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1. THE CLASSIFICAL FUNCTOR

1.0. Notation. We denote by Ord the class of all ordinals and by N the set of all
finite ordinals. If « € Ord then we put W, = {f€Ord; f < oz}.

If A is a set we denote by IA] the cardinal number of 4. Let ¢ be a partial map
from A into a set B. We put dom ¢ = {x € 4; there exists y € B such that (x, y) € ¢}.
If dom ¢ = A then we write ¢ : A — B. Finally, if C = A then we denote by ¢ | C
the restriction ¢ N (C x B) of ¢.

Let o/ be a category. Then we denote by ob & the class of all objects of & and,
for arbitrary P, Q € &, by [P, Q],, the set of all morphisms from P to Q. In most
cases we shall write shortly .« instead of ob 7. Further, U[P, Q]., means the class
of all morphisms of 7. The sign = means an isomorphism of categories and < a full
subcategory.

If o/ is a category such that, for each P, Q € o, [P, Q] * 0, [Q, P], + 0 implies
P = Q then &/ is called antisymmetric. If o/ is a category such that, for each P, Q €
€ o, I[P, Q]J,l < 1 then & is called a quasi-ordered class or a thin category. An
antisymmetric and thin category is called an ordered class. An ordered class & is
called an antichain if [P, Q]., = 0 for each P, Q€ &, P + Q and is called a chain
if [P, Q] # 0 or [Q, P], + 0 foreach P, Q e .

In the paper [6], various arithmetic operations for categories are introduced. We
want to use one of these operations specially only for thin categories. Thus, the
definitions of composition of morphisms are evident.

The lexicographic sum Y 'e/; of a system {/; G € 4} of categories where ¥ is an

Ge¥
antisymmetric category is the class Ug PL&)I (G, P) of objects and the class U[(G1, P),
Ge ed G
(G2, Q)]5: of morphisms where

_ (61 GaJo % [P, Qluy, i G, =Gy,
[(G1 P). (G2, Q)]s = {[GL Glo i G +6
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Further, if = {1,..., n} is a chain with natural order then we put ) 'o; =

Ge¥
A A, D ... D oA,

If {/, #} is a non-indexed system of two different categories then we suppose that
{«, #} is a chain with [, #]4 4, + 0 and that, for &/ @ %, ob (4 & B) =
= U (« P)uU (%, 0).

Ped QeB

Finally, we see that for the lexicographic sum & = ) '&/; with disjoint sum-
Ge¥%

mands we can put (G, P) = P for each (G, P) e «.

1.1. Definition. Let A be a non-empty set, f a partial map from A into 4. Then the
ordered pair A = (A, f) is called a partial unary algebra.

1.2. Definition. Let 4 = (A4, f) be a partial unary algebra. Then we put DA =
= A — dom f. If DA = 0 then 4 is called a complete unary algebra.

1.3. Definition. Let 4 = (4, f), B = (B, g) be partial unary algebras and F : 4 —
— B a map. Then F is called a homomorphism of A into B if x € dom f implies
F(x) e dom g and F(f(x)) = g(F(x)) for each x € 4. We write F : 4 - B.

1.4. Definition. Let A = (4, f) be a partial unary algebra.

(a) We put f© = id,. Suppose that we have defined a partial map f*~' from A
into A for ne N — {0}. We denote by f” the following partial map from A into A:
if xedom f"~* and " !(x) € dom f, then we put f"(x) = f(f"~*(x)).

(b) Let x € A be arbitrary. Then we define [x], = {y € A; there is ne N with
x e dom f” and y = f*(x)}.

(c) 4 is called a connected partial unary algebra (abbreviation a c-algebra) if,
for any x, y € 4, [x]4 N [¥]4 * 0. (Compare [4], 1.5, 1.7, 1.9.)

1.5. Remark. Clearly, a partial unary algebra A is a c-algebra iff, for any x, y € 4,
there are m, n € N such that x € dom f™, y € dom f" and f™"(x) = f"(»).

In our paper we want to study the category of all c-algebras. Throughout the
paper, we denote this category by %°.

1.6. Problem. Describe the category %S, i.e., find necessary and sufficient con-
ditions for the existence of morphisms of U° in the terminology of categories.

In our considerations, we can apply most of the results of the paper [4] and some
results of [3] and [5] Therefore, let us recall the main notions and assertions of these
papers first.

