (o = ny (use the equality <h,0)> + E = (¢(t),0) +
+ E = 0,Y(2)> + E = <0, k> + E). Finally, &B) nn(C) = & ¢(4). The rest is
clear. g

4. RINGS WITH i-GENERATORS

Let a ring R and two elements «, f € R be given. We shall say that «, § are i-genera-
tors of R if they are invertible and R is generated as a ring by «, §, a ™%, L.

Given a group G, the group-ring ZG consists of formal sums c¢;x; + ... + ¢,X,
such that n = 0, x; are pairwise distinct elements from G and c; are non-zero integers.
If the group G is generated by two elements «, f§, then «, f are at the same time
i-generators of the ring ZG. In what follows we fix the following symbols:

G, for the free group with two free generators ¢g;, g,;
A, for the free abelian group with two free generators a,, a,;
A, for the free abelian group with one free generator a;.

4.1. Lemma. Let o, f be i-generators of a ring R. Then there exists a unique
ring homomorphism % of ZG, onto R such that x(g,) = o and x(g,) = P.

Proof. Obvious. g

4.2. Lemma. The lattice #(ZG,) is not countable.

Proof. Let H be a normal subgroup of G, and I the ideal of ZG, generated by
all1 — h, he H. As is easy to see, we obtain a one-to-one mapping of the set of all
normal subgroups of G, into #(ZG,). The rest follows from the well known fact that
there exists an uncountable set of pairwise non-isomorphic groups with two gener-
ators. g

4.3. Lemma. The ring ZA, is noetherian. Hence every commutative ring R
with i-generators «, 8 is noetherian.

Proof. The ring ZA, is a homomorphic image of the polynomial ring Z[x, y, u, v]
in four indeterminates over Z. However, the last ring is noetherian by the well known
Hilbert “basis” theorem. g

4.4. Lemma. Let R = ZA, and I = R(a; — 1). Then the ring R[I is isomorphic
to Z and the ring R/I2 is not a principal ideal ring. In particular, R is not a dedekind
domain.

Proof. The isomorphism Z =~ R|I is clear. Hence I is a non-zero prime ideal of R
which is not maximal. Therefore R cannot be a dedekind domain. Further, let R/I?
be a principal ideal ring. Then R/I? is a direct sum of principal ideal domains and
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local artinian rings. On the other hand, (I/I?)* = 0 and it is easy to see that R/l
contains no non-trivial idempotent. Finally, I # I* and R/I? is neither artinian
nor a principal ideal domain, a contradiction. g

4.5. Lemma. The lattices #(ZG,), #(ZA,) and F(ZA,) are not distributive.
Proof. Apply 2.6 and 4.4. 4

Let W denote the set of all formal expressions which can be obtained by a finite
number of the following rules:
(i)oew; 1ew;
(ii) if ¢, w € W, then the inscriptions ¢t + w, —1, at, Bt, «~'t, B~ 't belong to W, too.
For every t € W define a quasigroup term (t) as follows:
(1) = x: o) = (i)rn)s
«0) = y; w(pr) = () 1);
{4 w) = () ) (D W) s o) = ) - ()3
(=1 =y () )~y (B71) = (v 7 y)~e(0) -
Let us note that the term 7(f) contains at most two variables, namely x and y. The
term obtained from 1(t) by substituting yy for x will be denoted by ¥(f). Clearly,
9(:) contains only one variable, namely y.
Given a ring R with i-generators a, f§, every element of W can be considered an
element of R. Conversely, every element of R can be expressed many times as an

element of W. For every r e R fix arbitrarily one such t,€ W and put 1(r) = (t,)
and 3(r) = X1,).

5. (R, @, f)-QUASIGROUPS

Let a ring R with i-generators a, § be given. A quasigroup Q(-, ~, \)is called an
(R, a, B)-quasigroup if there exists a pointed R-module Q(+,rx, h) with ab =
=oaa+Pb+h for all a,be Q. In thiscase asb =a"*(a — b — h)and a\b =
= B~!(b — aa — h) for all a,be Q. The pointed R-module Q(+, rx, k) will be
called an arithmetical pointed R-module of Q(:, #, \). The class of all (R, «, B)-
quasigroups will be denoted by Z(R, a, B).

Let M = M(+, rx, h) be a pointed R-module. Then we define a pointed (R, o, f)-
quasigroup &(M) = Q(-, /, \, u) in this way:

Q=M,

ab=oa+ b+ h, asb=0o"Ya—pb—h), axb=p""(b~aa—h),
w=0.

Further we put o(M) = o, 7> )-
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5.1. Lemma. Let Q(+, rx, h) be a pointed R-module and ¢(Q) < Q(, ~, \, u).
Then

a+b=(asu)((usu)\b),
aa = a(u\u), Pa=(usu)a,
o la=as(u\u), B la=(usu)\a,

h=uu.

If reR and a € Q, then ra is the element of Q which is obtained from «(r) if x is
replaced by a and y by u.

Proof. Easy. 4

5.2. Lemma. Let Q = Q(+,rx,h) and P = P(+,rx, k) be two pointed R-
~-modules. A mapping of Q into P is a homomorphism of these pointed R-modules
iff it is a homomorphism of the pointed (R, o, B)-quasigroups & Q) and &(P).

Proof. Apply 5.1. 4

5.3. Lemma. Two arithmetical pointed R-modules of an (R, o, B)-quasigroup
are equal iff their additive groups have the same zero elements.

Proof. Apply 5.1 withu =0. g

Let M = M(+, rX, h) be a pointed R-module and u € M. We shall define new
operations on M by

a®b=a+b—-u, rxa=ra+u—ru, k=ou+ fu+h.

It is easy to see that M, = M(@®, r * x, k) is a pointed R-module and u is its zero
element. Moreover, w(M,) = w(M). In particular, we have proved the following
lemma.

5.4. Lemma. For every pointed (R, a, f)-quasigroup Q(-, 7, \, u) there exists
a uniquely determined pointed R-module Q(+, rx, h) such that Q(-, 7, \,u) =

=8(Q(+,rx,h). u

5.5. Proposition. The class Z(R, a, p) is a variety and ¢ is an equivalence between
RM* and P(R, a, B)*.

Proof. By 5.3 and 5.4, ¢ is a biunique mapping. The rest follows from 5.2, 1.3
and 1.4. g
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5.6. Lemma. Let Q(+,rx, h) and (@, 1 *x, k) be two arithmetical pointed
R-modules of an (R, % B)-quasigroup. Then the modules Q(+, rx) and Q(@, r * x)
are isomorphic.

Proof. Easy. 4
6. VARIETIES OF (R, o, 5)-QUASIGROUPS

Similarly as in Section 5, let R be a ring with i-generators «, 8. Further put y =
=oa+ -1

6.1. Proposition. Let (I, KY€ #(R) and ¥~ = &(u(<I,K))). Then

(i) ¥ is a variety of pointed (R, o, B)-quasigroups.
(ii) ¥~ is reducible iff K < (I : ).

