Czechoslovak Mathematical Journal

John V. Baxley
On singular perturbation of nonlinear two-point boundary value problems

Czechoslovak Mathematical Journal, Vol. 27 (1977), No. 3, 363-377

Persistent URL: http://dml.cz/dmlcz/101474

Terms of use:

© Institute of Mathematics AS CR, 1977

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz



http://dml.cz/dmlcz/101474
http://dml.cz

Czechoslovak Mathematical Journal, 27 (102) 1977, Praha

ON SINGULAR PERTURBATION OF NONLINEAR
TWO-POINT BOUNDARY VALUE PROBLEMS¥*)

JouN V. BAXLEY, Winston-Salem
(Received May 6, 1975)

1. Intreduction. We are concerned here with the two point boundary value problem

(1.1) ey’ + f(x,y,y,e)=0, 0sx=1,
(12) ao(e) ¥(0) — ay(e) ¥'(0) = a(e), |ao(e)| + |as(e)] > O
(1.3) bo(e) ¥(1) + by(e) ¥'(1) = Ble) . [bale)] + [bas(e)] > 0.

where ¢ > 0 is a small parameter and “prime” denotes differentiation with respect
to x. Ever since CODDINGTON and LEVINSON [1] produced an example of such
a problem for which no solution exists for ¢ in some interval (0, so), there has been
interest (see, e.g., ERDELYI [6], [7]) in the question of the continued existence of
a solution as ¢ — 0.

Our basic problem is the formulation of hypotheses under which (1.1), (1.2), (1.3)
has a unique solution y(x, ¢) for sufficiently small ¢ > 0. Granting that such a unique
solution does exist for 0 < ¢ < &, we are interested in the behavior of y(x, &) as
e— 0.

Because of well-known existence and uniqueness theorems [2], [3], [10] for two-
point boundary value problems which do not involve a parameter, one would expect
that it would be necessary to assume in (1.1), (1.2), (1.3) that ao(e) as(e) = O,
bo(e) by(g) = 0, or equivalently

(1.4) ag(e) 20, ay(e) 20, bo(e) =0, by(e)=0.

However, it turns out that if b,(e) is not small relative to by(¢) as & — 0, serious dif-
ficulties may arise. In Section 2, an example is discussed to exhibit these difficulties.
In Section 3, conditions are formulated which guarantee the existence, uniqueness,
and boundedness as ¢ — 0 of the solution to (1.1), (1.2), (1.3).

*) This research was done while the author was visiting at the University of Illinois, Cham-~
paign-Urbana.
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In several papers, O’MALLEY (see, e.g., [12], [13], [14]) has obtained asymptotic
expansions of the solutions y(x, &) of various singular perturbation problems. In
these problems, the crucial step was to show that a certain equation had a unique
solution which was bounded as ¢ — 0. O’Malley’s technique has been to pass to an
equivalent Volterra integral equation and use successive approximations. The use
of integral equations in singular perturbation theory has been widely used (see, e.g.,
Erdelyi [8]). In Section 4, we apply the results of Section 3 to the problem studied
by O’Malley in [14] (see also [9]). In fact, this work was initially motivated by the
idea that one could get such asymptotic expansions using the maximum principle
rather than the theory of Volterra integral equations. Further applications of the
main result of section 3 will appear elsewhere.

We use the maximum principle in a crucial way; its use in singular perturbation
theory is not new. Indeed, the maximum principle has been used by ECkHAUS and
DEJAGER [5], PARTER [15], [16], [17], DORR, PARTER, and SHAMPINE [4], O’MALLEY
[12] and by others. We refer to the book by PROTTER and WEINBERGER [18] for
background results concerning the maximum principle.

2. An example. Consider the elementary problem

(2.1) ey’ +2y +4y =0,
(2.2) ao y(0) — a; y'(0) = a, |ao| + |ag| >0,
(2.3) bo (1) + by y'(1) = B, |b0| + |b1| >0,

where a, =20, a; =20, by =20, by = 0.