Let o0,, 00, € Ord and suppose that « < 00, < oo, for each a € Ord.
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1.7. Definition. Let 4 = (4, f) € %°. Then we define

(a) the set ZA = {x € A4; there is n € N — {0} such that f"(x) = x}, R4 = |ZA|;
ZA is called the cycle and RA the range of 4;

(b) the set K4 = {x e A — ZA; there is a sequence (x;);y such that x; € dom f
for each ie N — {0}, xo = x and f(x;+;) = x; for each i € N}; KA is called the
kernel of A4;

(c) the sets A®> = ZA, A" = KA, A° = {x e 4; f7'(x) = 0}; if xeOrd — {0}
is arbitrary and if the sets A% have been defined for all x € W, then we put 4* =
={xed—- U 4% f(x) < Ly}VA"};

xeWa #eWa

(d) 94 = min {x € Ord; 4* = 0}; -

(e) the map SA: A - Ord U {c0;, 00,} by the condition SA(x) = » for each
x € A%, x € Wy, L {00, 00,}; SA(x) is called the degree of x.

(Compare [4], 2.4—2.8 (a), 2.13—2.16, 2.19, 2.20 and 2.23.)

1.8. Definition. We put

0— 2 ={Adeu; KA =0, RA =0},
1— % ={Ade?; KA+ 0, RA =0},
2 — U = {AeU; RA + 0}.

1.9. Lemma. % =0 — % vl — %°v2— % with disjoint summands.

The assertion is evident.

(i) If A% then |DA| < 1. (See [4], 2.1.)

1.10. Definition. Let A4 € %° be such that D4 =+ @. Then we denote by dA the only
point with the property {d4} = DA.

(i) If 4 = (A, f) e %° with DA + 0 then, for each x € 4, there is precisely one
n € N such that x € dom f" and f"(x) = dA. (See [4], 2.3.)

(iii) If 4 = (A,f) e % then DA + @ iff the following conditions hold: R4 = 0
and there is x € A such that |[x],| < Ro. (See [4], 2.9.)

(iv) If 4 =(A,f)e then (KA U ZA, f|KA U ZA), (ZA,[|ZA) are sub-
algebras of A. (See [4], 2.10 and 2.15 (a).)

(v) If Ae%° and xe A — (KA U ZA), neN are such that x e dom f* then
SA(f"(x)) = SA(x) + n. (See [4], 2.26 (a).)

1.11. Lemma. Let Ael — %° (A €2 — %‘) and x€ A. Then there is neN
such that x € dom f" and f"(x) € KA (f"(x) € ZA resp.).

Proof. Indeed, the assertions follow from 1.8, 1.4 (b) and (iv). (Compare [3],

1.17 (a).)
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1.12. Lemma. Let A €0 — %°. Then DA + 0 iff 94 is a successor ordinal. (See
[71)

Proof. The condition is necessary by [4], 2.26(c). Let, on the other hand,
Ae0 — %° and let 94 be a successor ordinal. Then A%4~! % 0 and, for x e A%47,
we have x € DA by (v) because KA U ZA = (. Thus, DA + 0.

(vi) If 4€0 — %° and DA + 0 then SA(dA) = 94 — 1. (See [4], 2.26 (c).)

(vii) If 4e1 — %° and DA + 0 then SA(dA4) = ,. (See [4], 2.26 (d).)

(viii) If 4 €%° is such that DA = 0, A, pe Wy, 2 < p and x € A" then there
are x' € A%, ne N — {0} such that f"(x’) = x. (See [3], 1.16.)

(ix) If A €% is such that DA = 0, 4, pe Wy, A < p then |4% < [4%|. (See
[3].33)

(x) Let 4 €0 — %° be such that DA = §. Then 94 is cofinal with w,. Further,
if A€ Wy is such that |4* < N, then there is u € Wy, such that lA“| = 1. (See [3],
3.5)

1.13. Lemma. Let A€0 — %°, DA = 0 and let \€ Wy, be such that || = 1.
If x € A* then SA(f(x)) = A + 1.

Proof. SA(f(x)) = A+ 1 by (v). Let us assume SA(f(x)) > A + 1. Thus
A**1 # @ and |4*!| = 1 by (ix) and if SA(f(x)) = p then |4*| = 1 by (v) and (ix).
Since u > A + 1 > 4, (viii) implies that for y e 4**! there are m,ne N — {0}
such that f™(y) = f(x) and f"(x) =y. Thus, f(x)=/"(y) = "(/"(x)) =
= f™*"=1(f(x)) and we have f(x) € Z4 which is a contradiction.