Proof. (i) is evident. (ii) First, let ¥~ be reducible and M = R/I x R/K. Then
M = M(+,rx,<0,1 + K)) is a pointed R-module from u(<I,K)). Put o(M) =
= M(-, ~, \) and take u € M arbitrarily. According to the hypothesis, the pointed
(R, , B)-quasigroup M(+, /, \, u) belongs to ¥". Then e *(M(-, ~, \, u)) = M(®,
r * x, k) is contained in u(<I, K)) and s * k = u for all s€ K. By Section 5, k =
=ou + fu +<0,1 + K) and s * k = sau + spu + <0,s + K> + u — su = u.
Hence syu = 0 and we have proved KyM = 0. Thus Ky < (0 : M) = I. The converse
assertion can be proved similarly. g

We denote by #(R, a, f) the subset of #(R) consisting of all pairs <I, K) such
that K < (I : y). Clearly, #(R, o, ) is a sublattice of #(R).

6.2. Corollary. The lattice ¥(R, «, p) is isomorphic to the lattice £(?(R, a, p)).
The isomorphism is given by I, K) i— ¥, where ¥* = &(u({I, K))).

Proof. Apply 3.4, 6.1 and 1.2. g

6.3. Proposition. Let (I, K) € #(R, o, p) and let ¥~ be the corresponding variety
of (R, a, B)-quasigroups. Let X = I and Y < K be subsets such that I is the ideal
generated by X and K is the left ideal generated by I U Y. Then ¥ is just the
class of all (R,a, B)-quasigroups satisfying the identities 1(r) =y, re X and
Xs) =y, seY. '

Proof. We have 77* = ¢(u(<I, K))). Clearly, u(<I,K}) is just the variety of
pointed R-modules M(+, X, h) satisfying IM = 0 and Kh = 0. However, these
equalities are equivalent to XM = 0 and Yh = 0. Further, Q(-, 7, \)e 7" iff
(-, 7, N, u)e ¥ *forallu e Q, i.e., iff for every u € Q the pointed R-module Q, =
= Q(+, rx,uu) =& (Q(*, 7, \, u) satisfies u = XQ, and u = Y. uu. It follows
from 5.1 that this is equivalent to the validity of the identities 7(r) = y, r € X and
s)=y seY. g
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6.4. Corollary. Every variety ¥~ of (R,a, B)-quasigroups is determined in
(@(R, a, B) by identities containing no more than two variables. In particular, ¥ is
generated by its free quasigroup of rank 2. g4

6.5. Corollary. Let R be left noetherian. Then the lattice L(P(R,«, B)) is
countable and every variety of (R, «, B)-quasigroups is determined in Z(R, a, B)
by a finite number of identities in at most two variables. g

6.6. Proposition. Let ¥~ be a variety of (R, a, p)-quasigroups and let {I, K) be
the corresponding element from ¥ (R, a, B). Then I is just the set of all r € R such
that ©(r) = y holds in ¥~ and K is the set of all s € R such that Y(s) = y holds in V"

Proof. Easy. 4
6.7. Example. Let 7" be the variety of all (R, «, B)-quasigroups satisfying x(x ~ y) =
= yx . x and let <I, K) be the corresponding element from #(R, «, ). Clearly, an

(R, a, B)-quasigroup Q(+, ~,\) with an arithmetical pointed R-module Q(+, rx, h)
satisfies this identity iff

aa + Pota — B pb — Pa"'h + h = o’b + afa + ah + aa + h
for all a, b € Q. Now we can easily see that

I =R+ pet —af — PR+ R(«> + pu'B) R
and
K =R+ pa™t)+1I.

6.8. Lemma. Let ¥~ be a variety of (R, @, B)-quasigroups and let <I,K) be the
corresponding element from #(R, a, B). Then ¥ is just the variety of (RII,a +1
B + I)-quasigroups corresponding to <0, K[I>.

Proof. Easy. g

6.9. Lemma. Let ¥~ be a variety of (R, o, B)-quasigroups and let {I,K) be the
corresponding element from #(R, o, B). Then I = (\(0:M) and K = (0 h)
where M = M(+, rx, h) is such that (M) € 7* (i.e. o(M) e 7).

Proof. Obvious. g

N

6.10. Lemma. The lattice #(R) is antusomorphlc to a sublattice of Z(#(R, a, B))

Proof. Obvious. g
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7. FREE (R, o, /)-QUASIGROUPS
Let R be a ring with i-generators o, f and y =« + f — 1.

7.1. Proposition. Let ¥ be a variety of (R, o, B)-quasigroups and let {I,K)
be the corresponding element of (R, a, ). Let F be a free R[I-module with a free
basis X. Define M € R#U* by M = (F x R|K)(+,rx, 0,1 + K)). Then o(M)
is a free quasigroup in ¥ and the set {{x,0); x € X U {0}} is its free basis.

Proof. By 3.1 the pointed R-module M is free in the variety u((I,K)) and
{<x,0>; x € X} is its free basis. Now it is enough to apply 1.5 and 1.3. 4

7.2. Lemma. Let ¥~ be a variety of (R, o, ﬂ)-quasigroups and let {I, K) be the
corresponding element from .SF(R, o, ,3). Suppose that I < L < K for an ideal L
and denote by W the variety corresponding to {L,K). Then W < ¥ and these
varieties have the same quasigroups of rank 1.

Proof. Apply 7.1. 4

7.3. Lemma. Let t be an arbitrary and s an invertible element of R. Then the
(R, o, B)-quasigroup o(R(+, rx, yt + s)) is free of rank 1 in the variety Z(R,x, ).

Proof. Define ¢ : R = R by (p(x) = xs — t. Then ¢ is a biunique mapping and

olax + By + 1) =axs + Pys + s —t = axs — at + Pys — ft + yt + 5 =

=ap(x)+ Bo(y) + vt +s.
The rest is clear. g

7.4. Lemma. Let R be commutative and suppose that every subquasigroup of
the free (R, «, B)-quasigroup of rank 1 is free. Let t be an arbitrary and s an
invertible element of R. Then every non-zero ideal containing yt + s is principal
and isomorphic to R as a module.

Proof. Let I be a non-zero ideal containing y¢ + s. As one may check easily, I is
a subquasigroup of the quasigroup Q = w(R(+, rx, yt + s)). By 7.3, Q is free of
rank 1 in 2(R, a, f), and hence the quasigroup I is free. Now it follows by 1.3, 1.5
and 5.6 that I is a free R-module. By 2.1 and 4.3, I is isomorphic to R. g

7.5. Proposition. Let R be commutative, let ¥~ be a Schreier variety of (R, a, ﬂ)-
quasigroups and <{I,K) the corresponding element of (R, «, B). Then RI is
a principal ideal domain and either K =1 or yel.
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Proof. According to 6.8, we can assume I = 0. First let K =+ 0 and let 4 be an
ideal of R. Clearly, (4 x R/K)(+, rx,<0,1 + K)) is a subalgebra of (R x R/K)
(+,rx, <0, 1 + K)). Now, taking into account 7.1 and the fact that " is a Schreier
variety, we see that 4 x R/K is isomorphic to F x R/K for a free module F. Put
M = (0:K) x R/K. Then KM = 0, so that M ~ R/K. However, R/K is noetherian,
(0 : K) is an R/K-module, and consequently either 0 = (0 : K) or K = R. In both
cases we have 0 = (0 : K) and R is a principal ideal domain by 2.3 and 2.1.

Further, let K = 0. Similarly as above, we can show that the assumptions of 2.2
are satisfied, and so R/ is a principal ideal domain.

7.6. Proposition. Let R be commutative, let ¥~ be a variety of (R, «, B)-quasi-
groups such that every quasigroup from ¥~ contains an idempotent and let {I, K)
be the corresponding element of (R, «, B). Then ¥" is a Schreier variety iff R|I
is a principal ideal and either I = K or K = R.

