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1. In the paper [7] the concept of tolerance relation has been introduced. This
concept was obtained by abstraction from the concept of tolerance which is well-
known in the technical practice. In the paper [2] tolerance relations are studied on
graphs and the concept of a compatible tolerance is introduced (although it is not
called so). For universal algebras the concept of compatible tolerance is introduced
in the paper [3]. There and in [4] fundamental characteristics of these relations are
studied. In [4] it is proved that some theorems which are valid for congruences hold
also for compatible tolerances. In [4] and [5] it is also proved that for some special
algebras (groups, Boolean algebras) each compatible tolerance is a congruence. The
existence conditions for compatible tolerances which are not congruences are studied
in detail especially in [5], [8] and [9]. In [6] it is proved that the set of all compatible
tolerances on a given algebra forms a complete lattice. Many properties of this lattice
are the same as those of the lattice of all congruences on a given algebra. Therefore
it is natural to study the analogies between these lattices on particular algebras.
In the paper [10] the minimal congruence containing a given set is defined. This
concept plays a considerable part in the study of congruences, because each con-
gruence C on a given algebra U is the join of minimal congruences containing two-
element sets {a, b}, where a, b belong to A and a C b holds. Further, these minimal
congruences are compact elements in the lattice of all congruences on a given algebra.
But in [6] it is proved that the same assertions hold also for compatible tolerances.
Thus it seems to be useful to study minimal compatible tolerances on various types
of algebras. The aim of this paper is to give fundamental characteristics of minimal
compatible tolerances on some types of lattices.

2. By the symbol A = (A4, ) we denote an algebra A with the support A and
with the set # of fundamental operations.
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Definition 1. Let 2 = (A4, # ) be an algebra, let R be a binary relation on A. The
relation R is called compatible with U, if for each n-ary operation fe %, where n
is a positive integer, and for any 2n elements a;, ..., a,, by, .... b, of 4 such that
a;Rb,fori=1,...,n we have f(ay, ..., a,)Rf(by, ..., b,).

Definition 2. A reflexive and symmetric binary relation on a set is called a tolerance
on this set. If a tolerance T on the support 4 of an algebra A = {4, &) is compatible
with A, we call it a compatible tolerance on U.

In [4], [5], [8] and [9] examples of compatible tolerances which are not con-
gruences are given.

Definition 3. Let A = (A, #) be an algebra, S = A, S + 0. Let € be a class of
compatible relations on 2. Then Rg € ¥ is called the minimal relation of the class €
containing S, if for each xe€ S, y € S we have x Rg y and for each relation Re €
with this property Ry < R holds. If € is the class of all compatible tolerances (or
congruences) on 2, then such an Ry is called the minimal compatible tolerance (or
the minimal congruence respectively) on 2 containing S.

Notation. Let 2 be an algebra, let € be a given class of compatible relations on 2.
In the whole paper the symbol Ry (or T, or Cs) denotes the minimal relation of the
class % (or the minimal compatible tolerance on 2, or the minimal congruence on %
respectively) containing S. If S = {a, b}, we denote shortly R,, = R4, T, =
= T{a,b)a Cop = C{a,b)'

Remark. If A = (A4, &) is an algebra and ¥ is the class of all compatible reflexive
relations on U, then for each a € A, b e A we have R,, < T,, < C,, because every
congruence is a compatible tolerance and every compatible tolerance is a compatible
reflexive relation.

3. Let L be a lattice, let ae L, be L. Denote I(a, b) = {xeL| aAnb=<xZ<
< a v b}. Evidently I(a, b) =I(a A b, a v b) and I(a, b) for each aeL, beL
is the interval on Lbounded by the elements a A b, a v b.

Lemma 1. Let L be a distributive lattice, let ae L, be L, a £ b. Let € be the
class of all compatible reflexive relations on L with the property that if Re ¥,
reL, seL, rRs, then z Rt for each zel(r,s), tel(r,s). Then the relation R
defined so that x R y if and only if .