Clearly, the assertions (viii)—(x) and 1.13 can be proved without the condition
DA = 0.

1.14. Definition. Let A = (4, f) € %°, B = (B, g) € %° be arbitrary. Then we put
H(4, B) = {(x, x') € A x B; for each neN, xedom f" implies x' € dom g" and
SA(f"(x)) = SB(g"(x"))} - (x, x') € H(A, B) is said to form a pair of h-elements
of A and B. (Compare [4], 3.4.)

1.15. Definition. Let A, Be %° be arbitrary. Then we put (4, B) e Ad iff the
following conditions hold:

(a) RB + 0 implies RB|'RA4*),

(b) RB = 0 implies H(A, B) + 0.
B is said to be admissible for A.

(xi) If A, Be %° are such that (4, B)e Ad then RB = 0 implies RA = 0. (See
[5], 1.19 (a).) ’

(xii) If 4, Be %° are arbitrary then [A4, Bly. + 0 iff (4, B)e Ad. (With regard
to 1.15 and (xi), see [4], 3.5, 3.11 and 3.14.)

*) For arbitrary m, n € N — {0}, m | n means that m is a divisor of 7.
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(xiii) If 4, Be %° are such that (4, B)e Ad then DB + 0 implies DA + 0. (See

[4]. 3.6 (a).)

1.16. Definition. We put 0 = {0 €Ord — {0}; « a successor ordinal}, 0'=
= {a € Ord; « limit and cofinal with w,}. Further, we define the thin categories

(a) 0 such that ob 0 = @' U 0" and, for each a, f€ 0,
[0.Blo*+0 if «<p and «ec0' implies fe0';

(b) o such that ob #" = {d, d} where d, d are elements such that
d,deOrd — {0}, d+d and [d,d],+90, [d,d]x=0 (achain);
(c) 0* such that ob 0* = ob (0 U X') and, for any a, b € 0%,

[a,blos £ 0 iff a,be® and [a,blo+0 or a,bed
and [a,b]y +0 or ae®, beA and ac@' implies b=d;
(d) A" such that ob A& = N — {0} and, for each m, ne A,

[m,n]y+0 iff n[m;
(e) ¢=0*a A

1.17. Lemma. (a) The categories 0, A", O, /" and € are ordered classes.
(b) d is the greatest element in 0*.
The assertions are easy to prove.

1.18. Definition. Let % be defined as in 1.16. If (0%, a), (A", b) € €, where a € 0%,
b e A, are arbitrary then we put (for abbreviation) a = (0*, a), b = (A", b). Further,
for each a, b € €, we put
a=<b iff [a,bl,+0.

% is called the classifical category for the category %°.

1.19. Definition. Let ¥ be the classifical category for #°. We define the functor
X :U° — € in this way: if 4 € %° then we put

RA if Ae2—a*
d if Ael—%°, DA=10
d if Ael—%°, DA+9.
94 if Ae0 - u°

Then  is called the classifical functor for %° and, for arbitrary 4 € %°, yA is the
characterization of A.

1.20. Definition. Let @ be the classifical category and y the classifical functor for %°.
If a € € is arbitrary then we put a — %° = {A € U°; x4 = a}.
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1.21. Lemma. % =Ua—-%°, 0—-%=Ua—-%, 1—U°=Ua—U,
ac% ael aeX”

2—%° =\Ua — U° all with disjoint summands.
aeN

Proof. The assertion follows directly from definitions 1.8, 1.16, 1.19 and 1.20.

1.22. Definition. We put X — %°'= {4 = (4,f) €0 — %°; 94 € 0' and |4”

for ach a € W,,}.

2z N,

1.23. Lemma. Let A = (A,f), B = (B, g)€ %° be such that (4, B)e Ad. Then
xA = 1B.

Proof. (1) Let Be2 — %°. Then yB = RBe 4. Further, if 40— %y
Ul — %° then y4e @* and consequently y4 < yB. If A€2 — %° then x4 =
= RAe A and since RB|RA by 1.15 we have [x4,xB], + 0 which means
1A = yB.

(2) Let Be1 — %°. Then yBe A. Further, if 4€2 — %° then y4 = RA + 0.
Let (x, x’) € A x B be arbitrary. Then, by 1.11, there is n € N such that x € dom f™,
f(x)e ZA, ie. SA(f"(x)) = oo,. However, for each ye[x']s, we have SB(y)e
€Ord U {o0,} by 1.8. Thus (x, x') € H(A, B) which is a contradiction to H(4, B) +
%+ 0; this holds by 1.15 because RB = 0.

