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FINITE DIMENSIONAL COVERS OF METRIC-FINE SPACES
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This paper continues the study of metric-fine (M-fine) uniform spaces begun
in [Fr],_,, [Ha],_3, and [R], - 5. Here we consider the finite dimensional uniform
covers and uniform dimension of locally sub-M-fine, sub-M-fine, and M-fine spaces.
The principal results are (1) sub-M-fine spaces are determined by their finite dimen-
sional uniform covers, (ii) the uniform dimension functions 4d and éd coincide on
sub-M-fine spaces, and (iii) none of the operators my, m,;, and m (corresponding to
the locally sub-M-fine, sub-M-fine, and M-fine classes) increase the large uniform
dimension of a uniform space.

uX will denote a separated uniform space, where u is a family of covers of X
that satisfies the usual axioms for a uniformity. C(uX ) denotes the family of uniformly
continuous real-valued functions. eu is the uniformity generated by the countable
u-uniform covers and cu is the uniformity generated by C(uX). A uniform space aX
is fine if a is the largest uniformity on X which has the same uniform topology.
A uniform space uX is M-fine (respectively sub-M-fine) if each uniformly continuous
mapping to a metric space ¢M (respectively complete metric space) is uniformly
continuous with respect to the fine uniformity o on M.

Given two uniformities u and v on X, define u/v to be the quasi-uniformity with the
basis of covers of the form {V, n U3}, where {V¥,} belongs to v and {U;} belongs to u
for each s. It is implicit in [I], that u / v is a uniformity if v has a basis of point finite
uniform covers. If u = v, we write u/v = u and define uX to be locally fine if
u™ = y. In general, Au denotes the smallest locally fine uniformity containing u.
The operators corresponding to the M-fine and sub-M-fine spaces are denoted
respectively by m and m,, where mu (resp. mju) is the smallest uniformity con-
taining u that belongs to the respective class. In [Fr], and [R], it is shown that
mu = u[meu. Finally, define the locally sub-M-fine operator m, by mou = ufAeu.
For separable uniform spaces (those with a basis of countable uniform covers),
the locally sub-M-fine, sub-M-fine, and locally fine operators agree; in general each
locally fine space is sub-M-fine ([GI]), each sub-M-fine space is locally sub-M-fine
([R],), and the sub-M-fine spaces are precisely the subspaces of the M-fine spaces

([R],)-
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A uniform cover of X is n-dimensional if each point of X belongs to at most n + 1
members of the cover. From [I], the finite dimensional, respectively point finite
uniform covers relative uX form a basis for a uniformity denoted by fu, respectively
pyu. In this section we establish the degree to which finite dimensional covers deter-
mine the special uniformities previously defined.

Lemma 1.1. For any three uniformities u, v and w on a set, (uv)/w = u/(v/w).

The proof of 1.1 is routine and we shall omit it.

Lemma 1.2. For each uniformity u on a set X, pju < fuleu.

From [I],, if % is a point finite uniform cover, there exist uniform covers %,
and ¥ with %, < % and each member of #" meeting only finitely many members
of %,. Hence %, is point finite and we may define C, = {x : x belongs to at most n
members of %}, n = 1,2, .... Clearly #" < {C,}, so {C,} is a countable uniform
cover. Since ”Ilo|c,, is a finite dimensional cover of C, there exists (from [I],) a finite
dimensional uniform cover ¥7, of X such that ¥" ,,lcn = %olcn; hence %, € fuleu,
which completes the proof.

Theorem 1.3. (i) uX is locally sub-M-fine with a point finite basis if and only if
u = my(fu); hence if uX is sub-M-fine, u = my(fu).

(i) If uX is locally fine, then u = (fu)®[cu.

To establish (i), we first note that m, preserves the property of having a point
finite basis ([R],); hence it suffices to establish the equality u = mq(fu) from the
assumptions on uX. me(fu) < u is immediate since mq(fu) is the smallest locally
sub-M-fine uniformity containing fu. For the reverse inclusion, first note that u =
< fueu from 1.2. One easily shows that euX is locally fine; hence by 4.8 and 4.9
of [GI] eu = (cu)*’. Thus fuleu = fu(cu)® = (fufcu)|cu from 1.1 and (fu[cu)/cu =
< mo(fu)fcu = mo(fu) since cu < efu, so one obtains u <= me(fu). From [R],
each sub-M-fine space is locally sub-M-fine and has a point finite basis, so the second
part of (i) follows from the first. The proof of (ii) is similar to the proof of (i).

