Czechoslovak Mathematical Journal

Alois Svec
On the rigidity of certain surfaces in £°

Czechoslovak Mathematical Journal, Vol. 27 (1977), No. 2, 250-257

Persistent URL: http://dml.cz/dmlcz/101465

Terms of use:

© Institute of Mathematics AS CR, 1977

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
O stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz



http://dml.cz/dmlcz/101465
http://dml.cz

Czechoslovak Mathematical Journal, 27 (102) 1977, Praha

ON THE RIGIDITY OF CERTAIN SURFACES IN E°

Avors Svic, Olomouc

(Received May 12, 1975)

E. BomPIANI [1] has presented the classes of surfaces in E" which may admit non-
trivial higher order deformations (at least locally). In E°, the general surfaces of this
class are those possessing a conjugate net. In what follows, I just show the global
infinitesimal rigidity of a subclass of surfaces with a conjugate net. Of course,
Bompiani’s results deserve a further study.

1. Let G = #? be a bounded domain, 0G its boundary and M : G - E°, G =
= G v 0G, a surface in the 5-dimensional Euclidean space. To each point me M =

= M(G), associate an orthonormal frame {vy, ..., vs} such that v, v, € T(M). Then
1) dm = o'v; + 0?v,,

o = Wi + 0oy + aey + 0lvs,

dv, = — v, + wivy + @iv, + wivs,

dvy = —wlv; — wd, + olv, + ojos,

dv, = —w‘l‘v, - w‘;*v2 - w§v3 + wﬁvs,

dvs = —wijv, — wiv, — w303 — WFv,

with the usual integrability conditions do’ = &' A @), do! = 0 A ol. From
g Jj i i k

2 0 =0t=0"=0,
we get
(3) o' Aol + Ay =0, o' A0ttt olAot=0,

o' Ao} + 0 Aw;=0
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and the existence of functions a,, ..., ¢; such that
(4) 0} = a,0' + a,0°, 03 = a,0' + a;0°,

2
o} = byo' + b,0?, o} = b,0' + byo?,

Il

5 2
0] = ;0! + 0%, ) = c,0' + c;0°.

Let T2(M) denote the 2-osculating space of M at m, and suppose dim TA(M)

for each m e M. The frames {v;} be chosen in such a way that v;, v, € T*(M),

(5 0, =w;=0.

Let {w,} be another field of moving frames, and let

(6) v; = ¢gy(cosa.wy —sina.w,), v, =sina.w; +cosa.w,,
vy = gy(cos f.wy —sinB.w,), vy =sinf.w; +cosf.w,,
Vs = e3Ws; & =65 =¢85 =1.

The equations (1) being now dm = Q'w;, dw; = Qjw;, we get

) o' = gcosa. Q' —sina.Q?), o =sina.Q" +cosa.Q?,
o} = g&,(cos wcos B. Q7 —sinacos f. Q3 — cosasin f.Qf +
+ sinasin . Q3),
ot = gy(cosasin f.Q} — sinasin f. Q3 + cosacos f.Qf —
— sinocos B. Q3),
w3 = ey(sinacos f. Q3 + cosacos f. Q3 — sinasinf.QF —

— cosasin . Q3),
w4 =sinasin . Q3 + cosasinf. Q3 + sinacosf.Qf +
+ cosacos f.Q5.
Consider the functions
(8) K = aja; — a3 + b,by — b2, k = a,;b, — a,b; + a,bs — azb;
defined by
(9) ©} A} + 0t Aol =Ko' A, oAbt o)ne;=ko' Ao

resp. Similarly, K* and k* be defined by

=4
ie.,

(10) @} AQ+QtAQi=KQ AQ, QAQ++QAQ=kQ AQ
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resp. From (7), we get

(11) K* =K, k* =¢6k.

Thus K is an invariant; it is easy to see that it is the Gauss curvature of M. The
expression k depends just on the orientation of the moving frames. Let us look for

the existence of a tangent vector field V = &v; + 5o, such that there is a non-trivial
tangent vector field W = &'v; + n'v, satisfying WV < T(M). Because of

dV =dx.v, +dy.v, + x(wiv, + wiv; + ofv,) +

+ y(— oiv, + w3v; + wiv,),
we get
Wy = (aléf’ + ayén' + ané + ‘13'7’1,) v3 +

+ (by&8 + byén’ + bynl’ + bynn’) vy (mod T(M)) ;
because of WV = 0 and ¢'2 + 1’2 + 0, we get
(12) (aghy — ayby) E* + (ayby — azby) én + (ayby — azby)n* = 0.

The equation (12) is the equation of the so-called conjugate directions {&v; + 7v,}
of M.