Proof. The proof is left to the reader as an easy exercise. g

7.7. Proposition. Let ¥~ be a variety of (R, «, B)-quasigroups and let <I,K) be
the corresponding element of .9’(R, a, B). Then every quasigroup from ¥ contains
an idempotent iff ys — 1 € K for some s€ R.

Proof. Easy. 4

8. FURTHER PROPERTIES OF (R, «, )-QUASIGROUPS
As before, R is a ring with i-generators o, fand y = a + f — 1.

8.1. Proposition. Every variety of (R, o, B)-quasigroups has the strong amalgama-
tion property.

Proof. It is easy to see that a variety ¥ has the strong amalgamation property
iff ¥'* has the strong amalgamation property and that the strong amalgamation
property is preserved by the equivalence of varieties. Now it remains to apply 3.5. g

8.2. Proposition. Let ¥~ be a variety of (R, o, B)-quasigroups and let {I,K) be
the corresponding element of #(R, a, B). Then ¥ is extensive iff K = (I : y).

Proof. With respect to 6.8, we can assume that I = 0. First let ¥~ be extensive.
Let Q(+, 7, \)e ¥, u € Q be arbitrary and Q(+, rx, h) =& (Q(-, 7, \, u)). There
exists an extension P(-, /, \) of Q(-, 7, \) belonging to ¥~ and an element
e € P with ee = e. Since ¢ is an equivalence, the pointed R-module P(+, rx, h) =
= ¢ !(P(-, », \,u)) is an extension of Q(+, rx, h). We have e = ee = ae +
+ Be + h, so that h = y(—e). Consequently, (0:9) h = (0:9)y(—e) = 0. By 6.9,
K=(0:y).
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Conversely, let K = (0 : y). Let Q(+, ~, N )€ ¥ and let u be an arbitrary element
of Q. Put Q(+, rx, h) = ¢ *(Q(*, #, \, u)) and denote by H(+, rx) the injective
hull of Q(+, rx). Evidently H(+, rx, h) € (<0, (0 : ))), so that the pointed quasi-
group H(-, 7, N\, u) = e(H(+, rx, h)) belongs to ¥"* and the quasigroup H(+, /, \)
belongs to ¥". Moreover, H(+, #, \)is an extension of (-, ~, \). Define a map-
ping ¢ of Ry into H by ¢(ry) = rh. It is easy to verify that ¢ is a homomorphism
of the R-module Ry into H(+, rx). Since Ry is a submodule of R and H is injective,
¢ can be extended to a module homomorphism ¥ : R — H. Put e = y(1). We have

ve =y ¥(1) = y(31) = ¥(y) = ¢(y) = @(ly) = 1h = h.
Hence in H(-, ~, \) we can write

(—e)(—e)=—ae—Pe+h=—ye—e+h=—e.
Thus —e is an idempotent element of H(', /, \). -

8.3. Corollary. Let ¥~ be a variety of (R, «, B)-quasigroups and let {I,K) be the
corresponding element of (R, «, B). Suppose that y ¢ I and that R[I is a ring
without zero divisors. Then K = I and ¥ is extensive. g

8.4. Lemma. Let Q(-, #, \) be an (R, , B)-quasigroup. Let u € Q be an arbitrary
element and put Q(+,rx, h) = ¢ *(Q(-, 7, \, u)). The quasigroup Q(, 7, \) is
subdirectly irreducible iff the module Q(+, rx) is cocyclic. Q(+, », \) is simple
iff Q(+, rx) is simple.

Proof. Clearly, Q(-, #, \) and Q(:, ~, \, u) have the same congruences.
Similarly, Q(+, rx, h) and Q(+, rx) have the same congruences. Finally, (-, -,
N, u) and Q(+, rx, h) have the same congruences because of the equivalence e.
Now we can use 2.4. 4

A variety is called residually small if the class & of all its subdirectly irreducible
members contains a representative subset, i.e. a subset M such that every A€ A4
s isomorphic to some Be M.

8.5. Corollary. The variety of all (R, «, ﬁ)-quasigroups is residually small. g

8.6. Proposition. Let ¥~ be a variety of (R, o, B)-quasigroups and let {I,K) be
the corresponding element of (R, a, B). Let Q(+, », \)e ¥, ueQ and Q(+,
rx, h) = ¢ Y(Q(+, 7, \, u)). The quasigroup Q(-, 7, \) is injective in V" iff the
R[I-module Q(+, rx) is injective.

Proof. An easy exercise. g
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9. T-QUASIGROUPS

A quasigroup Q(-, ~, \) s called a T-quasigroup (see [13], [10] and [9]) if there
exist an abelian group Q(+), two automorphisms o, § of Q(+) and an element
he Q such that ab = aa + Bb + h for all a, b e Q. Denote by R(Q) the subring
generated by «, §,a”*, B~ in the endomorphism ring of Q(+). It is not difficult to
see that R(Q) is a ring with i-generators o, f and Q is an (R(Q), a, f)-quasigroup.
Moreover, the ring R(Q) is determined uniquely up to ring isomorphism.

The class of all T-quasigroups will be denoted by 7.

9.1. Proposition. The following conditions are equivalent for any quasigroup Q:
(1) @ is a T-quasigroup.
(ii) Q isan (R, a, B)-quasigroup for a ring R with i-generators a, f.
(iii) Q is a (ZG,, g,, g,)-quasigroup.
Proof. Easy. 4

9.2. Theorem. The lattice £(7) is isomorphic to ¥(ZG,, g,,g,). Further,
Z(T) is modular, uncountable and not distributive.

Proof. Apply 9.1, 6.2, 6.10, 4.2 and 4.5. 4

9.3. Theorem. (1) Every variety of T-quasigroups has the strong amalgamation
property.
(ii) Every variety of T-quasigroups is residually small.
(ili) Every variety of T-quasigroups is determined in by a set of identities in at
most two variables.
(iv) The variety I is extensive.

Proof. Apply 8.1, 8.3,85and 6.4. 4

9.4. Proposition. Let ¥~ be a variety of T-quasigroups. Then ¥~ contains a sub-
variety W such that:

(i) # is the largest extensive subvariety contained in ¥".
(ii) Every quasigroup from ¥  is isotopic to a quasigroup from W having an
idempotent.
(iii) Every quasigroup from ¥ possessing an idempotent belongs to W'.

Proof. Easy (use 8.2). 4

9.5. Corollary. Every minimal variety of T-quasigroups is extensive. g

We do not know the answers to the following two problems.
9.6. Problem. Find the number of minimal varieties of T-quasigroups.
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9.7. Problem. It can be shown that the variety of quasigroups satisfying the
identity xy .uv = vy .ux is contained in the variety ot T-quasigroups. Find the
number of subvarieties of this variety.

10. ABELIAN QUASIGROUPS

A quaéigroup Q(-, 7, \) is called abelian if it satisfies the identity xy .uv =
= xu . yv. The variety of abelian quasigroups will be denoted by &/ and the variety
of commutative abelian quasigroups by 4.

10.1. Propesition. The following conditions are equivalent for a quasigroup Q:
(i) Q is abelian.
(ii) Q is an (R, o, B)-quasigroup for a commutative ring R with i-generators a, p.
(i) Q is a (ZA,, a,, a,)-quasigroup.