(1) bv(xay)zxvy,
() an(xvy)sxay

is the minimal relation of the class € containing the pairs (a, b), (b, a) and,
moreover, R = T,
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Proof. Evidently R is reflexive and symmetric, therefore it is a tolerance. We
shall prove its compatibility. For each four elements x, y, z, ¢t of L the following
inequalities hold:

bv((xvza(yvi)zbv(xay),
bv((xvz)a(yvi)zbv(zat).
This implies
(3 bv((xvza(yve)zbvxay)vbv(zar).
Let x R y, z R t, then according to (1) and (3)
bv((xvaapve)zxvy)vizvy=xvzv(yvi.
From (2) and from the distributivity of L we obtain
arn((xvz)viyvi)=aan((xvy vizvi=
=(@an(xvy)yvi@a(zviy)s
Sxay)viagsxvz)a(yvi.

According to (1) and (2)itis x v zR y v t. Dually we can prove x A zRy A t,
thus R is a compatible relation on L. Evidently a R b. According to Theorem 1 in [5],
if R is a compatible tolerance on L, then r Rs = z R t for each z € I(r, 5), te I(r, s),
thus R e %. This means R,, < T,, < R. We shall prove the converse inclusion.
Let x R y. Then from (2) and from the distributivity of L we have

xAay=@ar(xvy)vEray)=@vExay)a((xvy)a@xay)=

=(@avxAay)a(xvy).
From (1) we have
xvy=@bBvExay)axxvy).

As R, is reflexive, x R,, x holds for each x € L. Further a R,, b, R,, € €. Thus
xAy=@vExAay)AEvy)RyBVvEAY)A(xVvY)=xVvy,
which means X A yR,,x v y. But R, €% and xe€l(x A y, x v y), yel(x A y,
x Vv y), therefore also x R,, y. Thus we have R S R, which means R = T, = Ry,

Lemma 2. Let L be a lattice. Then T,, = T, p,avs for each a€ L, b€ L.

Proof. EvidentlyaeI(a A b,a v b),bel(a A b, a v b), therefore by Theorem
1from [5] a T,,p.avs b, which means T, S Torp,avs according to Definition 3.
Further a A bel(a A'b, av b)=1I(a,b), avbellanb, avb)=1Ia,b),
hence a A bT,a v b and by Definition 3 the inclusion Tyapavs S Tup holds.
Therefore T,, = Tyrb,avp
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Theorem 1. Let L be a distributive lattice. Then C,, = T, for each ae L, be L.

Proof. By Lemma 2, T,, = T,,, ,v5- Asa A b < a v b, it is sufficient to study
T, for a < b. Suppose a < b. According to Theorem 1 from [5] each compatible
tolerance T on Lfulfils the implication r Ts = x Ty foreachre L, se L, x € I(r, s),
y €I(r, s), therefore it fulfils the assumptions of Lemma 1. Thus x T,, y if and only
if the elements x, y fulfil (1) and (2). By Theorem 2 from [1] the relation defined by
the rule from Lemma 1 is equal to C,, therefore T,, = C,.

Corollary 1. Each compatible tolerance on a distributive lattice L is a join of
congruences on L in the lattice of all compatible tolerances on L, namely, T =\ C,,

aTb
for each Te LT(L).

Proof. By Theorem 15 from [6], T = V T, holds for each compatible tolerance T
aTb

on L. As T, = C,, foreachae L, be L, we have T =V C,.
aTb

We have still another corollary which shows an interrelation between the lattice
of all congruences and the lattice of all compatible tolerances on a distributive
Iattice.

Corollary 2. Let L be a distributive lattice, let K(L) be the lattice of all con-
gruences on L, let LT(L) be the lattice of all compatible tolerances on L. Then
the following three assertions are equivalent:

(@) K(L) is a sublattice of the lattice LT(L).
(8) K(L) = LT(L)

(v) Each compatible tolerance on Lis a congruence on L.

/

°0

Fig. 1.
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Proof. Evidently the implication (¥) = (B) = (=) holds. Let («) be true. Then the
join of congruences in the lattice L T(L) is a congruence. But for each T'e L T(L) we

have T =YV C,,, where each C,, is a congruence, thus (y) holds. We have proved
aTb

(@) < (B) = (¥).