2. Let @ be an infinitesimal second order deformation of our surface M; & is
obviously given by (1) where we have to replace w$, w3, ®3 by ot + el + ...,
®; + to3 + ..., o] + to; + ... resp. Comparing the terms at ¢ in the integrability
conditions, we get '

(13) O A QI+ O} A @I =0, o] A@i—wlAg]=0,
w3 A QS+ 0 A3 =0,
03 AQP3— 03 A @i =0, o} A @]+ atag;=0,
3 AP+ w7 Apy=0;
(14) dps = —@3 A 95 — 03 A ],
dp3 = 0% A @) + 0% A 0f, doj= —oi A 0 < ¢§ A 3.
Because of (4) and (13), we get the existence of functions A, ..., C, such that

(15)  big§ + 0% = 410" + 4,0%, a,0§ — ¢;0] = B,o' + B:0*,
b,p5 + 203 = A,0' + A%, ay05 — ¢,05 = Bza)l + BSw3 ’
byp3 + Cs‘Pg = 4;0" + 4,07, aa‘Pg - ca‘ﬂi = B3wl + Byo?,

a103 + b9 = Ci0' + C,07,
4,03, + br; = C,0' + C307,
a303 + b3pi = C;0' + C,0°.
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Write
(16)  ¢f = x0' + x,0%, @3 = y0' + y,0*, @i =z,0' + 7,07 ;

from (15), we obtain

(17) byxy — byx, + ¢y1 — €1y, =0,
bsxy — byx, + c3y; — €2, =0,
a,x; — a;x, — ¢z + ¢z, =0,
azxy — a,x, —c3zy + ¢z, =0,

-a@yyy — a1y, + byzy — bz, =0,
a3y — a3y, + byz; — byz, = 0.

We are now in the position to prove the following local

Theorem 1. Let M = M(G) < E° be a surface such that dim T,,(M) = 5 for each
m € M. Then each infinitesimal second order deformation ® of M is trivial.

Proof. From (1), we obtain
(18) vym=uv,, v,m=v,,
(19) vioym = (*) v, + a;v3 + by, + cyvs,
voym = (*) v, + ayv3 + by, + cyvs,
v,0,m = (*) vy + asvy + by, + c3vs .

The vectors (19) are linearly independent because of the condition dim T2(M) = 5,
and we may choose the frames in such a way that

(20) by =c;, =c, =0, a;bye; 0.
The system (17) is then reduced to
(21) byx; =0, byx; — byx, +¢3¥; =0, a,x; —ax, =0,
azxy — d,X, — €321 =0,
ay1 — agys + byzy =0, azy; — ayy, + byzy — bz, =0,
and we get x; = x, = y; =y, = z; = z, = 0, i.e,

(22) i =03=93=0.
Thus @ is trivial. QED.
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3. Now, let us prove a global result.

Theorem 2. Let G = %2 be a bounded domain and let M : G U dG — E? be a sur-
face such that: (i) dim T,(M) = 4 for each m € M; (ii) there is K + k or K + —k
on M; (iii) there are no real conjugate directions on M. Let ® be an infinitesimal
second order deformation of M which is trivial on the boundary of M. Then &
is trivial on M.

Proof. Choose moving frames {v;} of M and suppose K + k on M; of course,
we have (5). From (17) and (i), x; = x, = 0, i.e.,

(23) 05 =0.
From (13), (14) and (17),
(24) 0] A QI+ 0T APL =0, 0] A@S+ 03 AQ=0,
(25) do3 = 03 A @i, doi = -0 A 0],
(26) ayy1 — ayy, + byzy — byz; =0, asy; — a,y, + byzy — byz, = 0.
From (16,,3) and (25), we get the existence of functions S, ..., S¢ such that
(27) dy, — y,0? - z,0% = S;0! + S,0?,

dy, + y;0% = z,0% = S,0' + S;0?,

dz, — 2,0 + y,0} = S,0' + S;0?,

dz, + z,0? + y,0% = Ss0! + Sg0?.
From (41_4) + (5), we get the existence of functions ay, ..., B, such that
(28) da; — 2a,0% — b0} = ;0! + a,0?,

a0! + ayo?,

I

da, + (a; — a;) 0} — b,w}

da; + 2a,0% — b0} = ;0" + a,0?,

db, — 2b,07 + a0} = p0' + Br0?,

db, + (by — b;) 0} + a,0% = Br0' + By0?,

db, + 2b,0% + a0} = fi0' = f0?.

The differential consequences of (26) are then

(29) a;Sy — ayS, + bySy — bySs = —wyy; + a1y, — Brzy + Pyz,,
a38; — aySs + bySs — bySe = —03y; + 029, — Bazy + Paz,,

a3S; — a,S, + b;S, - b,Ss = —a3y; + 0y, — Bizy + Puz,,

asS,

a,S; + b3Ss — bySe = —04y; + 03y, — Bazq + Piz,.
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Consider the system
(30) a; X + b)Y —a,Z — b,T=0Qy, a,X + b,Y—asZ— b;T=0Q,

for X, Y, Z, T. 1t is easy to show that the convenable combinations of the equations
(30) lead to