It follows 4€0 — #° U1l — %°. Thus, yde 0*. If yB =d then y4 < xB by
1.17 (b). If xB = d then DB +  which implies DA + 0 by (xiii) because (4, B) € Ad.
Thus, we obtain y4 € 0° U {d} by 1.12 and 1.19 which implies x4 < xB by 1.16 (c).

(3) Finally, let Be 0 — %°. Then yB = 9Be @. Further, if Ael1 — % U2 — %
then yde X U A; thus, KA U ZA4 + 0 by 1.8. Let (x, x’)e A x B be arbitrary.
Then by 1.11, there is ne N such that x e dom f” and f"(x) € KA U ZA, i..
SA(f"(x)) € {0y, 00, }. However, for each y € [x"]s, we have SB(y) € Ord by 1.8 and
thus (x, x") € H(4, B) which is a contradiction to H(A, B) + 0 because RB = 0.

It follows 4 € 0 — %°. Thus x4 = 94 € 0. Further, Wy, & Wgg.

Indeed, let « € W, be arbitrary. Since RB = 0 we have H(A, B) + 0. Let (x, x’) €
€ H(A, B) be arbitrary. Then for arbitrary y € A* there are m, n € N such that x e
edom f”, yedom f" and f™(x) = f"(y) by 1.5. Thus a = SA(y) < SA(f"(y)) =
= SA(f"(x)) < SB(g™(x)) € Wsg by (v) and 1.14, which implies @ € Wy

It follows 94 < 9B. Further, if 34 € @ then D4 =0 by 1.12; thus DB =0
by (xiii) which implies 9B € 0' by 1.12. We obtain [94, 9B], + @ by 1.16 (a) and
consequently y4 < yB.

1.24. Definition. Let A, B e %° be arbitrary. Then we put
(A, B) € Ad* iff the following conditions hold:

(a) x4 = 1B,

(b) xBe 0, Ae yB — U° 0N — ° implies H(A, B) + 0.
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1.25. Lemma. Let 4, Be U° be such that (4, B)e Ad. Then (A4, B) e Ad*.

Proof. The assertion follows directly from 1.15, 1.23 and 1.24 because, for
xB e 0, we have RB = 0 which implies H(4, B) =+ 0.

1.26. Lemma. Let A = (A, f), B = (B, g) € %° be such that (4, B)e Ad*. Then
(4, B) € Ad.

Proof. (1) Let RB+ 0. Then yB= RBe #. If A0 — %° U1l — %° then
RA = 0 and clearly RB | RA.If A€2 — %°then yA = RA € A and since y4 =< B,
ie. [xA4, xB]+ + 0, we obtain RB| RA.

(2) Let RB = 0. Then yBe 0* and thus Be0 — #° U1 — %°. Since x4 < yB
we have yde 0* and 4€0 — %° U1 — %, too.

Now, let Bel — %°.

If yB = d then DB = 0 which implies SB(dB) = oo by 1.19 and (vii). Further,
since x4 < yB we have yd e 0’ u {d} by 1.16(c). Hence DA + @ by (xiii) and
SA(dA)e Ord U {0,}. Thus (d4, dB)e H(A, B) and we obtain H(4, B) + 0.

Let yB = d; then DB = 0 and thus, for arbitrary x’ € KB, we have x’ € dom g"
for each n € N by 1.4 (a). Further, y4 € 0* and thus 4 = J A" U KA. Let xe€ A

acWad

be arbitrary. Then, for each y € [x],, we have SA(y)eOrd U {o0,} and thus, for
each ne N, x e dom /" implies x’ € dom g" nd SA(f"(x)) < oo, = SB(g"(x’)). Hence
(x, x") € H(A, B) and we obtain H(A, B) * 0.

Finally, let Be 0 — %°. Then yB = 3Be€ 0. Since x4 < yB we have y4 = 34 €0,
94 < 9B and conclude that 9B e ¢' implies 94 € 0".

Let $B e 0'; then DB + @ by 1.12 and since 94 € 0" in this case, too, we have also
DA + @ by 1.12. Further, S4(d4) = 94 — 1 and SB(dB) = 9B — 1 by (vi) and
we obtain (d4, dB) e H(A, B). Thus H(4, B) + 0.