We shall show that for non-distributive lattices the assertion of Theorem 1 is not
true. In Fig. 1 we see the Hasse diagram of a non-distributive modular lattice L.
It is easy to verify that Ty, on Lis the tolerance defined so that x T, y if and only
if either both x and y are in the interval <O, b), or both x and y are in the interval
{a,Iy. We have O Ty, b, b Ty, I, but not O Ty, I. Thus Ty, is not transitive and is
not a congruence.

4. In the paper [10] it is shown how it is possible to construct Cg on a distributive
lattice L, if S is an ideal of L. From the equality T,, = C,, an analogue for a com-
patible tolerance Ty follows.

Lemma 3. Let L be a lattice with the least element O and let R be a reflexive
compatible relation on L. Then J = {a eLl a R O} is an ideal of the lattice L.

Proof. Let xe J, ye J, then x RO, y R O implies x v y RO v O = O, thus
x Vv yelJ.Let xe J,ae L. As R is reflexive, a R a holds and from the compatibility
a A xRa A O = O, therefore a A x €J and J is an ideal of the lattice L.

Lemma 4. Let J be an ideal of the lattice L with the least element O. Then
T, = V T, in the lattice of all compatible tolerances on L.
xeJ
Proof. For each element xeJ evidently x Ty O (because O € J), therefore
T; 2 Ty, This implies T; 2 V Tp,. Let ae J, be J, then a Ty, O, b Ty, O, from

xeJ

the symmetry O Ty, b, thus a = a v 0( V Tp.) O v b = b, because according to
Theorem 1 from [6] the relation V Tox is agam a compatible tolerance and according

to Theorem 2 from [6] (where p(xl, x,) = Xx; V x, is the corresponding lattice
polynomial without constants) this equality holds. Thus a(V To,)b. As a, b are

xeJ

two arbitrary elements of J, we have T; = V Ty, and thus T, = V Tp,.
xeJ xeJ

Theorem 2. Let L be a distributive lattice with the least element O and let J
be an ideal of L. Let ae L, be L. If a Ty b, then there exists an element v e J such
thata vov=b>b v v

Proof. Let a T; b. According to Lemma 4 we have a(V Tox) b, therefore ac-
xeJ

cording to Theorem 2 from [6] there exist elements a, .. a,, by, ..., b, of Land
elements u,,...,u, of J and a lattice polynomial without constants P(Xi---» X;)
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such that a; Ty, b; for i=1,..,r, p(ay,....,a,)=a, p(b,,....b)=0b. (The
definition of a lattice polynomial without constants can be found in [6].) Let

v =V u;. Then ve J, thus v Tp, O. According to Theorem 1 in [5] then u; Tp, O
i=1

for i =1, ..., r. This implies Ty, 2 Ty,, and also a; Ty, b; for i = 1,...,r. Now
a = play, ..., a,) Ty, p(by, ..., b,) = b, because Ty, is compatible. According to
Theorem 1 we have Ty, = Co, and according to Theorem 2 in [1] the inequality (1)
from Lemma 1 holds, i.e. v v (a A b) 2 a v b. (We obtain this by substituting
v, a, b for b, x, y.) The distributivity of Lthen yields

(bvaya(vvb)=vv(@ab)=vv(aab)v(avb)=
=vv(avb=@wva)v(vvb),

which means v v a = v v b.

Corollary 3. Let L be a distributive lattice with the least element O and let J
be an ideal of L. Then T, = C;.

Proof. By (P) we denote the following equivalence: u T; O <>u € J. We prove
(P). Let u € J, then evidently u T, O. On the other hand, if u T, O, then according
to Theorem 2 there exists ve J such thatu v v = O v v = v, thereforeu v v = v,
which means u < v. But v e J, therefore also u € J and (P) is true. According to
Corollary to Theorem 92 in [10], p. 185, the relation defined as the least relation T
compatible with L and satisfying (P) is a minimal congruence on L containing J,
therefore T, = C,.

For non-distributive lattices this assertion is not true. This can be shown again
by the conterexample in Fig. 1. In the lattice L whose Hasse diagram is in Fig. 1
the set I(0, b) is an ideal, thus Tp, = T}, where J = I(O, b). It was proved above
that T, is not a congruence.