Theorem 1.3 may be summarized by saying that sub-M-fine spaces are determined
by their finite dimensional uniform covers or, alternately, that the functor f is an
isomorphism on the category of sub-M-fine spaces and uniform mappings. The
latter formulation is analogous to the statement that the functor ¢ is an isomorphism
on the category of separable subfine spaces (from [CI] the separable locally fine
spaces are precisely the separable subfine spaces and the equation u = (cu)®
(4.9 of [GI]) shows that ¢ is an isomorphism on such spaces; a different proof of
this fact is found in [Ha]4, as well as a description of the image of c¢: the uX for
which u = cu and C(uX) is closed under countable composition (if uX J, R is
a uniform mapping to a countable product of real lines and R*® ¢, R is continuous,
then g o f € C(uX)). The following characterization of the image of f is found in
[R]s: the uX for which u = fu and which (i) have the generalized composition pro-
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perty (replace R¥ by the class of complete metric spaces) and (ii) are two-dimension-
ally locally sub-M-fine (if {4,} € eu is one-dimensional and {C:} € u is two-dimen-
sional, n = 1,2, ..., then {4, N C3} € u).

Finally, note that 1.3 is an optimal result in the sense that there exist fine spaces
with no basis of finite dimensional covers. From 3.2 of [CI], a complete locally fine
space has such a basis if and only if there exists a compact subset K such that each
closed set disjoint from K has finite dimension; hence the fine uniformity on R¥°
does not have such a basis.

Define AduX = n for a uniform space uX if n is the least integer for which uX has
a basis of n-dimensional uniform covers; if no such integer exists define 4duX = co.
Define 6duX analogously with respect to the finite uniform covers; then one easily
shows that 6duX < AduX.

Theorem 2.1. Ad and éd coincide on locally sub-M-fine spaces with a point
finite basis.

From [I],, the dimension functions agree on spaces with a basis of finite dimen-
sional covers; hence for any uX, AdefuX = ddefuX = oduX. If uX is locally sub-
M-fine with a point finite basis, then u = mq(fu) = fuldefu by 1.3 (i). Suppose
dduX = n; then from [I], AdiefuX < AdefuX = n, while AdfuX = n by the result
cited from [I];, so one easily shows that AduX < (n + 1)*> — 1; once again using
the result from [I]; we conclude that AduX = n, which completes the proof.

Theorem 2.2. For each uniform space uX, AddmuX < AdmuX < AdmguX <
< AduX.

We first establish that AdmouX < AduX. Suppose AduX < co; then uX has
a point finite basis, so from [R], myuX has a point finite basis and hence 4dmuX =
= 6dmouX by 2.1. Now ddmquX = ddemquX = ddmoeuX (by [R]; the operators
m, and e commute) = ddleuX. By the result from [I]; cited in 2.1, ddleuX <
< AdeuX, and one easily establishes AdeuX < AduX, so one obtains ddmouX =<
< dduX.

To establish Adm,uX < AduX, suppose that AduX = n. From [R],, if % € myu
there exists a uniform mapping uX 7, oM to a complete metric space and open
cover @ of M such that f~*(0) < %. There exists ¥, eu, k =1,2,..., each n-
dimensional, such that ¥, < f7'#(1/k) and ¥ 441x < ¥ The family {77}
generates a u-uniform pseudometric g, With 4dg,X < n. Let goX be the metric
space of equivalence classes determined by go; then 4dg,X < n and f may be factored
as g o h, where uX *, 3,X and g,X %, @M are uniform mappings. Let 7g,X 2, oM
be the extension of g to the completion ngoX. Then m,uX *, ang,X is a uniform
mapping and Adang,X < n since from [I], the dimension of the fine uniformity
on a metric space does not exceed the uniform dimension of any compatible metric
uniformity and n does not alter uniform dimension. Consequently, there exists a
n-dimensional open cover ¥~ that refines g'~'(0), so h™!(¥") is an n-dimensional
member of m,u that refines %. Therefore Adm,uX < n.
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A proof analogous to the one given above shows that AdmuX < AduX, where oM
is not necessarily complete and the completion need not be used. Finally, since
mm; = m and m;my, = m,, the preceding work establishes that AdmuX <
< AddmuX < AdmguX.

Corollary 2.3. For each uniform space uX, AdmuX < éduX.

From 2.1 AdmuX ='6dmuX = AdpmuX. One easily shows that AdpmuX <
< AdemuX and AdemuX = AdmeuX = AdmpuX since the operators m and e
commute ([R];) and mp = me ([H],). Finally, 4dmpuX < AdpuX = dduX by
2.2, which establishes the result.

The covering dimension of a Tychonoff space X is defined by dim X = ddaX
(= A4daX by 1.4), where o is the fine uniformity with respect to the given topology.
One may establish the following result using 2.3. Assume that the uniform and topo-
logical cozero sets of uX coincide. Then dim X < dduX. In particular, this hypothesis
is satisfied if the uniform topology is Lindeldf; in fact for a Lindelof space X it is
known that dim X = min éduX, taken over all compatible uniformities u.
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