The general solution of (2.1) is u = A exp (v;x) + Bexp (v,x) where v, = v,(e)
and v, = v,(¢) are the roots of the characteristic polynomial &v? + 2v + 4 = 0.
One easily sees that

vi=—2+ 0(e) ,

v2=—2+0(1).
e

The criterion that (2.1), (2.2), (2.3) has a unique solution is that the determinant

4o — aqVy ag — agv,
(bo + byvy)exp (vy), (bo + byv,)exp (v,)

not vanish. If b; = 0, the expanded determinant is
agbo(exp (v,) — exp (vy)) — aybo(vy exp (v,) — v, exp (vy))
which is negative for ¢ > 0 sufficiently small; thus if b; = 0, a unique solution exists.
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Suppose now that b, > 0 and, for convenience, that a, = 0. The expanded
determinant is

aibo(v, exp (v;) — vy exp (v,)) + aybyv,va(exp (vq) — exp (v,)) -

Now the first term above is non-positive, and the second term is non-negative; in
fact the determinant will be zero if

bo _ vivy(exp (v;) — exp (v,)) .
by vyexp(vy) — vy exp (vy)

Thus, given ¢, > 0, we can choose b, and b, so that the determinant is zero for
some ¢ € (0, &). So even if for certain b, and by, a unique solution exists for all &
in some interval (0, &), the value of &, will depend critically on the values of b,
and b,. It is clear that if b, and b, are allowed to be functions of ¢, a unique solution
may fail to exist for every ¢ in some interval (0, &).

3. Boundary value problems. Our fundamental assumptions concerning the bounda-
ry value problem (1.1), (1.2), (1.3) are as follows: we require the existence of &, > 0
such that for 0 < ¢ < &,

Al: f(x, y,z,8), fax, y,2,€) =
0 0
= _f(x5 Y, Z, 8)’ f3(x9 Y, Z, 8) = _f(xr Y, 2z, 6)
dy 0z
are all continuous for fixed ¢ in the region
R={(x,52):0=x =1, y* + 2% < o0} .
A2: faox,y,2,6) < Be) < 0, 0 < a(e) < fax,y 2,6 < M(e) < 0
hold throughout R .
A3: ao(e) = 0, ay(e) = 0, by(¢) 2 0, and there exists p(g) = 0

such that p(e) = f—((:s) ., bo(e) = p(e) by(e) and

26 p(e) < ple) a(e) — B(e) -

Comments. The upper bound B(g) on f,(x, y, z, ¢), the lower bound a(e) on
f3(x, y, z, &) of A2 and all the requirements of A3 will be explicitly used below. The
smoothness hypotheses of Al and the upper bound M(e) on fi(x, y, z, €) of A2
appear so that the maximum principle [18] and existence-uniqueness theorem
of KELLER [10] and BeBERNES and GAINES [2] may be invoked.
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The key to our work is a simple change of dependent variable. Let
(3.1) w = exp (—p(e) x) .
The following lemma results from a simple calculation.

Lemma 3.1. Under assumptions Al1—A3, the boundary value problem (1.1),
(1.2), (1.3) has the solution y if and only if u = y|w is a solution of

(3.2) u” + H(x,u,u’,e) =0,

(33) [aa(e) + p(e) ax(e)] u(0) — a1(6) w'(0) = o(e)
(3.4) [bo(e) = 6) B(E)] u(1) + B4(2) (1) = A) exp (9(2)
where

(35 Heww,o)=> [ PE)u = 2eple)u o T L) ] .

Remark. We shall see below that if 0 < & < gy, the maximum principle may be
applied to u. Such changes of dependent variable, designed for the purpose of
applying the maximum principle, have been used by Dorr, Parter, and Shampine [4]
and by Parter [15], [16], [17]. These authors have used in (3.1) a function of the
form p(g) = q/e where g > 0.This choice of p(e) has the disadvantage that 1/w is
unbounded as ¢ — 0. We shall see that p(¢) can often be chosen independent of &
so that this disadvantage does not occur.

Theorem 3.1. Under assumptions Al—A3, the problem (1.1), (1.2), (1.3) has
a unique solution for 0 < ¢ < g,.

Proof. From (3.5) we calculate
(3.6) Hy(x,u,u’,¢) =

[e P*(e) — p(e) fa(x, wu, w'u + wu', &) + fo(x, wu, w'u + wu', g)]

™ | -

so that by A2 and A3

(.7) Hy(x, u, o', 6) < é[ep%(s) — p(e) a(e) + BE)]

B(e) — p(e) ale)

2¢ :

I\

A
()
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if 0 <eée<g. It follows from Al and A2 that H(x, u,u’, &), Hy(x, u, v, ¢),
Hs(x,u, u’, £) are all continuous in R for fixed e € (0, &,) and that Hj(x, u, u’, ¢) is
bounded in R for fixed ¢ € (0, &). Further, because of A3, the boundary conditions
(3.3) and (3.4) (which are not trivial (see (1.2), (1.3)) satisfy the conditions

ao(e) + p(e) as(e) 20, ay(e) 20,
bo(e) — p(e) by(e) = 0, by(e) 2 0.