5. We shall add still one result concerning semilattices. An operation in a semilat-
tice will be denoted by o and we put x = y if and only if x o y = x. The relations
T, C, are defined analogously as in a lattice.

Theorem 3. Let S be a semilattice, let a€ S, b€ S. A necessary condition for the
equality T,, = C,, is that either a = b, or a covers b, or b covers a, or a and b are
incomparable and a - b covers both a and b.

Proof. Let a€ S, b e S. It is easy to see that x T, y if and only if either x = y,
orx=a,y=b,orx=b,y=a,0orx=a0z,y=boz,orx=boz,y=ao-z,
where z is an element of S. Now suppose that a < b and b does not cover a. This
means that there exists ¢ € S such that a < ¢ < b. We have ¢ T, b, because ¢ =
=aoc, b =boc. Obviously b T, a. If T,, were transitive, we should have ¢ T, a,
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but this does not hold, because ¢ + a, none of the elements a, ¢ is equal to b and none
of them can be expressed as b oz for z € S, because they are both less than b.
Analogously if b < a and a does not cover b. Now suppose that a, b are incomparable
and a - b does not cover a. There exists d € S such that a < d < a - b. We have
aobT,a because aob =boa, a =ao.a. Further, d T,aob because d =
=aod,aob=>bod. Butd T, a does not hold because a + d, none of the elements
a, d is equal to b and none of them can be expressed as b o z for z € S, because they
are both incomparable with b. Thus T, is not transitive. Analogously if a - b does
not cover b.

R

Fig. 2.

The condition is not sufficient. In Fig. 2 we see the Hasse diagram of a semilat-
tice S in which ¢ T, e because ¢ = aoc, e = boc, and e T,, d because ¢ = bod,
d = aod, but not.c T, d because ¢ + d, none of the elements c, d is equal to e
and none of them can be expressed as b oz for z € S, because they are both in-
comparable with b.

Corollary 4. Let S be a semilattice. Then T,, = C,, for each a€ S, be S, if and
only if there exists an element o € S such thatx oy = o foranyxe€ S, ye S, x + y.

Proof. Suppose that there exist two pairs a, b and ¢, d of elements of S such that
a*bc+dandaob + cod Theneitheraob <aobocodorcod <aobocod.
In the first case a < aob <aobocodand T,, ;.4 is not a congruence. Analo-
gously in the second case. Thus we must have a o b = ¢ o d. As these elements were
chosen arbitrarily, the products of all pairs of distinct elements must be equal to an
element o. On the other hand, if such an element o exXists, the tolerance T, has the
property that x T, y if and only if either x = y, or both x, y belong to the set
{a, b, a o b}, therefore it is a congruence and T,; = C,.

458



6. In the end we shall prove a theorem on the existence of a maximal compatible
tolerance which does not contain a given pair of elements.

Theorem 4. Let A = (A, F) be an algebra. Let ae A, be A, a £ b. Then there
exists a compatible tolerance T such that

(i) a non Tb; .
(i) Tis a maximal (with respect to the set inclusion) compatible tolerance on A
with the property (i).

Proof. Let & = {Te LT(¥)|anon Th}. Then & # @ because the identical
relation on 4 is in &. The set & is a partially ordered set with respect to the set
inclusion. Let € = {T,, a e I'} be a chain in & (where I is a subscript set). Then
evidently V T, = U T,. Denote T' =V T, = U T,. Then T’ is a compatible toler-

ael ael ael’ ael
ance on A and x T’ y if and only if x T, y for some o € I'. Thus a non T’ b, which
implies T' € &. The conditions of Zorn’s Lemma are fulfilled and thus & has
a maximal element T.

This maximal tolerance need not be unique. Let L be a lattice with the elements
0,a,b,Isuchthat 0 <a<I, 0<b<I a|b. Let T, (or T,) be a congruence
on L with the classes {0, a}, {b,I} (or {O, b}, {a,I} respectively). Then both T;
and T, are maximal compatible tolerances on L which do not contain the pair (O, I).
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