Proof. By the well known Toyoda’s theorem (see [1]), every abelian quasigroup
is a T-quasigroup. The rest is easy. g

10.2. Proposition. The following conditions are equivalent for a quasigroup Q:
(i) Q is commutative and abelian.
(il) Q is a commutative T-quasigroup.
(ili) Q satisfies the identity xy . uv = xu . vy.
(iv) Q is an (R, o, a)-quasigroup for a ring R with an i-generator o.
(v) Qisa(ZAy, ay, a,)-quasigroup.

Proof. Easy. g

10.3. Theorem. (i) The lattice £(/) is isomorphic to #(ZA,, ay, a,) and L(B)
is isomorphic to F(ZA,, ay, ay).

(ii) The lattices £(A) and £(%B) are infinite, countable and modular.
(iii) The lattices £(s£) and (%) are not distributive.

Proof. Apply 10.1, 10.2, 6.10, 6.2, 6.5 and 4.5. 4

10.4. Theorem. (i) Every variety of abelian quasigroups has the strong amal-
gamation property and is residually small.

(ii) Every variety of abelian quasigroups is determined as a variety of algebras
with three binary operations by the identity xy .uv = xu . yv together with
a finite set of identities containing at most two variables.

(iii) Every descending chain of varieties of abelian quasigroups is finite.

(iv) Free quasigroups from s (from %) of rank 1 contain subquasigroups which
are not free.

(v) The varieties ¢ and # are extensive.
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Proof. (i), (ii) and (iii) follow from 8.1, 8.5, 6.5 and 4.3. (iv) Suppose, on the
contrary, that every subquasigroup of a free quasigroup from £ of rank 1 is free.
Put R = ZA, and I = R(a, — 1)*. We have (a, — 1)* = —(2a, — 1) + a} and
R/I is a principal ideal ring by 7.4, a contradiction with 4.4. Similarly for . (v) fol-
lows from 8.3. 4

In spite of the countability of 3’(@) the problem of describing this lattice com-
pletely seems to be difficult. The situation is analogous to that of varieties of com-
mutative semigroups. There are only countably many varieties of commutative
semigroups but again the lattice has not yet been described.

Let us call a lattice completely describable if it is either finite or isomorphic to
a countable lattice in which both lattice operations are recursive. We do not know
the answers to the following two problems.

10.5. Problem. Determine whether the lattices (/) and #£(%) are completely
describable.

10.6. Problem. Characterize Schreier varieties of abelian quasigroups.

11. SIMPLE ABELIAN QUASIGROUPS

For every prime power p" we denote by GF(p") the finite field with p" elements.
By an admissible triple of elements of GF(p") we shall mean a triple o, f, g such that
a, B are i-generators of GF(p") and the following implications hold: if « + § =+ 1,
then g = 0; if « + B = 1, then g € {0, 1}. Let us remark that since GF(p") is a finite
field, elements «, B are i-generators iff they are non-zero elements generating GF(p")
as a field.

Let o, f, g be an admissible triple of elements of GF(p"). Then we define an abelian
guasigroup H(p", a, B, g) as follows: its underlying set is the set GF (p"); the binary
operation (which will be denoted by o) is defined by a o b = aa + b + g.

11.1. Theorem. Let p" be a prime power and let o, B, g be an admissible triple
of elements of GF(p"). Then:
(i) Th abelian quasigroup H = H(p", o, B, g) is finite and simple.
(ii) The quasigroup H is simple as a groupoid.
(iii) H contains an idempotent iff g = 0.
(iv) H contains no other subgroupoids than the idempotents and H.

Proof. As is easy to see, H is a (GF(p"), a, ﬂ)-quasigroup. However, the GF(p")-

module GF(p") is simple and we can use 8.4. The rest is clear. -

11.2. Theorem. Let p" and q™ be two prime powers and let «, B, g and 7,6, h
be two admissible triples of elements of GF(p") and GF(q™), respectively. Then
the quasigroups H(p", , B, g) and H(q", v, 5, h) are isomorphic iff p = q, n = m,
g = hand A«) =y and A(B) = 6 for an automorphism 1 of the field GF(p").
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Proof. The converse implication is evident. Suppose that the quasigroups
H(p", o, B, g) and H(g™, 7y, 6, h) are isomorphic. Then clearly p = g, n = m and
there exists a permutation ¢ of GF(p") such that ¢(ax + By + g) =y ¢(x) +
+ d¢(y) + h for all x, y € GF(p").

Suppose ¢ = 0 and h = 1. Then y + § = 1 and thus the substitution x = y = 0
gives ¢(0) = (y + 8) ¢(0) + 1 = ¢(0) + 1, a contradiction. Similarly, if g = 1
and h = 0 we get a contradiction. Thus g = h.

Let « + f+ 1. Then g = h =0 and H(p", o, f,0) is not idempotent. Con-
sequently, H(p", ¥, 6, 0) is not idempotent either and thus y + ¢ # 1. We have

o(ax + By) =y o(x) + 6 o(y),
9(0) = (v + 9) #(0), (0) =0,
o(ax) =y 9(x), @(Bx) =0 o(x),
o(x + y) = o(aa™*x + BB7y) =y o(a”'x) + S 9(B7'y) =
= ¢(aa™"x) + @(BB'y) = o(x) + o(y) -
Put A(x) = ¢(x). (¢(1))"*. Then

Mx +y) = Ax) + Ay),
i(oc):y, l(ﬂ):é, Z(l) =1,
Aax) = (ax) . (p(1)) ™" =y o(x) (2(1) ™! = A(2) Xx),
ABx) = A(B) A(x) .
The set of all » e GF(p") such that A(rx) = A(r) A(x) for all x e GF(p") is evidently
a subring containing the generators o, f. This implies that A is an automorphism
of GF(p"). ,
Now let « + f =1, so that ¥ + 6 = 1, too. Put Y(x) = ¢(x) — ¢(0). We have
Ylox + By + g) = g(ax + By + g) — @(0) = 7 o(x) + 6 o(y) + h — ¢(0) =
=y0(x) +50() +h— (v +6)@(0) = yy(x) + 5 ¥(y) + h,
¥(0) =0,
Y(x +9) = Ylox + Bx + g) = yY(x) + Y(x) + h = Y(x) + h,
Ylox + By) + b = ylax + By + g) = yY(x) + S ¥(y) + h,
Ylax + By) = y¥(x) + s ¥(»),
Y(ax) =y ¥(x),
Y(Bx) = 3 ¥(x),
W(x +3) = yYlea " x + BFTY) = y (a7 x) + SY(B1y) =
= Y(eo ™ x) + Y(BBT1y) = Y(x) + ¥(y).
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Put A(x) = Y(x) (¥(1))~*. Similarly as above, A is an automorphism, A(a) = y and
,l(ﬂ) =9J. g

11.3. Theorem. Every non-trivial simple abelian quasigroup is isomorphic
to H(p", o, B, g) for a prime power p" and an admissible triple o, B, g of elements
of GF(p").