Thus, using Bebernes and Gaines [2], it follows from Lemma 3.1 that (1.1), (1.2),
(1.3) has a unique solution.

Remark. If in A2, B(e) < 0, then the choice p(g) = 0 suffices; i.e., no change of

variable is necessary in order to conclude existence and uniqueness.

Theorem 3.2. Assume Al—A3 are valid and let c(¢) be the smallest number
satisfying all of the inequalities

() |a(@)] = c(z) [ao(z) + p(e) as(e)];
(i) [B(e)] exp (p(e)) = <(e) [bo(e) — p(2) bu(2)],
() 1G5 0,0, )] exp (56) ) = ofe) [£(e) a2 — BE]
Then for 0 < & < &y, the unique solution y(x, €) of (1.1), (1.2), (1.3) satisfies
(s )] S ofe)exp (= (6) ).
In particular, if c¢(e) = O(1) as ¢ — 0, then y(x, €) is uniformly bounded as ¢ — 0.

Proof. We first calculate bounds on the corresponding solution u = y/w of (3.2),
(3.3), (3.4). The proof of Theorem 3.1 shows that the maximum principle [18, p. 48]
may be applied to u, and we will use it to obtain upper and lower bounds of u.
Thus, we seek two functions z,(x) and z,(x) such that

zy + H(x, zy,23,€) £ 0,
[a0(e) + p(2) as(e)] 24(0) — a4(e) z3(0) 2 o),
[Bo(e) — p(e) ba(e)] 24(1) + ba(e) 24(1) = A(e) exp (p(c))
e 2y + H(x, z5,25,8) 2 0,
La0(z) + P(e) ai(e)] 22(0) — as(e) 22(0) = () ,
[2o(e) — (&) ba(e)] 22(1) + ba(e) 22(1) = B(e) exp (p(e)) -

For then, by the maximum principle, z,(x) £ u(x) < zy(x), for 0 £ x < 1.
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In both cases we choose constants; that is, we let z,(x) = c(&), z2(x) = c,(e).
Thus we require, using the mean value theorem, that

(3.8) H(x, ¢;(e), 0, £) = H(x, 0,0, ) + Hy(x, &,(e)., 0, ) c;(e) < 0,

(3.9) Lao(e) + p(e) ax()] exfe) 2 a(e) ,
[Bo(2) — P(e) ba(e)] e1(e) = Ale) exp (p(e))

where &,(¢) is between 0 and c(e).

Using (3.7) and assuming c,(g) > 0, we may satisfy (3.8) by requiring that

(3.11) H(x,0,0,8) + (ﬂi)il@i’(—”)) er(e) =

2¢

= i [f(x, 0,0, &) exp (p(e) x) — (p(e) a(e) — B(e)) cy(e)] < 0.

By (i), (ii), (iii), we may take c,(g) = c(e). Similarly, we may choose ¢,(¢) = —c(e).
Thus
Iyl = lu[ w = o(e) exp (= p(e) ),

and the theorem is proved.

Remark. Even if in A2, B(e) < 0, the choice p(¢) = 0, which suffices for Theorem
3.1, may not be satisfactory for Theorem 3.2. For if by(e) = 0, (ii) will be violated
unless B(e) = O and if B(e) = 0, choosing p(e) = 0 will violate (jii) unless f(x, 0,0, &) =
= 0. Thus, choosing p(e) for Theorem 3.2 often requires more care than choosing
for Theorem 3.1. It is clear that a choice of the form p(e) = g/e (¢ > 0) will often
be damaging. For then, unless fi(¢) = 0 and f(x, 0, 0, &) = 0, conditions (ii) and (i)
might require that by(¢) or a(e) grow exponentially. Thus, for problems which are
non-homogeneous, p(g) = gfe (¢ > 0) is often, though not always (see section 4),
an inappropriate choice. We now pass to situations in which p(¢) can be chosen
independent of &.