Let 9Be 0'. Then DB = 0 by 1.12. Now, if 94 < 9B we take x’ € B such that
SB(x') = 94. Then x’ e dom g" for each ne N. Let us take x € A arbitrary; then,
for each n € N such that x € dom f”, we have SA(f"(x)) < SB(g"(x')). Thus (x, x') €
€ H(A, B) and we obtain H(4, B) * 0.

Further, let 34 = 3B. Thus A€ yB — U°. If Ae N — %° then H(A, B) + 0 by
1.24.1f A€ 0 — %° — N — %° then there is A € Wy, such that |4* < X,. Further,
there is x € 4 such that, for each neN, x edom /" and SA(f"(x)) = SA(x) + n
by (ix), (x) and 1.13, because DA = 0. Let x' € B be such that SB(x') = SA(x).
If neN is arbitrary, then x’edom g" by 1.4(a) and SB(9"(x")) = SB(x') + n 2
2 SA(x) + n = SA(f"(x)) by (v). Thus H(A, B) + 0 because (x, x') € H(A, B).

1.27. Theorem. Ad = Ad*.

Proof. The assertion is a consequence of 1.25 and 1.26.
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1.28. Theorem. Let A, B % be arbitrary. Then there exists a homomorphism
of A into B if and only if yA < yB and yBe @', Ac yB — %\ R — 4° implies
H(A, B) + 0.

Proof. The assertion follows from (xii) and 1.27.

1.29. Corollary. (a) Let A, Be %° be such that yBe 0" implies yA + yB. Then
there exists a homomorphism of A into B if and only if yA X yB.

(b) Let A, B€ U° be such that yBe 0' implies AENX — %°. Then there exists
a homomorphism of A into B if and only if yA < xB.

1.30. Corollary. The functor y : %° — € is covariant.

Indeed, if A, Be %° are arbitrary then [A, Bly, + 0 implies y4 < yB by 1.28,
ie. [x4, xBle + 0 and we put y[4, Bla, = [x4, yBJe. Since ¥ is a thin category x
is clearly covariant.

2. THE CATEGORY #°

2.1. Definition. (a) Let s be a category. A4 thin category /() such that ob #(b) =
= ob & and [P, Qlye) * O iff [P, Q] + 0 for each P, Q e d(b) is called a basic
category for &/.

(b) A category & is called a category with non-empty homs if, for each P, Q € o/,
[P > Q]d 4: 0.

A basic category (b) for o is a thin category with the same objects and the same
existence of morphisms. Thus, in our case, we can describe the category %° by means
of %(b).

2.2.vLemma. Let € and a — %° for arbitrary a € ¥ be defined as in 1.18 and
1.20. Then %°(b) =Y.' a — %°(b).
ac®

Proof. Let us put, for arbitrary 4 € %°(b), p(A) = (a, 4) if A€ a — %°(b). Then
@ U(b) > X' a — W°(b) is clearly a bijection. Further, let A, B e %°(b) be arbitrary
ac¥

and let A ea — %°(b), Be a’ — °(b). Thus

[o(4), o(B)]5: = {%Z’ Z_JI: X [4, Bla_aew) g Z : Z

by the definition of Y’ Since y4 = a, yB = a’ we obtain [A, Blacw) + 0 iff
[@(4), o(B)]s: + 0 by 1.29 (a). Thus ¢ is an isomorphism.
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2.3. Coroilary.
«(b) = (0 — %(b)v 1 — A(b)) @2 — A(b),
0- #(p) =Y a— (), 0~ M) 01~ W)=Y a— (),

ael
1— 2(b) = d - w(b)®d — U(b), 2—u(b)=Y'a— u(b).
aeN

Indeed, the assertion follows from 2.2 and 1.21.

24. Lemma. (a) If ae O' U A U N then a — U° is a category with non-empty
homs.

(b) If ae 0" then a — %° — N — %° is a category with non-empty homs.

Indeed, the assertions follow directly from 1.29 (b).

2.5. Main Theorem. #“(b) = Y'a — #°(b) where a — %°(b) is with non-empty
ae¥
homs for each ae O' U A U N and a — U°(b) — N — %°(b) is with non-empty
homs for each ae 0.
Theorem 2.5 gives a full simple description of the whole category #° except the
“internal” description of the subcategories a — %¢ where a is a limit ordinal cofinal
with @,.
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