Proof. Let Q(o, 7, \) be a simple abelian quasigroup. Take u € Q and consider
O(+,rx, h) = ¢ *(Q(e» 7> N, u)). Then Q(+, rx) is a simple ZA,-module (by 8.4).
Hence Q(+, rx) is isomorphic to ZA,[I for a maximal ideal I of ZA,. Let
@ : Q(+, rx) = ZA,[I(+, rx) be an isomorphism. Clearly, ¢ is an isomorphism of
Q(o, 7, \)onto &(ZA,[I(+, rx, ¢(h))). On the other hand, ZA, /I is a field generated
asaringbya, +I,a;' +I,a, +1,a;' + 1. By 2.7, ZA,[I = GF(p") for a prime
power p". Hence we can assume that Q = GF(p")and x o y = ax + fy + hfor some
non-zero elements o, f generating GF(p") and some h e GF(p"). If « + f =+ 1 then
the mapping x b>x + (x + f — 1)"' h is an isomorphism of Q(c) onto H(p",
®,B,0). If « + =1 and h # 0 then the mapping x > xh~"' is an isomorphism
of Q(c) onto H(p", o, B, 1). w

11.4. Corollary. Every simple abelian quasigroup is finite and simple as
a groupoid. g

12. MINIMAL VARIETIES OF ABELIAN QUASIGROUPS

Let p" be a prime power and let a, f be two non-zero elements of GF(p") generating
GF(p"). Then we denote by H(p", o, B) the variety of quasigroups generated by
H(p", o, B, 0).

12.1. Theorem. Let p" be a prime power and let o,  be two non-zero elements
of GF(p") such that o, p generate GF(p") and o + f + 1. Then

(i) #(p", o, B) is a minimal variety of abelian quasigroups.
(ii) #(p", «, B) = 2(GF(p"), , p).
(iii) H(p", , B, 0) is free of rank 1 in H(p", «, B).
(iv) If Qe #(p", o, B) then Q = o(V(+,rx,0)) for a vector space V(+, rx) over
GF(p").
(v) Every non-trivial quasigroup from H#(p", o, B) contains an idempotent and is
free in H(p", a, p).

Proof. Let x : ZA, > GF(p") be the ring homomorphism with x(a,) = & and
#(a,) = B. Put I = Ker . Then I is a maximal ideal of Z4,. Since o + B * 1,
a; +a,—1¢Iand (I:a, + a, — 1) =1 (I is a prime ideal). Now it is obvious
that 2(GF(p"), «, B) is just the variety of abelian quasigroups corresponding to
KI,IY e $(ZA;, a;, a,) and that this variety is minimal (iii) follows from 7.1 and 7.2
and the rest is easy. q
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12.2. Theorem. Let p" be a prime power and let o, 8 be two non-zero elements
of GF(p") such that «, B generate GF(p") and o + 8 = 1. Then
(i) #(p", o, B) is a minimal variety of abelian quasigroups.
(i) #(p", o, B) is just the only non-trivial subvariety of #(GF(p"), ¢, B); a quasi-
group from #(GF(p"), a, B) belongs to #(p", o, p) iff it is idempotent.
(iii) H(p", a, B, 0) is free of rank 2 in #(p", a, f).
(iv) If Qe #(p", o, B) then Q = w(V(+, rx, 0)) for a vector space V(+, rx) over
GF(p").
(v) Every quasigroup from #(p", o, p) is free in #(p", «, p).

Proof. Let ¥ and I be as in the proof of 12.1. Then I is a maximal ideal and
a; + a, — 1 el. It is easy to see that the variety of idempotent quasigroups from
P(GF(p"), o, f) is just the variety of abelian quasigroups corresponding to <I, ZA4,).
The rest is clear. g

12.3. Theorem. Let ¥~ be a minimal variety of abelian quasigroups. Then there
exist a prime power p" and two non-zero elements a, B of GF(p") generating GF(p")
such that ¥" = #(p", a, B). Moreover, #(p", o, ) = #(q™,7,8) iff p=¢q, n = m
and Aa) =y and AP) = & for an automorphism 1 of GF(p").

Proof. Let <I, K) be the element of #(ZA4,, a,, a,) corresponding to ¥". Then I
is a maximal ideal and either I = K or K = ZA,. By 2.7, Z4,[I = GF(p") for
a prime power p". Now it is clear that ¥" = #(ZA,|I, a, + I, a, + I). The rest
follows from 12.1, 12.2 and 11.2. 4

Remark. Let p" be a prime power, and let «, f be two non-zero elements of GF(p")
such that «, f generate GF(p") and « + B = 1. Put ¥~ = Z(GF(p"), o, f). The
variety ¥~ has several interesting properties. The lattice .#(7") has exactly three
elements and #(p", «, B) is the only non-trivial subvariety of ¥". Every quasigroup
from ¥ is either idempotent or has no idempotent element. Every quasigroup
from 7" is either free (and then has no idempotent element) or belongs to J#(p", «, f)
(and then it is idempotent). ¥~ is a Schreier variety but it is not extensive. Every
quasigroup from ¥ is injective in #". The free quasigroup of rank 1 in ¥~ is just
the quasigroup H(p", o, f, 1).

Minimal varieties of idempotent abelian groupoids were described in [8].

13. THE LATTICE OF VARIETIES OF COMMUTATIVE
ABELIAN IP-QUASIGROUPS

Let N denote the set of non-negative integers. If n, m € N, then we shall write
n<a m iff m = xn for some x e N. If n % 0, then x is determined uniquely and we
put x = m/n. If n = 0 and n << m, then m = 0 and we put 0/0 = 0. As is easy to
see, <1 is an ordering of N and N becomes a complete lattice with the least element 1
and with the largest element 0.
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In what follows we shall deal with subgroups of the additive group Z x Z. Let
G < Z x Z be a subgroup. We define

Gp = {<a + b, a + b); <a,b)e G},

Gg = {{a — b, b — a); <a, by e G}.
Further we put
D = {(a,a); an}, E = {<a, —a>; an}'

As is easy to see, there are uniquely determined numbers n, m € N such that G n D =
=nD=2Z {nn) and GNE =mE=2.{m, —m). We put n =0o(G) and
m = B(G).

The following two lemmas are obvious.

13.1. Lemma. Let G < Z x Z be a subgroup. Then Gy is a subgroup of D and Gg
is a subgroup of E. g

13.2. Lemma. Let H = G be two subgroups of Z x Z. Then o(G) < «(H) and
B(G)< B(H). =

13.3. Lemma. The following conditions are equivalent for a subgroup Gof Z x Z:

(i) G» = G.
(ii) Gz < G.
(iii) If <a, b) € G then <b,a) € G.

Proof. (i) implies (iii). Let {a, b) € G. Then {(—a, —by)e Gand {a + b,a + by e
€ Gp < G and thus (b, a) €G.

(iii) implies (ii). Let <a, b> € G. Then {(—a, —b) and {—b, —a) belong to G.
Hence a — b, b — a)€eG.

(ii) implies (i). Let <a, b> € G. Then {—a, —b) and (b — a, a — b) are contained
in G. Consequently, <b, a) and <{b,a) + <a,b) = <a + b, a + b) are elements
of G. 4

Any subgroup G of Z x Z satisfying the equivalent conditions of 13.3 will be called
admissible. As is easy to see, the set ¥ of all admissible subgroups is a complete
lattice with respect to the ordering G £ H iff H < G. It is a sublattice in the dual
of the lattice of all subgroups of Z x Z.

Let Ge 9. Then we put y(G) =0if G+0,Gp=GnNnDand Gg=GnNnE. In
the other cases, y(G) = 1.