Corollary 3.1. In addition to assumption Al, suppose A2 holds with 0 < B =
= B(g) < o, a = a(e) > 0 independent of ¢, and suppose that ay(e) = 0, a,(¢) = 0,
bo(g) > 0, by(¢) = 0 and b,(&) = o(by(e)) as & — 0. Then the problem (1.1), (1.2),
(1.3) has a unique solution for ¢ > 0 sufficiently small.

Proof. Let p(¢) = 2B/a; then the assumptions Al— A3 are all satisfied for 0 <

< & < & where ¢ is chosen so that & < &, & < a?/8B, and bo(e) = (2B[a) bl(e)
for 0 < ¢ < ¢,. Thus Theorem 3.1 applies.
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Corollary 3.2. In addition to the hypotheses of Corollary 3.1, suppose that a,
= ay(e), by = bo(¢), a; = a,(&) are all independent of e. Also suppose that |«(e)|
Sa< oo, |e)) B <o and |f(x,0,0,&) SN, for 0 <e<e,. Then the
unique solution y(x, ) of (1.1), (1.2), (1.3) is uniformly bounded as ¢ — 0.

IIA 1l

Proof. Letting p(¢) = 2B/a, this corollary follows from Theorem 3.2.

In the same way, we obtain

Corollary 3.3. In addition to the hypotheses of Corollary 3.1, suppose that oz(a) =
=0, B(e) =0 and f(x,0,0) = f(x,0,0,¢) is independent of &. Then the unique
solution of (1.1), (1.2), (1.3) satisfies

|y(x, €)| = 1 exp <g§> max If(x, 0, 0)| , 0sx<1,
B a Josxst

for all sufficiently small ¢ > 0.

This last result is essentially a generalization of a lemma of KREISS and PARTER
[11, Lemma 2.3], who require f(x, y, z, ¢) to be linear in y and z and the coefficients
in the boundary conditions to be ay(e) = by(e) = 1 and a,(e) = b,(¢) = 0.

4. An application to chemical flow reactors. The boundary value problem (see [9])

(4.1) ey' —y —ay"=0, 0<x<1,
(4.2) y(0) —ey'(0)=1,
(4.3) y'(1)=0,

where a > 0, N = 0 are constants and ¢ is a small positive parameter, arises in the
study of chemical flow reactors. O’Malley [14] attacked the problem of obtaining
an asymptotic solution of the more general problem

(4.4 ey —b(x)y —g(x,y) =0, 0=x=<1,
(4.5) ¥(0) — ey'(0) = «,
(4.6) y(1) =8,

where b(x) is strictly positive, and both b(x) and g(x, ) are infinitely differentiable.
Although O’Malley does not explicitly state other hypotheses, it is clear that these
assumptions are not sufficient to guarantee the conclusion of his theorem; for he
explicitly requires the existence of a global solution on [0, 1] of the reduced problem

b(x)y +g(x,y) =0, 0<x<1
»(0) = a.
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However, b(x) =1, g(x, y) = y*, « = —2 furnishes a counterexample. We also
note that non-integral values of n, which are of interest in the applications (see [9]),
certainly violate the smoothess assumptions on g(x, y).

We shall obtain a form of O’Malley’s result here, (with suitable hypotheses on
g(x, y)) as an application of our results in the previous section. However, we prefer
to change variables by replacing x by 1 — x so that the problem (4.4), (4.5), (4.6)
assumes the form

4.7) ey’ + b(x)y —g(x,y) =0, 0sx=1,
(4.8) -y (0) =8,
(4.9 y1) + ey (1) =a.

Of course, the functions b(x) and g(x, y) are'not quite the same functions as before.
For the formal work to follow, we assume for the time being that g(x, y) is analytic
and that b(x) is strictly positive and has a continuous derivative.