(31) (K — k)X = (azb, — aybs + byby — b3)(X + T) +
+ (ayb, — asby) (Y — Z) + (a5 — by) Q1 + (b, — a5) Q,,
(K — k)Y = (ayb, — a;bs3) (X + T) + (ajay — a3 + azb, — a3b;) (Y — Z) +
+ (ay + b3) 0y — (a; + b,) Q5
(K — k) Z = (ayb, — a;bs) (X + T) + (a;b, — az2by — bybs + b3) (Y — Z) +
+(az + b3) Qs — (ar + b2) Q5
(K — k)T = (ayay — a3 — a;b, + a,b;) (X + T) + (a3b; — a2b,) (Y — Z) +
+ (b; —a3) Qy + (a, — by) Q.
Applying this auxiliary result to the systems (26), (291,3) and (292.4) Tesp., we get
(32) (K — k) y; = (a3b, — azbs + bybs — b2) (v, + z1) +
+ (azb, — asby)(z, — Y1)
(K = k)z, = (azb, — asbs)(y, + z1) +
+ (ajay — a3 + azby — G2b3)(z, — V1),
(K — k) y, = (azb, — agb3) (v, + z1) +
+ (agh, — azby — bibs + bY)(z, — ¥1),
(K — k)zy = (ajay — a; — a;b, + ab,) (v, + 21 +
+ (ashy — azby)(z, — Y1)
(33) (K = K)S, = (a3b, — asby + byby — b3) (52 + 8,) + (826, — a3b,).
(S5 = 5)) + (a5 — by) gy + (1 = a)) g2
(K — k) S5 = (azby — agb;) (S, + S,) + (@193 ~ a2 + asby — a,b,).
(S5 = S;) + (az + bs) gy — @ + by) a2
(K — k) S; = (azb, — ayby) (S, + S,) + (@12~ a,b, = biby 4 b).
(Ss = Sy) + (ay + b3) a1 ~ (a: b,) g2 >
(K — k)Sy = (a,as — a} — asb, + azzb;)(s2 + S, + (asb, — ayb,) .
(S5 = 5) + (b = a)as (2 = b)) 4
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with
gy = 0y — Yy + Bozy — Bizy s gr = @3yi — %yy + Bazy — Baza
(34) (K — k) S5 = (asb, — aybs + byby — b3)(S; + Ss) + (a;b, — asby).
(Se = S3) + (a3 — by) gy + (by — a,) 45,
(K = k) S = (asb, — ayb3) (S5 + Ss) + (ajas — a3 + azb, — aybs).
(Se = S;) + (a, + b3) gy — (a; + by) g5,
(K — k) S, = (azb, — a;by) (S5 + Ss) + (a;b, — asby — bybs + b3).
.(Ss = S,) + (ay + bs) gy — (ag + by) g3,
(K — k) Ss = (aja3 — a3 — agb, + a3by) (S5 + Ss) + (azhy — ayb,).
(S¢ = S3) + (b, — a3) g} + (a; — by) g5
with '
gy = a3y — 0y, + Bazy — Pazy, 47 = t4yy — a3y; + Bazi — Pazy.

It follows from (32) and K = k that any linear combination of yy, y,, zy, z, may be
written as a combination of y, + z; and y; — z,.

From (27), we get
(35)  d(ys — z2) = (v2 + z1) (0] + @3) = (S; — S5) @' + (S, — S¢) @*,
d(y, + z¢) + (v — z,) (0] + 03) = (S, + S4) @' + (S5 + S5) 0>

Let G be covered by a system of isothermic coordinates (u, v); let

(36) I =r*du® + dv?), r(u,v)>0, ie., o' =rdu, o =rdv.
Then
(37) a(yla_;ZZ) = (5, = Ss)r + e1(»2 +,Z‘)’
a(ys — z)) = (S, = Se)r + 0:(y2 + zy),
ov
A2+ 21) _ (5, 4 S)r + 05y — 22),
ou
3_()%_2_1) = (S5 + S5)r + 0y — 22)
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01, -, 04 being easy to calculate. From (37) and (33;) + (34;) or (33,) + (34,)
resp., we get a system of the form (i = 1, 2)

(38) ay 6()’1 - 22) + as, 6(y1 - Zz) + by 5()’2 + 21) +
ou ov ou
oy, +
+ b, %EI‘) = Ci1()’1 — 23) + ¢i(y, + z1)
with
(39) ayy = ab, — asby, a;, = bby — b} + a,b, — a,b,,

ay, = aja; — a3 + azb, — ayby, a,, = a,b, — asby,
by, = b% — bybs + ayby — azb,, by, = ayb, — a;b;,
b,y = ayby — a,b, . by, = ajay — a3 + a,b, — a,b, .
Recall that the system (38) is called elliptic if the quadratic form
(40) ¢ = (a12b22 - a22b12) #2 - (anbzz — ay1by, + agby — a22b11)l“’ +
+ (a11byy — azybyy)v?
is definite. In our case,
(41) ¢ = (k — K){(asb, — asb;) p* + (aybs — azby) pv + (azbs — azhy)v?},

and ¢ is definite because of the suppositions of our Theorem. Thus y; — z, =
=y, + z; = 0in G and (32) implies y; = y, = z; = z, = 0in G.

In the case K + —k, we havetouse y; + z,, y, — z, instead of y; — z,,y, + z,
resp. QED.

Let us remark that locally @ does not need to be trivial.
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