134. Lemma. Let Ge 9, let o(G) (resp. B(G)) be even and Gg = G 0 E (resp.
Gp = G N D). Then B(G) (resp. «(G)) is even.

Proof. Let{a, b) € G.Then<a + b,a + b)> € G, < «(G). D,and soa + b = 2z
for some zeZ. Now g — b = 2a — 2z is even. The rest and the second case are
clear. 4
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13.5. Lemma. Let G € 4 be such that y(G) = 0. Then «(G) is even iff B(G) is even.
Proof. Apply 13.4. 4

13.6. Lemma. Let G € 4. Then either Gp = G A D or Gp = 2 ®(G) D = 2(G n D).

Proof. We have G, = mD for some m € N. However, 2(G n D) € (G n D), =
€ Gp € G n D, and consequently 2 a(G) = Xm and m=y a(G) for some x, y € Z.

Thus either x =land y =2orx =2and y = -

13.7. Lemma. Let G € 4. Then either Gg = G n E or G = 2 B(G) E = 2(G n E).

Proof. Similar to that of 13.6. 4
Let n,meN. Then we define A(n, m) = Z{n, n) + Z{m, —m)» = nD + mE.

13.8. Lemma. Let n,me N. Then

(i) A(n,m)e 9,
(i) «(A(n, m)) = n and (A(n, m))p = 2nD,
(iii) A(n,m) " D = (A(n, m))p iff n =0
(iv) B(A(n, m)) = m and (A(n, m))g = 2mE
(v) A(n, m) N E = (A(n, m))g iff m =0,
(vi) y(A(n, m)) = 1.
Proof. Obvious. g
Let n, m e N be non-zero elements such that 2<n + m (i.e. either both n, m
are even or both n, m are odd). Then we put B(n, m) = Z<{n, n) + Z{(n + m)[2,
(n — m)[2).
13.9. Lemma. Let n, m € N be non-zero elements such that 2 <1 n + m. Then

(i) B(n,m)e ¥,

(i) «(B(n, m)) = n and (B(n, m))p = B(n, m) N D,
(iii) B(B(n, m)) = m and (B(n, m)); = B(n, m) N E,
(iv) 3(B(n, m) = 0,

(¥) Bln, m) = Z<m, —m> + Z((n + m)2, (n = m)]2>.

Proof. Obvious. 4

13.10. Lemma. Let G € 4 be such that y(G) = 0. Then both «(G) and B(G) are
non-zero.

Proof. Let ®(G) = 0. Then clearly G < E (since Gp < G), and so Gg = 2G.
Thus B(G) = 0 and G = 0. The case f(G) = O is similar.
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13.11. Lemma. Let G € % be such that y(G) = 0. Then G = B(«(G), f(G)).

Proof. First take into account 13.5 and 13.10 and put n = ot(G), m = B(G).
Then nD = G, = Gn D and mE = G = G n E. There is <a, b) € G such that
a — b =m. Further, a + b = xn for some x€Z, a=(xn+ m)2 and b =
= (xn — m)2. Suppose that x is even. Then {xn[2, xn[2)enD < G, so that
{(m[2, —m[2) e G N E = G, a contradiction with m + 0. Thus x is odd,
(=x)n2, A1=x)n2>eG and <{(n+ m)2, (n— m)2> = (a, b) +
+<(1 = x)n/2, (1 — x) n[2) € G. We have proved B(n, m) = G.

As for the converse inclusion, let {(a, by € G. Then a + b = xn and a — b =
= ym for some x, y € Z and {a, b) = {(xn + ym)[2, (xn — ym)[2). However
—y{(n +m)f2, (n—-m)2>eBn m)s G and <a,b) — y{(n + m)2,
(n = m)2) =<{(x = y)nf2, (x —y)n[2>eGn D= Gp=nD < B(n, m). There
fore {a, b) € B(n, m) and the proof is complete.

13.12. Lemma. Let G € 4 be such that y(G) = 1. Then G = A(a(G), B(G)).

Proof. Put o(G) = n, (G) = m. Then nD = G n D and mE = G n E. Hence
A(n,m) = nD + mE < G.If n = O then G < E and the situation is clear. Similarly
if m = 0. So we can assume n, m = 0. First let G n D % Gp. Then G, = 2nD by
13.6. Take <{a, b> € G. We have a + b = 2xn and a — b = ym for some x, y € Z.
Clearly, <a, b) = {(2xn + ym)|2, (2xn — ym)[2).Since nD < G,{ym|2, —ym|[2) €
€ G n E = mE and y is even. Now it is obvious that {a, b) € A(n, m).IfG N D = G,
then G N E + Gg and we can proceed similarly. g

13.13. Lemma. Let n, m, p, g€ N. Then A(p, q) < A(n, m) iff n<t p and m < q.

Proof. The lemma follows easily from 13.2, 13.8 and from the definition of
A(n, m). o

13.14. Lemma. Let p,q€ N and let n,me N be non-zero elements such that
2<an+ m. Then

(i) A(p,g) = B(n,m) iff n< p and m< q.
(ii) B(n, m) = A(p, q) iff p< n, << m and n[p and m|q are even.

Proof. (i) This is an easy consequence of 13.2, 13.8 and 13.9.

(ii) Let B(n, m) < A(p, q). Thenn = xpand m = yq for some x, y € N. Since n, m
are mnon-zero, 0 = x, y, p,q. Further, {(n + m)[2, (n — m)[2) = {(xp + yq)/2,

(xp — yq)[2) € A(p, q). Hence <{xp, xp) € (A(p, q))p and x is even due to 13.8(ii).
Similarly we can show that y is even. The converse implication is easy. g

13.15. Lemma. Let n, m, D, q be non-zero elements of N such that 2<an + m
and 2<1 p + q. Then B(p, q) < B(n,m) iff n< p, m<1 q and 2 < (p[n + q|m).
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Proof. Let B(p, q) < B(n, m). Obviously, p = xn and g = ym for some x, y € N.
Further, ((xn + ym)|[2, (xn — ym)|2) € B(n, m). If x is even, then {ym/2, —ym/2) €
€ B(n,m) N E, and so y is even. If x is odd, {(1 — x) n[2, (1 — x) n[2) € B(n, m)
and {(n + ym)[2, (n — ym)[2) € B(n, m). In this case {(y — 1) m[2, (1 — y) m[2> €
€ B(n, m) n E = mE. Consequently y is odd. The converse implication is easy. g

Let G € 9. Then we denote by o(G) the set {<a, b>; <2b — a, 2a — b) € G}.

13.16. Lemma. Let Ge 9. Then

(i) e(G) is a subgroup of Z x Z, G = ¢(G) and ¢(G) € %;
(i) «(e(G)) = «G) and (¢(G))p = Gp, G n D = ¢(G) N D;
(iii) either B(e(G)) = B(G) or 3 B(e(G)) = B(G).

Proof. (i) and (ii) are clear and {a, —a) € ¢(G) iff (3a, —3a)€ G. 4
13.17. Lemma. Let n,me N. Then

(1) e(A(n, m)) = A(n, m) if either m = 0 or m is not divisible by 3.
(i) e(A(n, m)) = A(n, m[3) if m + 0 and m is divisible by 3.

Proof. Firstlet 0 + m = 3x. As is easy to see, 4(n, x) S ¢(A(n, m)) = G. On the
other hand, ®(G) = n and B(G) = x by 13.16. Hence either G = A(n, x) or G =
= B(n, x). However, the latter case is not possible, since Gp, = (4(n, m))p + nD =
= (B(n, x))p provided n + 0. Similarly for the second case.

13.18. Lemma. Let n, m € N be non-zero and 2 <2 n + m. Then

(i) e(B(n, m)) = B(n, m) if m is not divisible by 3;
(i) e(B(n, m)) = B(n, m[3) if m is divisible by 3.