From a careful study of the procedure in [14] or generalizing from the linear case
[12], one may decide to assume a solution of the form

(4.10) y =Y Px,¢) ¢,
k=0
where each P,(x, ) is a polynomial in
E((x,¢) = exp(——e“ f b(s) ds) of degree k —1 for k=2
0

and of degree k for k = 0, 1 and whose coefficients are functions of x only. Thus we
write

Po(x, &) = ago(x), Pi(x, &) = aos(x) + ayy(x) Es(x, &),

and, for k = 2,
k-1

Pyx,e) =Y a;(x) Ej(x, €),

j=0
where
Ej(x,¢) = E{(x, ¢).
Before substituting (4.10) formally into (4.7), we observe that if we expand g(x, y)

as a power series in y — Py(x, ¢), substitute for y from (4.10), expand the powers
involved, and rearrange in terms of powers of ¢, we get ' '

(4.11) - g(xy) .=k=§og(k)-(x’ &) &,
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where
g9 (x, &) = g(x, age(x)), 9M(x,¢) = ga(x, ago(x)) Py(x, €)

and in general,
k
g¥(x, &) = g,(x, ago(x)) Pilx, &) + 'E%Gj,‘(x) Ejx,¢),
f=

where G(x) is independent of ¢ and depends only on the functions a,, ,(x) for m <
<k-1

Substituting (4.10) and (4.11) formally into (4.7) and equating the coefficient of
each product Ej(x, ¢) ¢ to 0, we get the following equations for determining the a;’s:

(4.12) b(x) age — g(x, age) =0,
(4.13) b(x) agy — ga(x, ago) @0y = —ago ,
b(x) aj; + (b'(x) + g1(x, ago)) ay =0
and for each k = 2,
(4.14) b(x) age — ga2(x, a0) ox = Gorl(x) — ag 4—1 »
b(x) ayy + (b'(x) + g5(x, ago) ayx = af 41—y — Gul(x),
b2(x) (72 = J) @jer = 92(%, 00) @j + Gulx) + (25 — 1) bx) aj +
+jb(x)ay — ajy_y, for j=2,3,..,k,
where, for convenience, we set a;,(x) = 0 for j = k = 2, and a,,(x) = 0.

Thus, we determine Po(x, &) = aoo(x) from (4.12) and Py(x, &) = ao(x) +
+ ay4(x) Ey(x, €) from (4.13). Then using (4.14) with k = 2, we determine P,(x, &) =
= ag,(x) + ay,(x) E{(x, ¢) and in addition a,;(x). Afterwards, setting k = 3,4, ...
step-by-step we determine the other a;’s. Note that on the kth step (k= 2), we
determine, in addition to ao(x) and ay,(x), also a, .4 (x), .., @ g+1()- It is in-
teresting to observe that a;,(x) for j = 0, 1 is always determined from a first order
differential equation, linear except in the case k = 0, and that ajk(x), j=2,is
determined from a very simple algebraic equation.

Of course, the differential equations do not determine a jk(x), Jj = 0, 1, uniquely.

To get an initial (or terminal) condition which will select a unique solution in each
case, we first note that for small ¢ > 0, E(1, ¢) ~ 0 for j = 1. Thus

WD) ~ Faoll) e, y'(1) ~ ¥ ao1) ¢,
k=0 k=0
so we see that y(1) + & y'(1) = « leads to

aoo(l) +k§1(a0k(1) (1) ~ o
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So we set
ago(1) = a, ag(l) = —ag,—,(1), k=1,2,....

These terminal conditions, together with the differential equations for ag(x) in
(4.12), (4.13), (4.14), then recursively determine the ag,’s uniquely.
The condition (4.8) gives

G(0) — B(O) 1,(0) + (03(0) + s (0) = (0) ax(0) ¢ +
+ 3 (3 a0) = 60) ay00s(0) & = =5,
where for j = k = 2, we set a;(x) = 0. So we require
0) ,(0) = B + ain(0), 5(0) 12(0) = ax(0) + a3,(0)

and for k = 2,
BO) 1.41(0) = ain(0) + a3u(0) + 3 (40) = J H0) a101(0)

Thus, since each ay(x),j =+ 1, is already uniquely determined, each a,,(x) may now
be recursively determined uniquely using these initial conditions and the differential
equations for ay,(x) in (4.13) and (4.14).

The remaining difficulty is the question of global existence on [0, 1] of the solution
of the reduced problem consisting of (4.12) and the terminal condition age(1) = a.
If we assume (and we shall below) that g,(x, y) (= (6g/y) (x, »)) is bounded below,
say g,(x,y) 2 —Bfor0 < x <1, —0 < y < oo, the easily obtained estimates
dhy = g(x, 0) — Bag,

b(x)
M&Q ) for a, < 0
b(x)

together with the standard theory of continuation of solutions [1] guaraatee that
the local solution of (4.12) with the terminal condition age(1) = « can be extended
to a global solution on [0, 1].

, for ayg, >0,

IIA

’
L)

Theorem 4.1. Suppose that b(x) 2 b > 0 for 0 < x < 1, b'(x) is continuous on
[0, 1] and g(x, y) together with its partial derivatives with respect to y up to and
including order n + 1 are all continuous on [0, 1] x (— o0, o). (Here n 2 0 is
an integer). Suppose further that g,(x,y) 2 —B (B > 0) on [0,1] x (-0, ).
Then for ¢ > O sufficiently small, the boundary value problem (4.7), (4.8), (4.9)
has a unique solution y(x, &) which is given by

(4.15) y@g=éﬁ@gy+gﬂmw®
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where Py(x,¢), k = 0, 1,...,n are the functions defined above and R,(x, €) is uni-
formly bounded as ¢ — 0.

Proof. The existence of a unique solution of (4.7), (4.8), (4.9) follows from Corol-
lary 3.1. By the remarks immediately preceding the theorem, Poo(X, &) = @go(x)
exists globally on [0, 1]. Letting

(4.16) V=2 Pix, ) &,
=0

using Taylor’s theorem to expand g(x, y,) in powers of y, — ag(x) = 2. Pi(x, &) &%,
k=1

expanding each of the powers involved and rearranging in terms of powers of ¢,
we get

(4.17) a(x, ) =Y g%¥(x, ¢) & + O(e*),
K=o

where the functions g®)(x, ¢) are the same as those appearing in (4.11).
We re-write (4.7) as

ey” + b(x) ¥ — g(x, ya) — [9(x. ¥) — 9(x, )] = 0,
substitute (4.15) and (4.17) into this equation, use the definitions of Py(x, ¢), k =
=0,1,...,n and assuming n = 2, obtain the following differential equation for
R,(x, ¢):

(4.18) R, + b(x) R, — !

+
8"1

[g(x, v + & 'R,) — g(x, y,)] +

+ hy(x, &) + hy(x,e) =0

where
hy(x,e) = —e! 722(1'2 = J) b*(x) a;,41 Ef(x, €)
j=
. 2 (*
=0(eltexp(— - b(s) ds
€Jo
and

hy(x,e) = O(1), as e¢—0.

If n = 0 or 1, the details are slightly different and lead to the same conclusion with
the added simplification that h,(x, &) = 0. In any case, we may take (4.18) as the
differential equation for R,(x, ¢).

Using the boundary conditions (4.8) and (4.9) for y(x, ¢) together with the initial
and terminal conditions imposed on the a; ;s for j = 0, 1, it is easy to see that R,(x, &)
satisfies the boundary conditions

(4.19) _e R0, ) =§;L a.,(0)
(4.20) R,(1,€) + ¢ R(1,8) = —ag,(1) + ()
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where

6(a)=0<s"”exp(—— slﬁb(s)ds»w as 550

Unfortunately, none of the results of section 3 apply immediately to conclude that
R,(x, ¢) is uniformly bounded as ¢ - 0. However, it is possible to split the boundary
value problem for R,(x, &) into two parts and apply our results separately to each part.

Toward this end, consider the boundary value problem

(4.21) eu" + b(x)u' — ;;i—l La(x, ya + € 'u) — g(x, ya)] + hy(x,€) =0,

n—1

(4.22) —&u'(0) =jzoa},,(0) ,

(4.23) u(l) + eu'(1) =0.

By Corollary 3.1, this problem-has a unique solution for ¢ > 0 sufficiently small;
call this solution S,(x,¢). Put Q,(x, &) = R,(x, &) — S,(x, ). Then Q,(x, &) solves
the boundary value problem

(4.24) au” + b(x)u' —
- 6,.1+1 9(x, yu + &*1S, + & 1u) — g(x, y, + &F1S,)] + hy(x,8) = 0

(4.25) —zu'(0) = 0

(4.26) u(l) + eu'(1) = —ap(1) + 5(e)

That Q,,(x, ¢) is uniformly bounded as ¢ — 0 follows from Theorem 3.2 by taking
p(e) = 2B[b. That S,(x, ¢) is uniformly bounded as &¢ — 0 follows from Theorem 3.2
by choosing p(e) = gf¢ where q satisfies 0 < g < 2b, 0 < g < 4. Thus, R,(x, ¢) =
= S,(x, &) + Q,(x, ) is uniformly bounded as ¢ — 0, and the theorem is proved.