Proof. Similar to that of 13.17.

13.19. Lemma. Let G € 4. Then there is no other admissible subgroup between G
and ¢(G).

Proof. Easy. 4

Consider the following ring R: Its underlying abelian group is Z x Z and the
multiplication is defined by

{a,b).<{c,d) = {ac + bd, ad + bc) .
The ring R is commutative and the element ¢t = (0, 1) is its i-generator. Further put

={(-1,2>=<0,1> + <0,1) — <1,0). The element {1,0) is obviously the
unit of R.

496



13.20. Lemma. (i) The lattice #(R) is just the dual of 4. (ii) If G € #(R) then
(G :5) = ¢(G).

Proof. Easy (observe <a, b).<0,1) = <b,a)). g

Let Z = N x N x {0, 1} be the subset defined as follows:

(1) <n, m, 1> € & whenever n, meN;
(ii) <n, m, 0y € # whenever n,meN, n, m are non-zero and 2 <1 n + m.
We shall define a relation < on £ in this way: {a, b, c) = (x,y,z)iffa< x,b<y
and at least one of the following three cases takes place:
(i) z=1;
(ii) x/a and y/b are even;
(iii) ¢ = z and x/a + y/b is even.

Further, let /" = N x N x {0, 1} x {0, 1} be the following subset: <a, b, ¢, d) €
e N iff (a,b,c)eR and either d =1 or 3<a b + 0 = d. We define < on N as
follows: <a, b, c,d) = <{x,y,z,v)y iff (a,b,c> £<x,y,z) in # and either d L v
or 3< y/b.

Define the following mappings:

(i) n:#(R) > N x N x {0, 1} by n(G) = <(G), B(G), Y(G).
(i) A: L(R,1,1) > N x N x {0,1} x {0, 1} by (<G, HY) = {(G), B(G), (G), 1)
if G = H and A({G, H)) = <«(G), B(G), »(G), 0> if G + H.
(iii) o : 2 — #(R) by o({(n, m, 1)) = A(n, m) and o(<{n, m, 0)) = B(n, m).
(iv) 7 : & > H(R) x #(R) by y(<a, b, ¢, 1) = <o({a, b, ¢)), 6(<a, b, c))> and
y(<a, b, ¢, 0>) = (o(<a, b, ¢)), e(o({a, b, c)))>.

13.21. Proposition. (i) The set # with < is a lattice and 1 is an isomorphism of
the dual of #(R) onto #. Moreover,n™ " = q.

(ii) The set /" with < is a lattice and 2 is an isomorphism of the lattice (R, t, t)
‘onto A". Moreover, A~! = y.

Proof. Apply the preceding theory. g
13.22. Lemma. (i) Let n,me N. Then the ideal A(n, m) of R is generated by
{(n,n) and {m, —m).

(ii) Let n, m e N be non-zero such that 2 <t n + m. Then the ideal B(n, m) of R
is principal and is generated by {(n + m)[2, (n — m)[2).

Proof. Easy. g

13.23. Lemma. Let C(2) be the two-element cyclic group with elements {1, «}.
Then there is a ring isomorphism ¢ of the group ring ZC(2) onto R such that
o(a) =t =<0, 1).

Proof. Obvious. g
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13.24. Lemma. Let Q be a commutative groupoid and let x |~ x~* be a mapping
of Q into Q. Then the following assertions are equivalent:

(i) x*.xy =y forall x,ye Q.
(i) x.x7 'y =y forall x,ye Q.
In this case, Q is a cancellation and divisison groupoid and (x ')~ = x for all

x e Q.

Proof. First let x™ 1. xy = y for all x, y e Q. It is clear that Q is a cancellation
groupoid. Further, x™! . xx™! = x"" and (x7}) 7 x7! = (x71) 7 (x " (xx7Y)) =
= xx~'. Hence (x"!)™' =xand x.x 'y = yforallx, ye Q.

Nextletx . x"'y = yforallx, y € Q. Obviously, Q is a division groupoid. Further,
x7Hx7H(xT) ) =x"" and xx7t = x(x"'(x7(x7!) 7)) = x"X(x"*)"". Finally,
x=x.xx"'=x.x"!(x7!)7" = (x7!)"" and the proof is complete.

A commutative groupoid Q with a unary operation x |- x ! satisfying the equi-
valent conditions of 13.24 is called an IP-groupoid. Let & denote the variety of all
commutative abelian IP-groupoids. That is, & is the variety of algebras with one
binary and one unary operation satisfying the identites xy = yx, xy . uv = xu . yv
and x~' . xy = y.Let Q(-, ~') be a commutative IP-groupoid. Then Q can be conside-
red in a unique way a quasigroup Q(-, ~, \). In this case, x ! = x / xx for every
x € Q. Conversely, if Q(+, #, \) is a commutative quasigroup satisfying (x ~ xx)
(xy) = yforallx,ye Qand x ™' = x ~ xx, then Q(+, ~')is a commutative IP-groupoid.
Now is easy to see that the variety 2 and the variety of all commutative abelian
quasigroups Q(-, ~, \) satisfying (x ~ xx) (xy) = y are equivalent. The last variety
will be denoted by 2, too.

13.25. Lemma. The following conditions are equivalent for any quasigroup
(> 75 N )
(i) (-, 7, \) is a commutative abelian IP-quasigroup.
(i) Q(+, », \) satisfies the identity x(y . uv) = u(y . vx).
(iii) There is an abelian group Q(+), its automorphism ¢ and an element g € Q
such that ¢* = 1 and ab = ¢(a) + ¢@(b) + g for all a, be Q.
(iv) 9(-, 7, \)is a (ZC(2), «, a)-quasigroup.
Proof. The equivalence of (i) and (ii) is easy and the rest needs just a tedious
checking. g ‘
For every n € N we define a term u(n, x, y) in variables x, y by

u(0, x,y) = x"1,

u(n + 1, x, y) = x(u(n, x, y) x) .

13.26. Lemma. Let 0(*, ~') be a commutative abelian IP-groupoid and let
O(+) be an abelian group with an automorphism ¢ and an element g € Q such
that ab = ¢(a) + @(b) + g for all a, be Q. Then :
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(@) a =9 (—a—g— o(9)) forall acQ,
(i) w(n,0"',a) =na=a + ...+ a forall neN and acQ,
(iii) @(a) =00""'.a forall aeQ,
(iv) ¢(—a) = 0071(0(0(00~" . a™1))) for all a€ Q,
(V) o(—g) = 007"

Proof. It is a matter of routine. g

Finally, for every n e N we define a term o(n, x, y) by v(n, x, y) =
= u(n, x, xx ' (x"(x"(xx"" . y7Y)))

13.27. Theorem. The lattice 3’(@) is isomorphic to the lattice /. The isomorphism
is given as follows:

(i) If n, m € N then the variety corresponding to {n, m, 1, 1) is just the subvariety
of 9 given by
u(n, x,y) = v(n, x,y), u(m,x,y)=u(mx,xx"'.y).
(i) If n,meN, 0 = m and 3 < m then the variety corresponding to {n, m, 1, 0)
is just the subvariety of 9 given by
u(n, x, y) =v(n,x,y),

u(m, x, y) = u(m, x, xx™*

N y) ’
u(n, x, x 'x71) = u(n, x, xx71),
u(m(3,x, x"'x71) = u(m[3, x, xx' . x"'x71).