1t has no doubt been noticed that Theorem 4.1 unfortunately does not apply to
the motivating problem (4.1), (4.2), (4.3) if in (4.1) N is an even positive integer, for
then the condition g,(x, y) = —B is violated. Further, if N is non-integral, the
requirement that g(x, y) be well-behaved for y < 0 may be violated and if 0 < N <
< n + 1, then g(x, y) = ay" surely fails to satisfy the smoothness requirements
at y = 0. Even so, we show how Theorem 4.1 may be applied. We assume in the
following that N > 0 and N =+ 1 (The cases N = 0,1 are already covered by Theorem
4.1). Replacing x by 1 — x in (4.1), (4.2), (4.3), we consider instead the problem

(4.27) ey' +y —ay¥ =0, 0=x<1,
(4.28) -y () =0,
(4.29) y)+ey(l)=1.
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The reduced problem (in the notation of Theorem 4.1) is

(4.30) ago = aagy, 0= x

IIA

L,
(4.31) ago(1) = 1.

It is easily verified that if N > 1, the unique solution of the reduced problem
exists as an increasing function on [0, 1] and satisfies

ago(X) = age(0) = [1 + a(N — 1)]~ /=1,

If 0 < N < 1, then we may conclude that the unique solution of the reduced
problem exists as an increasing function on [0, 1] and satisfies ago(x) > 0 on [0, 1]
if and only if a < (1 — N)™!, in which case the inequality

ago(X) = ae(0) = [1 — a(1 — N)]/CO~™

holds for 0 £ x < 1.

Thus, if N> 1 or 0<N <1 and a < (1 — N)™', we may choose 6 so that
0 < & < ago(0), say 6 = %ay0(0), and then define

N
_Jayt, if yzé
é(y)_{o, if y§0}’
and extend §(y) to —co < y < oo in such a way that g(y) is infinitely differentiable

and satisfies §'(y) 2 0 on (— o0, o). Then Theorem 4.1 applies to the modified
problem

(4.32) ey’ +y —4g(y)=0,
(4.33) —y(0) =0,
(4.34) y(1) +ey(1) =1

for any integral value of n = 0 so that in particular the unique solution y(x, &) >
— ago(x) uniformly on [0, 1] as ¢ — 0. Thus for ¢ > 0 sufficiently small, y(x, &) = &
on [0, 1], so that y(x, &) is also the unique solution of (4.27), (4.28), (4.29) and the
asymptotic formula of Theorem 4.1 applies.

Numerical results reported in [9] would lead one to suspect that the qualitative
properties of ago(x) (ago(x) is increasing on [0, 1] with 0 < a,o(x) < 1) are true also
for y(x, ¢). This is indeed the case, as is easy to demonstrate with the maximum
principle. For & > 0 sufficiently small, we saw above that y(0, &) > 0; since
¥'(0,¢) =0,

e y"(0) = a[¥(0)]¥ > 0.
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Thus y'(x, €) and hence y(x, ¢) is increasing in some neighborhood of x = 0. I
¥'(x, €) > 0 does not hold on (0, 1], then there exists x, € (0, 1] such that y'(x, &) =
= 0, but y'(x, &) > 0 for 0 < x < x,. But then u = y(x, ¢) satisfies the equation

eu +u —ay"(x,e) u=0

with a y¥~!(x, &) > 0 and y(x, &) has a positive endpoint maximum on [0, x,] at x,.
By the maximum principle [18, p. 7], y'(x,, €) > 0, a contradiction. Thus y(x, £) > 0
on (0, 1] and y(x, &) = y(0, &) > 0. Moreover, the function z,(x) = 1 satisfies

ez] +z1 — §(z) = —a <0,
—-z1(0) =0,
(1) +ezi(l) =1,

so by the maximum principle [18, p. 48], z;(x) = 1 is an upper bound for y(x, &)
on [0, 1].
We summarize our results in

Corollary 4.1. Let N 2 0 and if 0 < N < 1, assume that a < (1 — N)™'. Then
for € > 0 sufficiently small, the boundary value problem (4.27), (4.28), (4.29) has
a unique solution y(x, €) which satisfies 0 < y(x, ¢) < 1for0 < x < L and y'(x, &) >
> 0 for 0 < x < 1. Moreover, y(x, €) is given by an asymptotic expansion of the
form (4.15).
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