(iii) If n,me N are non-zero, 2<an + m and n = m then the variety corre-
sponding to {n, m, 0, 1) is just the subvariety of 9 given by

u((n + m)[2, x, y) = v((n — m)[2,x, y).

(iv) If n,me N are non-zero, 2<an + m and n < m then the variety corre;
sponding to {(n, m, 0, 1) is just the subvariety of 9 given by

u((n + m)[2, x, y) = u((m — n)[2, x, xx"* . y).

(v) If n,meN are non-zero, 2<an + m, 3<<m and n = m then the variety
corresponding to {n, m, 0, 0) is just the subvariety of 9 given by

u((n + m)[2, x, y) = o((n — m)[2,x, y),
u((3n + m)[6, x, x"1x1) = u((3n — m)[6, x, xx7*).

(vi) If n,meN are non-zero, 2<n + m, 3<am and m[3 < n < m then the
variety corresponding to {n, m, 0, 0) is just the subvariety of & given by f

u((n + m)f2, x, y) = u((m — n)j2, x, xx7*.y),
u((3n + m)[6, x, x"'x~1) = u((3n. — m)/6, x, xx~Y).
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(vii) If n,me N are non-zero, 2<< n + m, 3<m and n < m/[3 then the variety
corresponding to {n, m, 0, 0) is just the subvariety of 2 given by

u((n + m)2,x, y) = u((m — n)[2, x,xx"1.y),
u((3n + m)[6, x, x " 'x71) = u((m — 3n)[6, x, xx" . x"'x71).

Proof. The proof of this theorem requires almost everything what has been done.
A special attention should be paid to 6.2, 6.3, 13.22 and 13.26. 4

Let us remark.that (by 7.5 and 8.2) the variety 9 is extensive but it is not a Schreier
variety.

14. THE LATTICE OF VARIETIES OF TOTALLY SYMMETRIC
ABELIAN QUASIGROUPS

14.1. Lemma. The following conditions are equivalent for any groupoid Q:

(i) Q satisfies the identities x . xy = yx.x = y forall x, y € Q.
1

(i) Q is a commutative IP-groupoid and x™! = x.
Proof. (i) implies (ii). It suffices to prove the commutative law. We have y . xy =

= (x.xy)(x(x.xy)) = (x. xy) (xy) = x. Hence xy = y(y . xy) = yx.
(i) implies (i). This implication is obvious. g

A groupoid satisfying the equivalent conditions of the preceding lemma is called
a TS-groupoid. We denote by & the variety of all abelian TS-groupoids.

If Q(+, 7, \) is a quasigroup then the groupoid Q(*) is a TS-groupoid iff Q(-,
7, \) satisfies the identites xy = x ~ y = x\ y. Such quasigroups are said to be
TS-quasigroups. It is clear that the variety & is equivalent to the variety of all
abelian TS-quasigroups. This last variety will be denoted by %, too.

14.2. Lemma. The following conditions are equivalent for any quasigroup
(-, 7, \):
(i) O(-, 7, \) is an abelian TS-quasigroup.
@) Q(+, 7, \) isa(Z, —1, —1)-quasigroup.

Proof. Easy. g

Proceeding similarly as in the preceding section, we obtain a description of the
lattice Z(F). In fact, we could apply 13.27, since & is clearly a subvariety of 9.
At all events, we shall formulate here only the final result. ‘

Let & = N x {0, 1} be the subset such that {n, 1) € & forallne N and {n,0) € &
iff 0 + n and 3 < n. Define an ordering < on & by (n, x> £ {(m, y> iff n <« m and
either x < y or 3 < m/n. Then & is a lattice.
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14.3. Theorem. The lattice (&) is isomorphic to the lattice &. The isomorphism
is given as follows:

(i) If ne N then the variety corresponding to {n, 1) is just the subvariety of #
given by
u(n, x, y) = x

(u is defined in the same way as in Section 13).

(ii) If 0 = neN and 3 < n then the variety corresponding to <{n,0) is just the
subvariety of & given by

u(n, X, y) =x, u(n/3, X, xx) =Xx. »

Remark. It is proved in [2] that there are uncountably many minimal varieties
of TS-quasigroups.

15. SOME OTHER EXAMPLES
A quasigroup Q(-, ~, \) is called unipotent if xx = yy for all x, y € Q.

15.1. Lemma. The following conditions are equivalent for any quasigroup Q:
(i) Q is a unipotent abelian quasigroup.

(i) Qisa(ZA,, a,, —a,)-quasigroup.
Proof. Easy. g

15.2. Theorem. The lattice of all varieties of unipotent abelian quasigroups is
isomorphic to the dual of J(ZA,).

Proof: We have a, + (—a,) — 1 = —1, and so the dual of #(ZA,) is isomorphic
to #(ZA,, a;, —a,). Now we can use 15.1. 4

15.3. Lemma. The following conditions are equivalent for any quasigroup Q:
(i) Q is a commutative unipotent abelian quasigroup.
(ii) Q is a (GF(2) 4;, a,, a,)-quasigroup.

Proof. Easy.

15.4. Theorem. The lattice of all varieties of commutative unipotent abelian
quasigroups is isomorphic to the lattice of all non-negative integers with respect
to divisibility.

Proof. The ring GF(2) 4, is a localization of the polynomial ring GF(2) [x].

Hence GF(2) 4, is a principal ideal domain. The set of all prime elements of GF(2)
A, is infinite and countable. The rest is clear.
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15.5. Lemma. The following conditions are equivalent for any quasigroup Q:
(i) Q is a unipotent abelian quasigroup and a right loop.
(i) Qisa(Z,1, —1)-quasigroup.

Proof. Easy. 4

15.6. Theorem. The lattice of all varieties of unipotent abelian right loops is
isomorphic to the lattice of all non-negative integers with respect to divisibility.

Proof. This follows fronr 15.5. 4

15.7. Lemma. The following conditions are equivalent for any quasigroup Q:

(i) Q is a unipotent abelian IP-quasigroup.
(ii) Q is a (ZC(2), o, —a)-quasigroup.

Proof. Easy. g

15.8. Corollary. The lattice of all varieties of unipotent abelian IP-quasigroups
is isomorphic to the lattice & defined in Section 13. 4

15.9. Lemma. The following conditions are equivalent for any quasigroup Q:

(i) Q is a commutative idempotent abelian quasigroup.
(ii) Q isan (R, 1/2, 1/2)-quasigroup, where R is the ring of rational numbers of the
form z[2", zeZ, neN.

Proof. Easy. 4

15.10. Theorem. The lattice of all varieties of commutative idempotent abelian
quasigroups is isomorphic to the lattice of all non-negative integers with respect
to divisibility.

Proof. This follows from 15.9. 4

Remark. The lattice of varieties of commutative idempotent abelian quasigroups
is thus isomorphic to the lattice of varieties of commutative unipotent abelian quasi-
groups. On the other hand, we have proved in [7] that the lattice of varieties of com-
mutative idempotent abelian groupoids is countable while that of commutative
unipotent abelian groupoids is uncountable.

15.11. Lemma. The following conditions are equivalent for any quasigroup Q:

(i) Q is an abelian IP-quasigroup and a right loop.
(i) Q is a (ZC(2), 1, @)-quasigroup.
Proof. Easy. g
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15.12. Theorem. The lattice of all varieties of abelian 1P-quasigroups with right
unit is isomorphic to the lattice Z defined in Section 13.

Proof. This follows from 15.11. 4
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